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Abstract: We simulate the introduction of shared, automated, and electric vehicles (SAEVs) providing
on-demand shuttles service in a large-scale transport digital twin of the San Francisco Bay Area region
(California, USA) based on transit supply and demand data, and using the mesoscopic agent-based
Behavior, Energy, Autonomy, and Mobility beta software (BEAM) developed at the Lawrence Berkeley
National Laboratory (LBNL). The main goal of this study is to test the operations of this novel mobility
service integrated with existing fixed-route public transportation service in a mesoscopic simulation
of a real case scenario, while testing the BEAM beta software capabilities. In particular, we test
the introduction of fleets of on-demand vehicles bound to operate within circular catchment areas
centered on high-frequency transit stops, with the purpose of extending the reach of fixed-route
transit by providing an alternative first- and last-mile connection at high-frequency public transport
stations. Results show that on-demand automated shuttles represent the best solution for some users,
increasing the overall transit ridership by 3%, and replacing mostly ride-hail trips, especially those
connecting to transit stops, but also some walking trips. This type of service has the potential to
reduce overall vehicle miles traveled (VMT), increase transit accessibility, and save energy, but future
research is needed to optimize this type of service and make it more attractive to travelers.

Keywords: micro transit; accessibility; transport; transit data; simulation

1. Introduction

The main weakness of an existing public transport network is the poor proximity of the
home locations of potential users to transit stops or light rail and rail stations, particularly
in low-density areas, such as Santa Clara County, California, where fixed-route local transit
services are inefficient and generate unsustainable ridership, as it is possible to observe
from the NTD (National Transit Database: https://www.transit.dot.gov/ntd, accessed on
14 April 2023)— for example, the average agency cost per passenger in 2021 was USD 27.01
for the Santa Clara Valley Transportation Authority (VTA) operating in the Santa Clara
County (570 inhabitants per square Km) and USD 10.84 for the San Francisco Municipal
Transportation Agency (SFMTA) operating in the City of San Francisco, California, where
transit is operating in a denser area (7124 inhabitants per square Km). Hess (2009) observed
that the transit accessibility—which quantifies how convenient, effective, and easy is to
access a specific transport mode for residents—greatly affected the mode choice, especially
for older people [1]. As described by Farber and Grandez (2017) for the city of Toronto, the
accessibility to transit considerably affects its efficacy [2]. Zuo et al. (2020a) find that transit
service can be greatly extended by improving first- and last-mile access to transit, and
disadvantaged residents, who are the most likely to consider public transit, receive better
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and more equitable transit accessibility to jobs than others [3]. Kanuri et al. (2019) argue
that first- and last-mile connectivity is an important factor in enabling greater integration
and accessibility to mass transit networks for the largest number of urban residents [4]. For
these reasons, authorities are addressing the problem of the first- and last-mile connection
for a public transport network as a method to improve the accessibility of the public
transport service and hence its level of usage.

Micro transit, or transit service using on-demand vehicles smaller than conventional
buses, represents a valuable alternative for the first- and last-mile connection and in recent
years, public transit agencies including the Santa Clara Valley Transportation Authority
and the Alameda-Contra Costa Transit Authority (AC Transit), both in the San Francisco
Bay Area, tested this model (Eno center for transportation: https://www.enotrans.org/eno
-resources/uprouted-exploring-microtransit-united-states/, accessed on 14 April 2023).
For example, the AC Transit Flex pilot program (AC transit Flex program: http://ww
w.actransit.org/2016/07/18/ac-transit-launches-on-demand-flex-bus-service/, accessed
on 14 April 2023), which serves the catchment area around two BART (Bay Area Rapid
Transit) stations in Alameda County, provides an operating example of the flexible-route,
on-demand last mile shuttle service contemplated in this study, but with human-driven,
not automated, vehicles. The program improves service in low-density and low-demand
areas while demonstrating cost neutrality and higher efficiency compared to the previous
fixed-route service. On the other hand, using a model of existing public transit options
and a hypothetical level 4 shared autonomous vehicle, Moorthy et al. (2017), explored the
possibility of automated vehicles being used to solve the last mile problem in Ann Arbor
MI, concluding that they significantly improved transit sustainability by promoting mode
shifts to public transit [5]. It is worth noting that autonomous vehicles could serve as a
paratransit and then represent a key value for people with disabilities [6].

