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Abstract: Similar time series search is one of the most important time series mining tasks in our
daily life. As recent advances in sensor technologies accumulate abundant multi-dimensional time
series data associated with multivariate quantities, it becomes a privilege to adapt similar time series
searches for large-scale and multi-dimensional time series data. However, traditional similar time
series search methods are mainly designed for one-dimensional time series, while advanced methods
applicable for multi-dimensional time series data are largely immature and, more importantly, are
not friendly to users from the domain of geography. As an alternative, we propose a novel method
to search similar multi-dimensional time series with spatial databases. Compared with traditional
methods that often conduct the similarity search based on features of the raw time series data
sequence, the proposed method stores multi-dimensional time series as spatial objects in a spatial
database, and then searches similar time series based on their spatial features. To demonstrate the
validity of the proposed method, we analyzed the correlation between temporal features of the raw
time series and spatial features of their corresponding spatial objects theoretically and empirically.
Results indicate that the proposed method can not only support similar multi-dimensional time series
searches but also markedly improve its efficiency under many specific scenarios. We believe that such
a new paradigm will shed further light on the similarity search in large-scale multi-dimensional time
series data, and will lower the barrier for users familiar with spatial databases to conduct complex
time series mining tasks.

Keywords: time series; multivariate; spatial database; similarity search

1. Introduction

Recent decades have seen a growing penetration of information technologies and sen-
sory devices, which have brought forth an unprecedented spectrum of data that captures
our ambient environments and societal dynamics [1,2]. Hidden in such data is a range
of useful information to be distilled through data management and knowledge discovery
methods. Time series mining provides a popular solution for such data accumulation and
distillation that sit at the heart of many applications in finance [3], business [4], logistics [5],
transportation [6], medicine [7], meteorology [8] and to name a few. Typical approaches
include similarity search, clustering, classification, pattern discovery, and anomaly detec-
tion [9–12]. Among them, similarity search in time series data is fundamental to many
advanced mining tasks [13].

Dating back to its early years, similarity search in time series data has heavily relied
on either explicit features in a time sequence itself or implicit features derived from specific
transformations on a time sequence [14]. However, recent years have seen a shift to
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convert time series data into non-time series data for the sake of efficiently handling large-
scale time series mining tasks [15–18]. Advances in the domain of image recognition and
classification further pave a new way for converting time series data into image data
to improve time series classification and imputation [19]. A few studies also attempted
to translate time series data from/into spatial objects for feature extraction to facilitate
similarity search [20,21].

The enhancement of the efficiency of similarity search is also a core task in time
series mining. For one-dimensional time series data, search efficiency often depends on
either length variability and/or size scalability [22]. It essentially requires algorithms for
measuring the similarity of time series to be designed in a dynamically warping manner,
and as a result, to be with expensive computational complexity [23]. Additionally, as data
collection is prolonged, the increase of the length of the accumulated time series sequence
would challenge the processes of both data storage and similarity calculation [24,25]. To
increase computational speed, fast indexing is taken as a prerequisite of similarity search in
large-scale time series data [26–28].

As recent advances in sensor technologies accumulated abundant multi-dimensional
time series data associated with multivariate quantities [29], it becomes a privilege to
adapt similar time series searches for large-scale and multi-dimensional time series data.
Traditional solutions for addressing length variability and size scalability can be applied.
However, it is nontrivial to handle such time series data because they often consist of
many long sequences embedded in multiple dimensions (i.e., large in size, long in length,
and high in dimensionality) [30] and embody complex correlations between the observed
variables [31]. Moreover, advanced methods that are applicable for multi-dimensional time
series data are still immature and, more importantly, are not friendly to users from the
domain of geography.

Bearing these limitations in mind, we find that it is possible to address the problems of
search efficiency and information loss facing similar multi-dimensional time series searches
from a spatial perspective. First, a multi-dimensional space can embed and synthesize
multiple variables by its very nature. Second, spatial objects can preserve characteristics
of the raw time series as a whole without information loss. More importantly, the well-
developed spatial database can provide various calculating and indexing functions that
support effective similarity searches. As such, by proposing an alternative method that
treats multi-dimensional time series data as spatial objects and implements the similarity
search procedure using spatial indexes and analytic functions in the PostgreSQL object-
relation database system with the PostGIS extension, we believe that such a new paradigm
will shed further light on the similarity search in large-scale multi-dimensional time series
data, and will lower the barrier for users familiar with spatial databases to conduct complex
time series mining tasks.

2. Related Work

In the domain of similar time series search, there are generally two major strands
of studies: one strand concerns accurate and elastic similarity measures between time
series data and the other searches for efficient indexing methods to deal with large-scale
and/or high-dimensional time series data. A brief review of these two topics is given in
Sections 2.1 and 2.2.

2.1. Similarity Measures

Similar time series search often compares pair-wise time series based on predefined
similarity measures to discover time sequences that share common characteristics either
entirely (e.g., full sequence matching) or partially (e.g., subsequence matching) [32]. The
former requires the best matches for a similarity query to be entire time sequences, and
therefore is plausible for searching time series with equal lengths; the latter allows the best
matches for a similarity query to be arbitrary subsequences of time series and therefore
is flexible for searching short time series. Practically, similarity search often converges to
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nearest neighbor search [33,34], which seeks to retrieve a given number of target sequences
minimizing their dissimilarity to a query sequence in a time series database. In this study,
we mainly focus on nearest neighbor search based on full sequence matching in time
series data.

The most representative similarity measures for time series data mining include Eu-
clidean distance, dynamic time warping (DTW), and longest common subsequence (LCSS),
which have been widely integrated into toolkits such as the TSSEARCH [35] library. Mathe-
matically, given two time sequences A = ((a1

1, · · · , ad
1), (a1

2, · · · , ad
2), · · · , (a1

m, · · · , ad
m)) and

B = ((b1
1, · · · , bd

1), (b
1
2, · · · , bd

2), · · · , (b1
n, · · · , bd

n)), their Euclidean distance, Leuc(A, B), can
be defined as

Leuc(A, B) =

√√√√ d

∑
j=1

l

∑
i=1

(aj
i − bj

i)
2 (1)

in the case that A and B are of equal length l (i.e., l = m = n), and where d denotes the
dimensionality of the two time sequences; i and j denote indices of the time slot and the
observation dimension, respectively.