Ride-hail systems are an important competitor to many public transport services, po-
tentially replacing transit rides, but there are contrasting results in the literature (see [7–10]).
In particular, Erhardt et al. (2022b) demonstrate that Transport Network Companies (TNCs)
are responsible for a net ridership decline of about 10% in San Francisco from 2010 to 2015,
offsetting net gains from other factors such as service increases and population growth [7]—
moreover, Erhardt et al. (2022a) demonstrate that ride-hailing is the biggest contributor to
transit ridership decline in the United States [8]. On the other hand, Hall et al. (2018) state
that the TNC across U.S. metropolitan areas is a complement for the average transit agency,
increasing ridership by five percent after two years [10]. However, Wang and Mu (2018)
analyzed data of Uber ride-hail activity in Atlanta, highlighting that the whole ride-hail
fleet cannot always guarantee sufficient accessibility in terms of wait time—in opposition
to a well-supported public transport service [11]. Chee et al. (2020) state that automated
bus service competes with existing last-mile services [12], while Zuo et al. (2020b) state
that transit accessibility to jobs can be improved with bicycles as the first-and-last mile
mode [13]; however, Rupi et al. (2019), Schweizer et al. (2020,) and Rupi et al. (2020) found
that cyclists try to avoid riding in the presence of buses because otherwise this impacts
cyclist safety, speed, and waiting times. Therefore, automated shuttles may offer a more
convenient mode for first- and last-mile service to transit (see [14–16]).

In order to complement the current public transport service and not compete with
it, automated shuttle operation should be limited to within a predefined, geographically-
bounded “catchment areas”, but it is not clear how to define these; a general methodology
to determine the appropriate size or shape of such catchment areas is not present in the
literature yet, and likely depends on the population or employment density where transit
stations are located. Biba et al. (2010) used a parcel-network method for estimating the
population with walking access to bus stop locations using spatial and aspatial data (i.e.,
location and demographics) and the network distances from parcels to bus stop locations
in order to deploy the catchment area in a 100-square-mile portion of the Dallas Area
Rapid Transit (DART) system covering two Texas communities [17]. Guerra et al. (2012)
defined half a mile as the maximum distance from a transit stop or station that makes a

https://www.enotrans.org/eno-resources/uprouted-exploring-microtransit-united-states/
https://www.enotrans.org/eno-resources/uprouted-exploring-microtransit-united-states/
http://www.actransit.org/2016/07/18/ac-transit-launches-on-demand-flex-bus-service/
http://www.actransit.org/2016/07/18/ac-transit-launches-on-demand-flex-bus-service/
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public transport service desirable to users [18]. El-Geneidy et al. (2014) declared that the
85th percentile walking distance to bus transit service is around 524 m for home-based
trip origins [19]. Eom et al. (2019) found that about 90% of transit passengers traveled
within 3.6 km from railway stations, suggesting a catchment area with a radius of less than
4 km [20]. AC Transit recommended service zones of approximately 5–7 square miles (AC
Transit: http://www.actransit.org/flex/, accessed on 14 April 2023). In any case, as stated
by Lin et al. (2019), the catchment area can increase commensurate with changes to first-
and last-mile service: for example, they found that a dock-less bike sharing system can
extend the catchment area beyond that when only walking is available [21]. However,
it is important to take into account, as stated by Roy and Basu (2020), that poor first-
and last-mile performance is generally observed in more suburban locations with low
population and employment density, poor sidewalk and bus stop infrastructure, and the
extra cost and time needed to make longer first- and last-mile trips using feeder buses
contribute to low first- and last-mile quality [22]. It is worth noting that only the simulation
of a large-scale study area allows to consider the overall impact of new elements in the
transport system (see [23]). The main goal of this study is to test the operations of a fleet of
shared, automated, and electric vehicles (SAEVs) integrated with existing fixed-route public
transportation service in a mesoscopic simulation of a real case and large-scale scenario,
while testing the Behavior, Energy, Autonomy, and Mobility beta software (BEAM) beta
software capabilities.

The paper is organized as follows. Section 2 describes the methods and a case study.
Section 3 shows and discusses the results of the analysis. Concluding remarks and future
research directions are presented in Section 4.

2. Materials and Methods

The beta software BEAM—The Modeling Framework for Behavior, Energy, Autonomy,
and Mobility (BEAM website: https://transportation.lbl.gov/beam, accessed on 14 April
2023)—has been under development for some years at Lawrence Berkeley National Labora-
tory (Lawrence Berkeley National Lab: https://www.lbl.gov/, accessed on 14 April 2023)
and allows peforming large-scale and agent-based mesoscopic simulations of transport
systems. The BEAM developers recently calibrated and validated a traffic scenario related
to the San Francisco Bay Area. It is worth noting that the scenario has been calibrated
and can be simulated only considering 10% of the population; otherwise, it would be too
expensive in terms of computational power and time. Transit and road capacities have
been scaled accordingly. The methodology of this study consists of developing a strategy
to introduce an on-demand automated system composed of shuttles as a support for the
first- and last-mile connectivity of public transportation service on BEAM, and simulate
this new transportation service in Santa Clara County of the San Francisco Bay Area, which
contains the city of San José and many of the communities that make up Silicon Valley (see
Figure 1). In this way, it is possible to test the service and quantify the impacts of such a
transportation system in a real context, as well as to test the BEAM capabilities.

2.1. San Francisco Bay Area Mesoscopic Model

BEAM, together with the San Francisco Bay Area scenario are available from an open
source GitHub repository (BEAM GitHub repository: https://github.com/LBNL-UCB-ST
I/beam, accessed on 14 April 2023), and there is an online documentation (BEAM online
documentation: https://beam.readthedocs.io/en/latest/, accessed on 14 April 2023). The
entire Bay Area covers nine counties, is 18,000 square kilometers in area, and hosts almost
eight million inhabitants, with an average density of more than 400 people per square
kilometer. The scenario uses the characteristics of the road network from OpenStreetMap
(OSM: https://www.openstreetmap.org/#map=5/38.007/-95.844, accessed on 14 April
2023) and adapts them to the Rapid Realistic Routing on Real-world and Reimagined
networks engine (R5) requirements for multimodal routing, and contains activity-based and
agent-based demand created by UrbanSim (UrbanSim: https://urbansim.com/, accessed

http://www.actransit.org/flex/
https://transportation.lbl.gov/beam
https://www.lbl.gov/
https://github.com/LBNL-UCB-STI/beam
https://github.com/LBNL-UCB-STI/beam
https://beam.readthedocs.io/en/latest/
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on 14 April 2023) for a random 10% of the population, while BEAM addresses the mode
choice and the event-based mesoscopic simulation models. Each traveler (or agent) can
choose via a probabilistic assignment to use a private car, either private or pooled ride-hail
vehicles, public transportation service, bike, walk, or a combination of public transportation
service with a walk, car, or ride-hail trip. The mode of transportation is chosen based on
a within-day evaluation using a multinomial logit choice function with mode-specific
value of times, and it is refined through an iterative process that consists of running the
simulation several times until an equilibrium is reached, allowing for agents to revise
their mode choice to better achieve their planned schedule of activities after accounting
for all other agents’ travel. The simulation of a general scenario with BEAM is possible
via a configuration text file, where all input file paths and parameters are specified. The
simulation is based on a FIFO (First In First Out) queue model on a capacity-based transport
network—running the Bay Area scenario on a 10% sample for ten iterations on a high-
performance computer station requires about one day of computational time. All simulation
outputs are written to an output table in which each row is related to specific events that
make up the legs of a single trip. The events can either be behavioral events or movement
events; an example of a trip-based event chain containing the most common events is as
follows: ActivityEndEvent, ModeChoiceEvent, PersonDepartureEvent, PersonEntersVehicleEvent,
PathTraversalEvent, PersonLeavesVehicleEvent, PersonArrivalEvent, ActivityStartEvent.