DTW and LCSS distances are often applied in the case that the given time series data
are one-dimensional (i.e., d = 1). Fortunately, previous studies have already extended both
to deal with multi-dimensional time series data [36]. Given two multi-dimensional time
sequences A and B, their DTW distance, Ldtw(A, B), and LCSS distance, Llcss(A, B), can be
defined as

Ldtw(A, B) =Leuc(Am, Bn)+

min(Ldtw(A
′
, B), Ldtw(A, B

′
), Ldtw(A

′
, B
′
))

(2)

Llcss(A, B) =


0 A or B is empty
1 + Llcss(A

′
, B
′
) Leuc(Am, Bn) < ε

max(Llcss(A
′
, B), Llcss(A, B

′
)) others

(3)

where A
′
= ((a1

1, · · · , ad
1), (a1

2, · · · , ad
2), · · · , (a1

m−1, · · · , ad
m−1)); B

′
= ((b1

1, · · · , bd
1), (b

1
2, · · · ,

bd
2), · · · , (b1

n−1, · · · , bd
n−1)); and ε is a constant threshold that defines a successful match

between two data observations.
The advantage of Euclidean distance lies in its simplicity in both definition and

calculation. However, the use of Euclidean distance is largely limited to time series data
with equal length. It therefore often suffers to cope with data issues concerning noise,
distortion, offset translation, and amplitude scaling that are inherent in time series [37].
In comparison, DTW and LCSS distances can measure the similarity between time series
with such limitations. They dynamically offset time series to find their best matching
counterpart, which does not essentially require the two time series to be of the same length.
However, cases that result in large warping are not rare when applying DTW to offset
noisy time series data. Therefore, it is often a requirement to introduce certain bandwidth
constraints (such as the Sakoe–Chiba band and the Itakura parallelogram) into DTW to
avoid large time warping [38,39]. Such bandwidth constraints are inherently considered in
LCSS, which defines a time window within which the match between a given point from
one time series to a point in another time series is allowed [40]. Considering that DTW
distance often yields better performance than Euclidean distance in terms of both accuracy
and robustness, we take it as the reference method in this study.

It is also noteworthy that the similarity of time series can be quantified in two different
ways [41]. The strict similarity requires that the absolute values of variables in different
time series are approximate at each sampling time point. However, non-strict similarity
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requires that only the trends of time series are similar. Therefore, trend similarity is often
calculated on the normalized time series Ã = ((ã1

1, · · · , ãd
1), · · · , (ã1

m, · · · , ãd
m)), where

ãj
i =

aj
i − āj

std(aj)
(4)

Specifically, for full sequence matching, āj and std(aj) are the temporal average and the
standard deviation of the jth dimension of the whole time series; For subsequence matching,
āj and std(aj) are the average and the standard deviation of the sequence segment within a
given sliding window. A lot of studies on time series mining usually normalize time series
to highlight the trend similarity and neglect the difference of magnitude levels among the
time ranges [42]. Nonetheless, it is worth noting that the strict similarity search is necessary
under situations where the absolute values of data observations are also meaningful, such
as traffic capacity analysis and flow pattern mining [43].

2.2. Indexing Methods

Although DTW and LCSS distances are plausible measures for the similarity between
time series in practice, they often suffer from high computational complexity when dealing
with massive time series data. Fortunately, by indexing time series, we can accelerate the
similarity search by avoiding the full table scan and reducing the number of times of pair-
wise time series comparisons. Indeed, using time series indexing to filter out significantly
dissimilar sequences has become the preliminary step for further matching time series
accurately.

2.2.1. Indexing One-Dimensional Time Series

To speed up the similarity search for one-dimensional time series, many indexing
methods have been developed. Among them, generic multimedia indexing (GEMINI)- and
lower-bounding-based methods are two popular methods that can obtain accurate result
sets with no false dismissal.

In detail, the GEMINI framework mainly includes the following steps [44]:
(1) Extract time series features through feature transformation and map a sequence to

a point in the feature space;
(2) Build spatial indexes to organize the spatial points in feature space;
(3) When a query request is received, search close points to the query point in the

feature space using the spatial index to obtain the candidate set;
(4) Calculate the similarity between the query sequence and the candidate sequences

to obtain the result set.
Following the GEMINI framework, different feature transformation and spatial in-

dexing methods have been developed. For example, previous studies performed discrete
Fourier transform (DFT) [45], Haar wavelet transform [46], discrete Cosine transform
(DCT) [47], piece-wise aggregate approximation (PAA) [26] and Chebyshev polynomials
(CHEB) [48] on time series, and built R*-tree indexes [49] to organize the feature points.
Despite that R*-tree is an efficient method for organizing feature points in low-dimensional
space, its pruning ability degenerates when the number of feature dimensions increases [50].
To address this limitation, improved indexing methods, such as TV-tree [51], X-tree [52],
dynamic splitting tree (DSTree) [53] and adaptive data series index (ADS Index) [54], have
been proposed to organize feature points in high-dimensional space to achieve efficient
retrieval.

Another efficient way to index the feature points is using the lower-bounding tech-
nique. According to the lower-bounding distance lemma [55], there would be no false
dismissals if the following formula is satisfied:

L f eature(A, B) ≤ Ldata(A, B) (5)
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where L f eature(A, B) and Ldata(A, B) are distances between two time series in the feature
space and the data space, respectively. As such, proper lower-bounding distance func-
tions need to be designed to satisfy the lemma to achieve an exact search. A typical
lower-bounding distance between time series is the cumulative distance of their envelope
bounds built by sliding windows. Commonly used envelope-based lower bounds include
LB_Yi [56], LB_Kim [57], LB_Keogh [27], LB_Rotation [58], etc. Among them, LB_Keogh
is mostly used due to its easy calculation and good tightness. More details for the lower-
bounding techniques can be found in ref. [37].

Recently, the growing data volumes bring new challenges to the computational effi-
ciency of similar time series searches. Consequently, approximate search algorithms are
receiving growing attention due to their high efficiency while the loss of accuracy can be
controlled by predefined function parameters [59]. In particular, locality-sensitive hashing
(LSH) and its variants are the most widely used methods for dealing with large-scale
and high-dimensional data indexing problems, including the weighted locality-sensitive
hashing (WLSH) technique for streaming time series data [60], LSH-based time sub-series
retrieval [61], and LSH-based similar strings search by converting time series to character
strings [17]. In general, those methods use a family of hashing functions to map time series
into buckets, and similar time series are mapped in one bucket with higher probability
than dissimilar ones. Only related buckets will be visited in a query, therefore candidate set
contains a limited number of series, and the search cost is reduced [62].