(a) (b)

Figure 1. (a) The Bay Area and its nine counties are shown (Mapping the Bay: https://exhibits.lib.b
erkeley.edu/spotlight/mapthebay/feature/sf-bay-area, accessed on 14 April 2023), (b) The location
of transit stops weighted based on the average ridership in Santa Clara County are shown—blue
are bus stops, orange are light rail stations, and red are rapid bus stops (VTA transit stops ridership:
https://data.vta.org/pages/ridership-by-stop, accessed on 14 April 2023).

2.2. Definition of the Automated Shuttles Strategy

The on-demand fleet of automated shuttles we want to simulate is characterized by
passenger vans with a capacity of about 12 people, a maximum speed of 40 km/h, and in
our scenario has been introduced in Santa Clara County, CA. Chee et al. (2020) declare that
frequency of the primary transit routes is critical to the last-mile automated bus service
usage [12]—for this reason, the strategy related to the introduction of this transportation
service in our study is to provide a fleet composed of a certain number of vehicles that are
constrained to operate within a circular area centered on transit stops characterized by a
high frequency of arriving transit vehicles, with the objective to extend the reach of the
fixed-route transit system, supporting the trip’s first- and last-mile connection. The transit
stops include bus stops as well as light rail and rail stations.

For the case study, based on both the literature review and on realizing a hypothetical
scenario with a competitive supply, we decided to introduce 20 free-of-charge vehicles for

https://exhibits.lib.berkeley.edu/spotlight/mapthebay/feature/sf-bay-area
https://exhibits.lib.berkeley.edu/spotlight/mapthebay/feature/sf-bay-area
https://data.vta.org/pages/ridership-by-stop
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each of the 218 high-frequency transit stops in Santa Clara County represented in Figure 2,
with a capacity of 12 passengers and a maximum speed of 40 km/h. The catchment areas
were then created with a radius of 3900 m around each transit stop where at least four
transit vehicles arrive per hour, on average. This distance represents how far automated
vehicles can travel within 15 min travel time without congestion from the transit stops
based on an isochrone analysis using ArcGIS software.

Figure 2. Location of high-quality transit stops considered as the center of the catchment areas for
the automated shuttles in Santa Clara County, CA (Background map from Google Satellite: http:
//www.google.cn/maps/vt?lyrs=s@189&gl=cn&x={x}&y={y}&z={z}, accessed on 14 April 2023).

2.3. Integrating the Automated Shuttles in the Scenario

The strength of using the BEAM model to simulate automated shuttle service is that it
is already structured in such a way to host this new transportation mode without requiring
to correct the already calibrated multinomial logit mode choice model, thus gaining in
both time and accuracy. In fact, the integration of this new transportation mode is mainly
based on the introduction of new ride hail vehicles, but with different characteristics; that
is, of larger size, of lower speed, electric, and with limited operating range (within the
catchment areas). The new vehicles were manually inserted in the input files of BEAM, thus
specifying both vehicle characteristics such as consumption, capacity, maximum speed, and
so on, and the catchment area location and radius. The catchment area constraint was then
inserted in the BEAM model directly from the software developers at Lawrence Berkeley
National Laboratory (LBNL). As for the mode choice, the utility function structure of the
new transportation system has been assumed the same as for the classic ride hail system,
but zeroing the monetary fare. The automated shuttle capacity and speed will instead affect
the user mode choice in terms of both real-time availability during the simulation at the
moment of departure, and on the travel time.

3. Results

The fleets of automated shuttles were simulated from 12 a.m. to 8 p.m. of a typical
working day, to capture the morning and afternoon peak where most of the trips are
performed, and to gain in computational time. Moreover, the simulations started at
midnight in order to allow people coming far from the Santa Clara County to reach the
County for the morning peak hour. The same scenario was also simulated without the
shuttles in order to compare the results and better analyze the efficiency and attractiveness
of this new transportation system. Successively, R-software in conjunction with QGIS
software allowed detailed investigation of the output table from BEAM and filtering of the
results for Santa Clara County, in order to make appropriate comparisons: Figure 3 shows

http://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x={x}&y={y}&z={z}
http://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x={x}&y={y}&z={z}
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where automated shuttle departures and arrivals were concentrated during mornings and
afternoons.

(a) (b)

(c) (d)

Figure 3. Heat Map of departures and arrivals by time of day. (a) Morning departures up to 12 p.m.;
(b) Morning arrivals up to 12 p.m.; (c) Afternoon departures after 12 p.m.; (d) Afternoon arrivals after
12 p.m.

What is apparent from Figure 3 is that trips are distributed throughout the whole
county, with a higher use in the downtown San José area. Morning departures (a) are more
dispersed than morning arrivals (b), as many travelers presumably travel from their home
to work locations in downtown San José. Afternoon arrivals (d) are slightly less dispersed
than morning departures (a).

Tables 1–6, summarize the main results obtained from the post-processing analysis of
the BEAM outputs filtered for the Santa Clara County, and scaled up to the full population;
it is possible to observe the number of trips, length, duration, and energy consumption per
each mode and fuel type, for both the baseline and the developing scenarios (see Tables 1–4),
as well as a comparison of the two case studies to better understand the contribution of the
new transportation mode (see Tables 5 and 6).

From Table 5, it is clear that the automated shuttles mainly replaced ride-hail trips, but
also some walking trips—in particular, the ride-hail to transit trips reduced by 70%, while
the overall ride-hail plus automated shuttles to transit increased by 46%, demonstrating an
increasing accessibility of transit due to the automated shuttles.

The average travel length of the 11,000 legs with this new mode of transport is less
than 6 km and takes an average of 9 min, due to the fact that vehicles are bounded to
the catchment areas (see Table 2), while the ride hail average travel length is 25 km in
the baseline (see Table 1), and goes to 27 km in the developing scenarios, where some
shorter trips have been replaced by the automated vehicles (see Table 2). On the other
hand, the average travel length of trips using the automated shuttles as a first- and last-mile
connection is about 29 km and takes an average of 36 minutes, while it goes to 39 km and
51 min when the first- and last-mile connection is realized with a ride-hail vehicle.

It is worth noting that overall transit use increased by 3%, with a ridership increase of
about 3000 trips (see Tables 1 and 2).

From Table 6, it is possible to observe how gasoline usage decreased by about 0.2%
(which corresponds to about 88 million GJ), while electricity use more than tripled. While
transit PMT (personal miles traveled) increased, the transit VMT (vehicle miles traveled)
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remained the same, resulting in about the same amount of energy consumed in the two
scenarios. On the other hand, physical energy decreased by more than 5%.

Finally, Figure 4 suggests that about 10% of automated shuttle trips occur between
midnight and 5 am, probably due to the lack of other travel options during that period,
which increases the accessibility of travel during night hours.

Table 1. Statistics of trips involving Santa Clara County in the baseline scenario per transport mode
used—interfered to the population; RH = ride hail.