2.2.2. Indexing Multi-Dimensional Time Series

Indexing methods for one-dimensional time series are difficult to directly apply to
index multi-dimensional time series. For GEMINI-based methods, they are unable to do
the feature transformation on multi-dimensional time series [25]. Various solutions have
been proposed, including transforming multi-dimensional series to one-dimensional series
through dimensionality reduction methods such as principal component analysis (PCA)
before building index [63,64], evaluating the similarity of the multi-dimensional time series
in each dimension and using the Borda voting method to achieve similarity searching [65],
and summarizing multi-dimensional features at each time point to one representative
value as the center sequence for establishing specific lower bounds such as LB_CMK [31].
However, all these methods need to transform the original multi-dimensional time series
in advance. As a result, they often suffer from substantial information loss and high cost of
transformation time.

Besides one-dimensional time series, lower-bounding constraint methods can also be
applied to index multi-dimensional time series data with certain extensions. For example,
a multi-dimensional time series search can be sped up by dividing the minimum bounding
envelope (MBE) into minimum bounding rectangles (MBR) and then building an R-tree to
index the resulting MBRs [66]. However, as the number of dimensions increases, these in-
dexing methods will be affected by the curse of dimensionality and might suffer significant
performance degradation potentially to a degree even worse than sequential scanning [67].
More importantly, building MBR for multiple subsequences and calculating MBR distances
require extra storage overhead and result in a high time cost of computation, especially
when the operations are not facilitated by well-implemented spatial functions and mature
platforms for massive spatial relation calculation.

Approximate search algorithms such as LSH have been proven to be efficient for fast
one-dimensional time series search, but the use of these methods on multi-dimensional
data is still an emerging and hot topic [68]. For example, a previous study designed an
LSH-based index to accommodate multi-dimensional time series retrieval [69]. However,
those approximate methods largely remain immature. Hash functions applied for the
multi-dimensional vector are different at each time point, so the time series are converted to
a sequence of independent hashing values instead of a sequence with temporally correlated
variables as a whole. Therefore, it is necessary to design user-friendly methods to achieve
fast similarity searches for multi-dimensional time series.
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To fill the gap, this study aims to develop a novel time series similarity search method
that will be easy-to-use for researchers from the domain of geography (who are familiar
with spatial databases). The main idea is to represent multi-dimensional time series as
spatial objects and use built-in functions and indexes of spatial databases to quantify
their similarity and achieve efficient search from a spatial perspective. We will analyze
the relationship between time series and spatial objects to verify whether the proposed
transformation can inherit critical properties of the raw time series in spatial characteristics
of its spatial counterparts. Moreover, we implement the proposed method on the PostGIS-
extended PostgreSQL database and empirically compare the ability and efficiency of the
proposed method with several existing similarity search methods under various scenarios.

3. Methodology

The proposed spatial database-based time series similarity search method first con-
verts the original multi-dimensional time series into spatial objects in feature spaces and
establishes the associations between the temporal and spatial features. Then, spatial queries
and calculations supported by spatial databases can satisfy the requirements for effective
similarity search on multi-dimensional time series. Details on the associations and the
searching approaches (for 2D time series data) will be introduced in Sections 3.1 and 3.2.

3.1. Association between Time Series and Spatial Objects

A valid conversion from time series to spatial objects should provide an explicit
corresponding relation between temporal characteristics of the raw multi-dimensional time
series and spatial characteristics of its corresponding spatial object. It will ensure that the
similarity search of the original time series based on features of their spatial counterparts
could be effective. The multi-faceted corresponding relation between temporal features of
multi-dimensional time series and spatial features of database objects is clarified below.

3.1.1. Conversion from Time Series to Spatial Objects

The data structure of multi-dimensional time series is highly identical to that of spatial
trajectories of a moving object in multi-dimensional spaces. Hereafter, we will elaborate on
the proposed method based on the two-dimensional time series for the sake of simplicity
and conciseness.

In general, the temporal changes of two variables x and y can be organized as a multi-
dimensional time sequence in the form of ((x1, y1), (x2, y2), . . . , (xm, ym)). If an explicit
time dimension t is further added to record the timestamps of each data observation, the
time sequence can be reformed as ((x1, y1, t1), (x2, y2, t2), . . . , (xm, ym, tm)). Indeed, such
a form has also been widely used to represent the trajectory of moving objects in a two-
dimensional space R(x,y). It implies that the temporal changes of two variables x and y can
be intuitively captured by the spatial trajectories in a two-dimensional feature space R(x,y)

within which the two feature dimensions designate the observed variables x and y.
As illustrated in Figure 1, the values of the two variables x and y at each time point t

can be taken as the coordinates of a corresponding point in the feature space R(x,y). This
conversion ensures that the number of observed variables in the time series is consistent
with the dimension of the feature space. Moreover, since the temporal information is
inherited in the ordering of the points in each spatial object, time series collected in different
time periods also become comparable in spatial database-based time series similarity search
after the conversion.
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(a) (b) (c)

Figure 1. Transformation from multi-dimensional time series (MTS) to spatial objects. (a) Time series
in dimension x; (b) Time series in dimension y; (c) The corresponding spatial objects embedded in
the two-dimensional space R(x,y).

3.1.2. Temporal Features and Its Spatial Counterparts

As aforementioned, it is essential to understand the association between features of
time series and that of their spatial counterparts to discover representative spatial features
that can support similar time series searches in spatial databases. In this study, we focus on
the centroid, the MBR, and the shape difference between spatial objects.

The centroid (x̄, ȳ) of a spatial object mathematically coincides with the temporally
averaged magnitudes ∑m

i=1 xi/m and ∑m
i=1 yi/m of the observed variables. It suggests that

we can measure the difference in the average levels of all the observed variables between
time series using the Euclidean distance between the centroids of their spatial counterparts
(Figure 2).