Trips Trips Length Length Time Time Energy Energy
[%] [km] [%] [h] [%] [GJ] [%]

Bike 18,850 0.99 243,440 0.47 13,780 1.95 2600 0.00
Car 1,687,240 88.79 47,759,800 92.02 575,160 81.31 85,570,830 81.95

Drive Transit 50,300 2.65 693,750 1.34 16,350 2.31 3,607,540 3.46
RH 62,410 3.29 1,565,570 3.02 18,940 2.68 2,769,050 2.65

RH Transit 3710 0.20 133,280 0.26 2490 0.35 356,770 0.34
Walk 20,350 1.07 188,350 0.36 38,630 5.46 2860 0.00

Walk Transit 57,320 3.02 1,319,720 2.54 42,000 5.94 12,105,410 11.59

Table 2. Statistics of trips involving Santa Clara County in the developing scenario per transport
mode used—interfered to the population; RH = ride hail, AS = automated shuttles.

Trips Trips Length Length Time Time Energy Energy
[%] [km] [%] [h] [%] [GJ] [%]

Bike 20,660 1.09 257,410 0.5 14,580 2.05 2750 0.00
Car 1,688,370 88.79 47,794,680 92.01 577,870 81.29 85,642,770 81.87

Drive Transit 49,670 2.61 696,360 1.34 16,270 2.29 3,579,480 3.42
RH 53,710 2.82 1,461,180 2.81 18,540 2.61 2,579,180 2.46
AS 5640 0.30 33,200 0.07 860 0.12 44,570 0.05

RH Transit 1080 0.06 42,540 0.08 910 0.13 137,940 0.13
AS Transit 4350 0.23 124,850 0.24 2610 0.37 279,480 0.27

Walk 18,670 0.98 174,260 0.34 35,690 5.02 2430 0.00
Walk Transit 59,470 3.13 1,360,610 2.62 43,550 6.13 12,336,610 11.79

Table 3. Statistics of trips involving Santa Clara County in the baseline scenario per fuel type—
interfered to the population

Fuel Type Trips Trips Length Length Duration Duration Energy Energy
[%] [km] [%] [h] [%] [GJ] [%]

Biodiesel 89,610 4.24 704,400 1.36 23,990 3.43 12,709,770 12.30
Diesel 50,350 2.38 1,171,090 2.27 19,540 2.79 2,311,570 2.24

Electricity 21,910 1.04 220,760 0.43 5990 0.86 38,780 0.04
Food 159,790 7.56 256,010 0.50 54,880 7.85 6320 0.01

Gasoline 1,792,440 84.79 49,286,680 95.44 594,740 85.07 88,243,340 85.42

Table 4. Statistics of trips involving Santa Clara County in the developing scenario by fuel type—
interfered to the population.

Fuel Type Trips Trips Length Length Duration Duration Energy Energy
[%] [km] [%] [h] [%] [GJ] [%]

Biodiesel 91,420 4.31 711,850 1.38 24,460 3.48 12,844,190 12.41
Diesel 51,550 2.43 1,213,580 2.35 20,330 2.89 2,409,290 2.33

Electricity 33,900 1.60 293,970 0.57 7950 1.13 125,370 0.12
Food 160,080 7.55 245,750 0.48 52,890 7.53 5970 0.01

Gasoline 1,782,550 84.10 49,203,780 95.23 596,620 84.96 88,087,040 85.13
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Table 5. Statistics of trips involving Santa Clara County: differences between the baseline and the
developing scenarios per transport mode used—interfered to the population; RH = ride hail.

Trips Trips Length Length Time Time Energy Energy
[∆] [∆%] [∆ Km] [∆ Km %] [∆ h] [∆ h %] [∆ GJ] [∆ GJ %]

Bike 1810 9.60% 13,970 5.74% 800 5.81% 150 5.77%
Car 1130 0.07% 34,880 0.07% 2710 0.47% 71,940 0.08%

Drive Transit −630 −1.25% 2610 0.38% −80 −0.49% −28,060 −0.78%
RH −8700 −13.94% −104,390 −6.67% −400 −2.11% −189,870 −6.86%

RH Transit −2630 −70.89% −90,740 −68.08% −1580 −63.45% −218,830 −61.34%
Walk −1680 −8.26% −14,090 −7.48% −2940 −7.61% −430 −15.03%

Walk Transit 2150 3.75% 40,890 3.10% 1550 3.69% 231,200 1.91%

Table 6. Statistics of trips involving Santa Clara County: differences between the baseline and the
developing scenario per fuel type—interfered to the population.

Fuel Type Trips Trips Length Length Duration Duration Energy Energy
[∆] [∆%] [∆ Km] [∆ Km %] [∆ h] [∆ h %] [∆ GJ] [∆ GJ %]

Biodiesel 1810 2.02% 7450 1.06% 470 1.96% 134,420 1.06%
Diesel 1200 2.38% 42,490 3.63% 790 4.04% 97,720 4.23%

Electricity 11,990 54.72% 73,210 33.16% 1960 32.72% 86,590 223.29%
Food 290 0.18% −10,260 −4.01% −1990 −3.63% −350 −5.54%

Gasoline −9890 −0.55% −82,900 −0.17% 1880 0.32% −156,300 −0.18%

Figure 4. Relative frequency distribution of departure time of automated shuttles during the day,
compared with the usage of cars, other ride-hails, and public transport service.

4. Conclusions

The main goal of the present study was to evaluate the impacts of a fleet of auto-
mated shuttles in Santa Clara County providing first- and last-mile connections to the
current public transportation system. The secondary goal was to use and test the LBNL
BEAM beta software capabilities. BEAM was selected for use in this study because it
demonstrated the capability to simulate the proposed automated shuttle service as a
combination of several critical features: defining a new vehicle type approximating the
automated electric shuttle characteristic and performance; assigning a ride hail manager
and utility function to the new shuttles; establishing geofenced areas throughout a broad
area such as a county, and assigning these to the shuttles. Regarding the application
to the Santa Clara County scenario, the model suggests that automated shuttles would
be chosen by some users for either first- and last-mile connections to transit or as a
single mode to reach a nearby destination. This new mode has proven to mostly replace
short-distance ride-hail connections, especially those directed to transit stops, but also
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walking trips. The presence of automated shuttles in the scenario has brought several
benefits: decrease on gasoline-base trips, overall increase in transit usage, and first- and
last-mile connections to transit, proving a higher accessibility of transit, especially during
night hours. It is also true that an electric vehicle fleet requires particular attention to
the interaction with the electric grid: e.g. charging time and charging spot availability.
In fact, it is important to highlight that a limitation of this study is represented by not
considering this layer of detail as the implementation of the electric grid modelling is still
under calibration on BEAM: therefore, this study might either overestimate the ridership
attracted by the automated shuttles, or underestimate the number of vehicles needed to
achieve the observed ridership, as they are assumed to be running non-stop. For these
reasons, from an operational and economic point of view, it is necessary to take into
consideration an eventual oversized fleet and quick recharging to maximize the vehicles’
operational time in a day (see [24–26]), as well as the implication for the potential revenue
shift from privately-run TNCs to public agencies. It is worth noting that the share of car
trips in the area is about 89% (see Table 1), which means it is a car-based area where it
will be very difficult to attract people to other environmentally safe modes; however,
even if results are eclipsed by the massive presence of cars, it is still possible to observe
some overall improvements due to the presence of automated shuttles in the Bay Area.
Future research could provide further insight into the potential use of automated shuttles
for connectivity, as well as integrate the electric grid effect in the simulation. The main
benefit of this work has been demonstrating that the BEAM model, despite its beta status,
allowed for the analysis of a large-scale scenario in quite a high level of detail. As the
BEAM model continues to be developed, it will become more robust and capable in the
future. The BEAM developers have been very open to inserting new tools, parameters,
and functions to adapt BEAM to this case study. Moreover, the BEAM model is very
flexible for analyzing different interventions on the baseline scenario and it could clearly
be adapted to a multitude of different studies.
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