(a) (b) (c)

Figure 2. Similarity between two-dimensional time series by the distance between centroids of
the corresponding spatial objects in the two-dimensional space. (a) Mean value of time series in
dimension x; (b) Mean value of time series in dimension y; (c) Euclidean distance between the
centroids of the corresponding spatial objects.

In spatial databases, the MBR has been intensively used for the optimization of spatial
queries. It is often generated and applied to build the spatial index for each spatial object.
As shown in Figure 3c, the extension (i.e., width and height) of the spatial objects in space
R(x,y) coincide with the ranges of temporal variations for variables x in Figure 3a and y in
Figure 3b, respectively. The MBR characterizes the upper and lower bounds in each feature
dimension, so that the constraints on the maximum and minimum values of the time series
can be transformed into the constraints on spatial extensions of the MBR.

(a) (b) (c)

Figure 3. Similarity between two-dimensional time series by the MBR of the corresponding spatial
objects in the two-dimensional space. (a) Minimum/maximum value of time series in dimension
x; (b) Minimum/maximum value of time series in dimension y; (c) MBRs of the corresponding
spatial objects.
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The shape difference between spatial objects can be taken as a proxy for the dissim-
ilarity between the raw time series. Various measures have been developed to quantify
the shape difference between spatial objects, such as Euclidean distance, edit distance,
Hausdorff distance, and one-way distance [70–72]. In this study, a proper distance measure
should measure the distances between polygonal curves of spatial objects dynamically and
accurately, and, more importantly, can be directly calculated using SQL statements. We
select Fréchet distance as the indicator of shape difference in that it is a built-in function in
many spatial databases while DTW distance is not. It dynamically matches points on two
curves in a warping way, and then uses the largest distance of all the matched point pairs
as the distance measure.

Given two spatial objects A = ((a1
1, a2

1, · · · , ad
1), (a1

2, a2
2, · · · , ad

2), · · · , (a1
m, a2

m, · · · , ad
m))

and B = ((b1
1, b2

1, · · · , bd
1), (b

1
2, b2

2, · · · , bd
2), · · · , (b1

n, b2
n, · · · , bd

n)), which are in the same
form as the multi-dimensional time series defined in Section 2.1, their Fréchet distance,
L f réch(A, B), can be defined as

L f réch(A, B) =max(Leuc(Am, Bn),

min(L f réch(A, B
′
), L f réch(A

′
, B), L f réch(A

′
, B
′
)))

(6)

Comparing Equations (2) and (6), we notice that the recursive calculation formula
of the Fréchet distance and that of the DTW distance are quite similar. In terms of com-
putational complexity, the DTW distance and the Fréchet distance are the same as each
other, which is O(mn). Their difference merely lies in whether the final results are derived
from the summation or the maximum distance of all the matched point pairs. Therefore,
it is plausible to take the Fréchet distance between spatial objects as a proxy for the DTW
distance between multi-dimensional time series.

3.2. Similar Time Series Search in Spatial Database

Based on the associations between time series and spatial objects, we search similar
spatial objects in spatial databases to find similar time series. Compared with time series
search, spatial search has several advantages. First, it is easier to build a spatial index
than a time index in that a spatial index only relies on the original data while feature
transformation and boundary calculation are required for time indexing. Second, spatial
databases can store each multi-dimensional time series as a single spatial object, so they
have the great capability of storing time series data in an object-oriented manner. Last
but not the least, a variety of spatial operation functions has been integrated into spatial
databases which enable us to efficiently calculate spatial features closely related to temporal
characteristics of the raw time series.

As aforementioned in Section 2.1, we will describe the similar time series search
process in terms of strict similarity and trend similarity separately in the following sections.

3.2.1. Top-k Search for Strictly Similar Time Series

The strict similarity search filters time series based on different temporal features step
by step. First, according to the definition of strict similarity, only the time series associated
with similar magnitude can be similar. Thus, the average level of the time series is analyzed
in the first step (Figure 4b). For time series at the same average level, temporal variations
of the time series might be distinctly different. It indicates that the range of temporal
variations should be considered secondly (Figure 4c). The candidate set obtained from the
above two steps will exclude the time series largely deviating from the query sequence
in terms of the average value and range of variations. To refine the final top-k similar
time series, we can calculate the shape difference between the candidate set and the query
sequence in the last step (Figure 4d).

Specifically, we can conduct the above filtering process sequentially based on the
centroid, the MBR, and the Fréchet distance of spatial objects in spatial databases. It
is intuitive to implement filters of the average levels, the ranges of variation, and the
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differences of the curve shape in spatial databases according to the association between
temporal and spatial features.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4. Procedures of the proposed similar time series search method. (a–d) Strictly similar time
series search; (a,e,f,g) Search of time series with similar trend.

Given a time series dataset S stored in the spatial database and a query sequence Q,
the procedure of searching the top-k strictly similar time series to Q is as follows:

(1) Calculate the difference between the average value of each time series in S and that
of the query sequence Q using built-in spatial functions ST_Centroid and ST_Distance in
the spatial database. The top-5k nearest time series are retrieved as a candidate set S5k. To
speed up the top-5k search, the centroid of each spatial object is spatially indexed.

(2) Calculate the areal difference between the range of temporal variation in each time
series in S5k and that of Q using the built-in MBR functions ST_Envelope and ST_Area.
The top-2k nearest time series are retrieved from the candidate set S5k to compose a refined
candidate set S2k.

(3) Calculate the accurate similarity between time series in S2k and Q. Recall that
PostGIS does not provide the DTW distance function, we use the built-in Fréchet dis-
tance function ST_FrechetDistance as an alternative to the DTW distance as mentioned in
Section 3.1.2. After sorting the time series in S2k according to their Fréchet distance to Q,
the top-k nearest objects are finally obtained as the result set Sk.

3.2.2. Top-k Search for Time Series with Similar Trend

The trend similarity search is useful for finding time series that share primarily the
same trend, while their ranges of temporal variation are not at the same level. Under this
circumstance, the original series need to be normalized in advance. The procedure of trend
similarity search is basically the same as that of the strict similarity search, except for the
first step. Since the temporal averages of all the variables in the time series are zeros after
z-score normalization (Figure 4e), the centroids of all spatial objects are located at the origin
of coordinates in the multi-dimensional feature space. Therefore, only step 2 (Figure 4f)
and step 3 (Figure 4g) introduced in Section 3.2.1 are considered in the search of time series
with a similar trend. The procedure of searching the top-k time series with a similar trend
to a given query sequence is as follows:

(1) Translate and rescale the query sequence Q and time series in S using built-in trans-
formation operations ST_Translate and ST_Scale in the spatial database. Such transforma-
tions are equivalent to the z-score normalization of the raw time series. The normalized
time series dataset S̃ is obtained. Please note that this step is for data pre-processing and its
time cost should be compared with the pre-processing of the raw time series data.

(2) Filter S̃ in the same way as the second step of strict similarity search, and obtain
the candidate set S2k.

(3) Filter S2k in the same way as the final step of strict similarity search, and obtain the
result set Sk.

For either strict similarity or trend similarity, the major advantage of converting
time series to spatial objects lies in that we can effectively use spatial indexes and well-
implemented spatial operations in spatial databases to support fast similarity searches.
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In contrast, if these measures of difference are calculated directly on the raw time series,
we need to filter and sort candidate time series based on sequential scan and comparison,
which cannot meet the requirements of fast querying in large-scale datasets.

4. Experiments and Evaluations

In this study, we implemented the proposed similarity search method in the open-
source database PostgreSQL 11.5 and PostGIS 2.5. All experiments were conducted on a PC
machine with a 2.90 GHz Intel(R) Core(TM) i5-10400 CPU and 16 GB RAM. Considering
that DTW distance is the most popular measure of shape difference between time series, the
DTW-based similarity search method introduced by Rakthanmanon et al. [73] is taken as the
reference method for comparative analyses, and the LB_Keogh lower bound [20] is used to
speed up the search process. The original program of the DTW-based method only supports
a top-1 similarity search for one-dimensional time series, and we thus re-implement it
in the C language to support a top-k similarity search for multi-dimensional time series.
All codes are available at https://figshare.com/s/f2f74937ed2a4f6a5ecf (accessed on 22
October 2022). Please note that, since the GEMINI-based similarity search method is not
suitable for multi-dimensional time series, it is not considered to be a reference method in
our experiments.

4.1. Performance of the Proposed Method

We evaluate the proposed similarity search method on several real-world datasets.
Specifically, four publicly available datasets (“CharacterTrajectories”, “EthanolConcentra-
tion”, “Libras”, and “PenDigits”) from the UCR Time Series Classification Archive [74], and
a privately collected human mobility dataset in Beijing (“BeijingDynamics”) are thoroughly
evaluated. Descriptive information of the five datasets is listed in Table 1.

Table 1. Descriptive information of the datasets for evaluation.

Name ‖S‖ l d Description

CharacterTrajectories 1422 182 3

Handwriting character trajectories
captured using a WACOM tablet. Each
instance is a 3-dimensional pen tip
velocity trajectory.

EthanolConcentration 261 1751 3

Raw spectra taken of water-and-ethanol
solutions with different concentrations.
The wavelength range of the recorded
spectra is from 226 nm to 1101.5 nm,
with a sampling interval of 0.5 nm.

Libras 180 45 2

Hand movement represented as a
bi-dimensional curve performed by the
hand in a period of time. The curves
were obtained from videos of hand
movements.

PenDigits 7494 8 2
Handwritten digit instances made up of
the x and y coordinates of the pen traced
across a digital screen.

BeijingDynamics 1107 1116 2

Hourly variation of in/outflow of each
traffic analysis zone in Beijing. The data
are derived from signaling records
between 1 July 2018 to 31 August 2018
provided by China Unicom.

https://figshare.com/s/f2f74937ed2a4f6a5ecf
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We randomly select 10% samples from each dataset as the query sequence, and then
conduct the top-1%, 5%, and 10% similarity search for these samples. After the result sets
are obtained, we quantify the consensus, ρ, between the result of the proposed method and
that of the reference method as

ρ =
‖Sk ∩ S

′
k‖

k
(7)

where Sk is the result set obtained by the proposed search method; S′k is the result set
obtained by the DTW-based search method; ‖ ∗ ‖ is the number of elements in a set; and
k is the retrieval number. Additionally, we quantify the efficiency improvement (or the
speedup ratio), η, of the proposed method over the reference method as

η =
T
′

T
(8)

where T and T
′
are the computational time of the proposed method and that of the reference

method, respectively.
As listed in Table 2, the performance of the proposed search method varies in datasets

with different numbers of time series and different lengths of time observations. The
consensus of the results of the strict similarity search is over 40% in most cases, except
for the top-1% similarity search in “CharacterTrajectories” and “PenDigit”. These two
datasets and “BeijingDynamics” have large amounts of time series, and their consensus
levels mainly increase with the retrieval number k. Whereas, for small datasets such as
“EthanolConcentration” and “Libras”, the top-1% similarity search achieves high consensus.
Results for trend similarity show the same regulations, but the overall consensus level is
lower. For efficiency improvement, the proposed method can speed up the search process in
datasets of short time sequences, such as “Libras” and “PenDigit”. However, the speedup
ratio decreases along with the size of the final result set. The opposite changing patterns
of consensus and speedup ratio with retrieval number suggest that a trade-off between
retrieval accuracy and computational efficiency is considered in the proposed method.

Table 2. Comparisons between the proposed method and the reference method.

Name Indicator
Strict Similarity Trend Similarity

1% 5% 10% 1% 5% 10%

CharacterTrajectories ρ 0.384 0.458 0.452 0.113 0.180 0.229
η 1.844 0.434 0.255 1.701 0.443 0.255

EthanolConcentration ρ 0.654 0.598 0.663 0.500 0.192 0.188
η 0.349 0.140 0.106 0.476 0.158 0.115

Libras ρ 1.000 0.463 0.454 1.000 0.222 0.228
η 8.887 1.509 0.776 7.944 1.499 0.790

PenDigits ρ 0.197 0.380 0.479 0.057 0.161 0.259
η 8.958 2.474 1.358 2.933 1.778 1.200

BeijingDynamics ρ 0.435 0.608 0.688 0.114 0.133 0.192
η 0.358 0.152 0.110 0.711 0.211 0.165

Recall that, in the “BeijingDynamics” dataset, the number of time series is large and
the length of each time series is long. Considering that each time series in this dataset
is explicitly associated with a specific spatial location, we further explore the spatial and
temporal patterns of the time series in the final result set in the next section.
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4.2. In-Depth Evaluation on “Beijingdynamics” Dataset

In detail, the “BeijingDynamics” dataset consists of time series data associated with
the TAZs within the 6th Ring Road of Beijing, China. Excluding TAZs within which
human mobility flux is not observed, the final dataset contains a total of 1107 time series.
All the time series are observed hourly for 62 consecutive days. Since only a few trips
were observed between 0:00 a.m. and 6:00 a.m. of each day, we exclude this period and
combine the rest data in 62 days. The length of the combined time series is 1116. Each time
series consists of two observation dimensions that reflect human mobility patterns from
the perspective of inflow and outflow, respectively. The spatial distribution of the daily
averaged human mobility flux in the case study area is shown in Figure 5.

To evaluate the relationship between the consensus, ρ, the computational efficiency, η,
and the size of the result set, k, we conduct the top-1, 5, 10, 20, 50, and 100 similarity search
for 200 randomly sampled time series from the dataset using the proposed method and the
reference method, respectively.

Figure 5. Overview of the case study area in Beijing, China. The color in the Choropleth represents
the number of human mobility flux captured by the mobile phone signaling data. Each unit denotes
10,000 people. Each polygon covers a traffic analysis zone.

4.2.1. Comparison from a Stepwise Perspective

As proposed, the process of similar time series search can be split into two separate
steps: (1) Use spatial features and/or lower bounds as constraints for pruning in advance,
which involves all calculation and filtering steps before measuring the exact distance for the
candidate set, S2k; (2) Calculate exact distance for time series in the candidate set, S2k, using
Fréchet and/or DTW distance algorithms to obtain the result set, Sk. As such, we further
inter-exchange the spatial pruning and the lower-bounding constraint in the first step as
well as the Fréchet distance and the LB_Keogh constrained DTW distance in the second
step of the similarity search process to evaluate the consensus and efficiency improvement
between the proposed method and the reference method more fairly and comprehensively.

As shown in Figure 6, despite the different choices of similarity measures in the
second step, the consensus levels ρ show the same relationship with the retrieval number k.
Specifically, the overall consensus increases when the distance measures in the proposed
method and the reference methods are identical. Moreover, the consensus levels increase
from top-5 to top-100 similarity search under all circumstances. Although the result set
obtained from the proposed method and that from the reference method are not the same,
their consensus can exceed 0.5 in certain scenarios, such as the top-1 similarity search
for both strict similarity search and trend similarity search, as well as the top-50 and
100 searches for strict similarity. In the scenario that the distance measure in the proposed
method is the same as that in the reference method, their consensus values are enhanced.
In particular, consensus between the result set from the proposed method and the result
set from the traditional Fréchet method remains the highest for strict similarity, while
consensus between the spatial-pruned DTW method and the reference method shows the
highest value in the search of time series with a similar trend.
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(a) (b)

Figure 6. Consensus between the proposed method, the reference method, and their variants.
(a) Strictly similar time series search; (b) Search time series with similar trend.

The efficiency improvements of the proposed method also change along with the
retrieval number k. As shown in Figure 7a,d, if the retrieval number is small (k < 5),
the proposed method is superior to the reference method in its computational efficiency.
However, as the retrieval number k increases, the efficiency of the proposed method de-
creases remarkably and becomes inferior to the reference method. This result can be largely
attributed to the fact that the size of the candidate set S2k in the proposed method grows
proportionally with k and the computationally expensive Fréchet distance in the second
step need to be calculated for these candidates. It is noteworthy that the computational
complexity of the Fréchet distance and that of the DTW distance are theoretically the same.
However, in this study LB_Keogh is used as a constraint for accelerating the C program im-
plemented DTW-based search method, while the Fréchet distance function in PostgreSQL
is not optimized (Figure 7b,e). On the contrary, in the first step of pruning, we find that
spatial pruning can effectively replace lower-bounding constraints in the original time
series similarity search. Considering that both the MBR in two-dimensional space and the
LB_Yi lower bound of one-dimensional series share the same idea of max-min boundary
for constraint, we also compare the two methods in terms of the pruning efficiency. Results
in Figure 7c,f indicate that the MBR-based spatial features are more effective than the LB_Yi
lower bound in the pruning step.

(a) (b) (c)

(d) (e) (f)

Figure 7. Computational cost of similarity search on time series in different steps. (a–c) Strictly similar
time series search; (d–f) Search time series with the similar trend; (a,d) The overall computational
time; (b,e) The computational time of the distance calculation step; (c,f) The computational time of
the pruning step.
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In Figure 7, the two additional methods that ex-changeably combine advantageous
steps of the proposed method and the reference method further reveal the ability and
potential of the proposed method. The combined method that uses spatial features for
pruning and generating set S2k and calculates exact LB_Keogh constrained DTW distance
for obtaining the result set Sk always yields lower time cost than other methods. In other
words, the computational efficiency can be significantly improved if spatial features are
used for pruning before the expensive distance calculation. However, the time cost of
similarity search that combines LB_Yi and LB_Keogh pruning (Yi+DTW) is quite similar to
the reference method that uses only LB_Keogh pruning but is still significantly higher than
the combined method. This fact again suggests that the pruning power of LB_Yi is weak
and the spatial features in the database play a more important role in the process of search
acceleration. Intuitively, in case the retrieval number, k, is large, the pruning will play a less
important role in the first step because the candidate set S2k might contain most of the time
series in the raw set S. Consequently, the time cost of the combined method will gradually
approach that of the reference method as the retrieval number increases.

4.2.2. Comparison from a Spatial Perspective

The consensus indicator distinguishes if the result set of the proposed method and
that of the reference method are the same or not. Under closer scrutiny, we further visualize
the spatial and temporal patterns of each time series similar to the query sequence, and
evaluate the spatio-temporal similarity between the two result sets with the assistance of
visual analytics.

Although the retrieved time series in Sk cannot exactly match those in S′ k due to the
slight difference between DTW distance and Fréchet distance, we find that they are highly
similar in terms of both of their curve shapes and spatial distributions. Taking Temple of
Heaven (Figure 8a) and Sanlitun (Figure 8d) as examples, the top-20 similar time series for the
two TAZs are extracted and visualized in Figure 8b,c and Figure 8e,f, respectively. Only the
curves of outflow variation are drawn for illustration purposes. The spatial distributions of
the corresponding TAZs are also highlighted in the maps (Figure 8a,d). Since the Temple of
Heaven is a famous scenic spot and Sanlitun is one of the greatest business centers in Beijing,
their functions and human mobility patterns are different. For result sets obtained by both
search methods, the variation pattern of the resulting time series is very similar to the original
query sequence. It suggests that although the proposed method cannot extract completely
consistent results with the reference method, it is still able to correctly find highly similar time
series to the query sequence. In addition, the spatial distribution and street-views of TAZs in
the result sets also confirm the capability of the proposed method. As listed in Table 3, the
physical characteristics of the Top-20 TAZs that are similar to Temple of Heaven and Sanlitun
determined by the DTW method and our proposed method are visually similar to each other,
while their similarities to randomly selected TAZs are much lower. Please note that we collect
the street-view images of every 200 m × 200 m grid within a TAZ, and select the scene with the
most frequent appearance to represent its typical physical characteristics. The spatio-temporal
difference between the result set S′k obtained from the reference method and the result set Sk
obtained from the proposed method for each specific TAZ provides additional evidence for the
fair comparison between the two methods. Therefore, we further explored the validity of the
proposed method from the perspective of spatial and temporal distance deviations.

Specifically, we first define an indicator named boundary distance, which is the
maximum DTW distance between the query sequence and the time series in the result sets
obtained by the reference method. Then, for each time series in the result sets obtained
by the proposed method, its DTW distance to the query sequence is calculated to check if
this DTW distance would deviate from the boundary distance. We consider a similar time
series as a good hit if its DTW distance does not exceed the boundary distance of more
than 20%. For the top-5, 10, 20, 50, and 100 similar time series searches, the proportions of
good hits are 0.742, 0.792, 0.854, 0.886, and 0.913, respectively. It indicates that the deviation
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between the results of the proposed search and that of the reference method is within an
acceptable range for this dataset.

To quantify the spatial deviation of two result sets, we define an indicator named
average offset distance between sets. For each TAZ in Sk, its distance to the nearest TAZ in
S′k is calculated, and then the mean value of the distances for all TAZs is finally taken as
the average offset distance between the two sets. Results for cases with different retrieval
numbers, k, and different search strategies (i.e., strict similarity and trend similarity) are
shown in Figure 9. Comparing the offset distances of result sets with that of k randomly
selected TAZs, the result set Sk shows significantly different distributions of offset distances
with shorter and more concentrated offset values. Given that the average distance between
adjacent TAZs in the case study area is 1.35 km, the average offset distance of the proposed
method is about 1 to 4 TAZs, which is acceptable. Moreover, as the retrieval number k
increases, the spatial difference of the result sets obtained by the two methods gradually
dismisses. For the case of searching top-100 similar series of a query sequence, the average
offset distance of most of the TAZs can be reduced to less than 2 km, which is about 2 TAZs
apart. In this sense, it seems reliable to search similar time series using spatial databases.

(a) (b)

(c)

(d) (e)

(f)

Figure 8. Consensus between the spatial and temporal patterns of TAZs retrieved by the proposed
method and the reference method. (a) The spatial distributions of the retrieved TAZs similar to
Temple of Heaven; (b) Temporal patterns of the similar time series retrieved from the reference
method; (c) Temporal patterns of the similar time series retrieved from the proposed method; (d) The
spatial distributions of the retrieved TAZs similar to Sanlitun; (e) Temporal patterns of the similar
time series retrieved from the reference method; (f) Temporal patterns of the similar time series
retrieved from the proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Offset distance between the spatial distributions of TAZs retrieved from the proposed
method and the reference method. (a) Distribution of the offset distance between top-10 strictly
similar time series from the two methods; (b) Distribution of the offset distance between top-50 strictly
similar time series from the two methods; (c) Distribution of the offset distance between top-100
strictly similar time series from the two methods; (d) Distribution of the offset distance between
top-10 time series with a similar trend from the two methods; (e) Distribution of the offset distance
between top-50 time series with a similar trend to the two methods; (f) Distribution of the offset
distance between top-100 time series with a similar trend from to two methods.

Table 3. Street-views of TAZs retrieved by DTW and the proposed method.

Temple of Heaven Sanlitun

DTW Proposed DTW Proposed Random
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Table 3. Cont.

5. Discussion
5.1. Trade-Off between Information Loss and Search Efficiency

The essence of similar multi-dimensional time series searches is to consider features
embedded in all data dimensions holistically. In this regard, it has to trade-off between
information loss and search efficiency in that the efficiency of indexing decreases as the
number of data dimensions increases [69]. In our proposed method, spatial objects can keep
almost all information of the raw time series data since the number of spatial dimensions is
identical to the number of dimensions of the raw time series data (at least in two- or three-
dimensions). Consequently, further work will be conducted to verify how the indexing
efficiency will decrease as spatial dimensions increase. Indeed, this problem is waiting to
be addressed in almost all multi-dimensional time series mining methods that are under
development.

5.2. Extension of Build-In Functions in Spatial Database

We verified that the result of the proposed method is highly similar to the query
sequence, suggesting that the proposed method is reliable for time series similarity search.
Nevertheless, the proposed method of similarity search in spatial databases does not meet
the lower-bounding distance lemma, which means that it is an approximate similarity
search method. Therefore, there are differences between the result sets obtained by the
proposed method and the reference method in certain cases. Moreover, it is noteworthy
that the difference is also partially because we used the Fréchet distance as a proxy of the
DTW distance because the function for calculating DTW distance is not readily available in
the PostGIS-enabled spatial database.

This limitation suggests that the proposed method is extensible in multiple ways. First,
the built-in similarity measures in spatial databases can be replaced by other optimized
algorithms. It is promising to construct and integrate other efficient distance functions
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(such as optimized DTW and LCSS) into PostgreSQL with the PostGIS extension. Even
though the DTW-based method was used as a reference in this study, it is not a ground-truth
distance measure since every measure has its definition of “distance” or “(dis)similarity”.
In this sense, we should further consider a distance measure as proper or not depending
on the applications of the time series similarity search. Second, spatial pruning is flexible
to add more spatial features which are closely associated with time series features. The
centroid and the MBR are equivalent to a very simple kind of upper and lower bounds of
time series, i.e., LB_Yi. Future work will seek to design more advanced spatial features
as a proxy of tighter lower bounds (such as LB_Keogh) for similar time series searches.
Moreover, since the spatial database is only readily applicable to two-dimensional and
three-dimensional time series, a major future challenge is that the spatial characteristics
associated with high-dimensional time series are not as intuitive as that in 2/3-dimensional
time series. It might be nontrivial to design appropriate spatial indicators for the pruning
of high-dimensional time series to improve the generalizability of the proposed method.

Promisingly, with the rapid development of big data technology in recent years, many
scholars have been applying big data frameworks such as Spark to establish distributed
time index and to achieve parallel similar series retrieval [22,75]. Along with the further
development of similarity measures and indexing methods, we believe that the compre-
hensive integration of the big data framework with the spatial databases will also play an
important role in the field of similar time series searches.

5.3. Scalability of the Proposed Method

In practice, the scalability of methods for similar time series searches is essential.
Despite that our proposed method primarily address the high dimensionality of large
volume time series data, we also evaluate its performance upon time series data with
different sequence length (see Table 4) as well as a different number of time series (see
Table 5). By randomly sampling a subset of time series using predefined scale factors on
sequence length and number, respectively, we generate datasets with different lengths
and numbers of time series. Our result confirmed that the efficiency improvement, η, is
substantial for a dataset consisting of shorter time series, while the consensus, ρ, is kept
relatively high. It implies that as the length of the time series increases, the filtering ability
of our proposed method based on the spatial features of time series data is less significant.
Regarding the size of the time series dataset, our proposed method indeed demonstrated
good scalability, as the efficiency improvement, η, is much higher on a dataset with a large
number of time series. More rigorous evaluation might be done to provide solid evidence
on the scalability of the proposed method.

Table 4. Scalability on datasets with different lengths of time series.

Name Scale Factor
Strict Similarity Trend Similarity

ρ η ρ η

CharacterTrajectories
0.1 0.526 10.642 0.635 1.388
0.5 0.409 2.711 0.788 0.466
1.0 0.392 1.559 0.673 0.246

EthanolConcentration
0.1 0.105 5.433 0.500 2.247
0.5 0.123 2.586 0.500 0.585
1.0 0.116 1.494 0.500 0.368
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Table 5. Scalability on datasets with different numbers of time series.

Name Scale Factor
Strict Similarity Trend Similarity

ρ η ρ η

CharacterTrajectories
0.1 0.477 0.284 0.750 0.085
0.5 0.478 0.869 0.673 0.175
1.0 0.392 1.559 0.673 0.246

EthanolConcentration
0.1 0.273 0.286 0.615 0.090
0.5 0.154 0.911 0.500 0.245
1.0 0.116 1.494 0.500 0.368

5.4. Similarity Search of Spatial Trajectories

Our proposed method measures the similarity between spatial trajectories in the
spatial database as a proxy of the similarity between raw time series. Indeed, with the
rapid accumulation of big geospatial data, a lot of studies have already investigated the
similarity search of spatial trajectories [76] in situations where databases are not required.
Compared with time series data (and its converted spatial objects), spatial trajectory data
contains richer information such as timestamp, moving speed, and direction for defining
similarity measures. However, such information is often discarded to find trajectories
with similar spatial characteristics. In this regard, the similarity between spatial trajecto-
ries is usually measured by either the warp-based distance (including DTW, LCSS, and
EDR distances) [77,78], or/and the shape-based distance (including Hausdorff and Fréchet
distances) [79], which are consistent with our proposed method. Additional distance mea-
sures for trajectory data include the integral of the distance from points on one trajectory
to another trajectory (such as the one-way distance, and the symmetrized segment-path
distance [80]), and the overlay of two trajectories in the 2D plane (such as the locality
in-between polylines distance [81]), which might be also applicable to our analytical frame-
work. It is also noteworthy that integrating distance in the temporal dimension is essential
for similar trajectory searches if the sampling frequency varies in trajectory data. In such a
case, the spatio-temporal similarity score must be applied [82].

A similar trajectory search is often implemented as a dynamic programming process,
with a computational complexity of O(mn). Similar to time series search, the pruning
and local filtering strategies are often applied to boost the speed of similar trajectory
search [79]. Moreover, specific storage and indexing methods for trajectory data have also
been proposed, such as the segment-based partition and indexing [83], and the pivot-based
metric indexing [84]. Recently, a few scholars have also applied deep learning methods for
trajectory representation and computation. For example, ref. [85] implemented a trajectory
vector extraction method based on RNN, which converted the trajectory distance into
a vector distance calculation. Ref. [86] introduced an attention mechanism in the GRU
sequence auto-encoder model to represent trajectories containing temporal features, and
used the vector representation of each trajectory to calculate trajectory similarity scores.
These newly developed techniques could shed new light on the storage and similarity
search of time series data in both non-spatial and spatial databases.

6. Conclusions

This study introduced a novel similarity search method that leverages the power
of spatial databases to support similar multi-dimensional time series searches. Multi-
dimensional time series are represented as spatial objects and stored in spatial databases.
Similar time series can be quickly retrieved with the assistance of spatial indexes built
into spatial databases. Empirical experiments also confirmed that spatial databases can
quickly prune time series using their spatial indexes and built-in functions, especially in
cases where the retrieval number is small.

The main contribution of this study is to bring a novel spatial perspective to deal
with the reliability, efficiency, and ease-of-use challenges in the similarity search of multi-
dimensional time series. Compared with the commonly used GEMINI-based and lower-
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bounding-based indexing methods, searching similar time series within the spatial database
has several advantages. First, a database-based similarity search can ensure that the
dimensionality of spatial objects is consistent with the raw time series before the conversion.
Second, the indexing process of database-based search needs neither feature transformation
nor upper/lower-bound calculation and therefore can support the efficient similarity search
for multi-dimensional time series. Once the time series has been represented as spatial
objects and stored in the spatial database, the spatial calculation functions integrated with
the database can be directly used to calculate the spatial features by SQL statements. In
doing so, it becomes simple and convenient to conduct a similarity search for users from
the domain of geography who are familiar with spatial databases.
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