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Abstract: Community roads are crucial to community navigation. There are automatic methods
to obtain community roads using trajectories, but the sparsity and uneven density distribution of
community trajectories present significant challenges in identifying community roads. To overcome
these challenges, we propose a conditional generative adversarial network (MAC-GAN) supervised
by pedestrian trajectories and neighborhood building footprints for road generation. MAC-GAN
packs the “road trajectory—building footprint” pairs into images to characterize implicit ternary
relations and sets up a multi-scale skip-connected and asymmetric convolution-based generator to
incorporate such a relationship, in which the generator and discriminator mutually learn to optimize
the network parameters and then derive approximate optimal results. Experiments on 37 real-world
community datasets in Wuhan, China, are conducted to verify the effectiveness of the proposed
model. The experimental results show that the F1 score of our model increases by 1.7-6.8%, and the
IOU of our model increases by 2.2-7.5% compared with three baselines (i.e., Pix2pix, GANmapper,
and DLinkGAN (configured by DLinknet)). In areas with sparse and missing trajectory data, the
generated fine roads have high accuracy with the supervision of building footprints.

Keywords: community road; road extraction; deep learning; conditional generative adversarial network

1. Introduction

Community roads usually surround residential buildings, including drivable road
types (e.g., mixed traffic lanes) and non-drivable road types (e.g., pedestrian paths and
walkways). They are essential bridges linking people (e.g., visitors, deliverymen, etc.) and
the neighborhood environment, which can help people avoid getting lost or detours during
their daily commutes, and are critical to community navigation and other downstream-
related applications [1].

Among multimodal information for automatic road extraction, remote sensing images
and GPS trajectory are the widely accessible data sources. Existing road extraction tasks
mainly focus on urban-scale roads, and the above two data sources are usually effective
for this task. However, there are significant challenges when these data are used for road
extraction tasks in community micro-spaces.

(i) For remote sensing data, the internal environment of residential communities is
complex, and many types of elements, such as buildings, trees, and lawns, obscure the
confined branch roads in the remote sensing images of the communities, thus posing
a challenge for extracting fine community branch roads in community space.

(if) For trajectory data, the trajectories in community space mainly consist of pedestrian
trajectories mixed with a small number of vehicle trajectories due to the restrictions
on the entry of foreign vehicles into the residential area and the common design of
people-vehicle diversion. Pedestrian trajectories recorded by various mobile phone
apps only exist within a limited time and space range with the characteristics of
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low frequency. Firstly, such low-frequency trajectories lacking details of real paths
would probably result in an ambiguous representation and undoubtedly exacerbate
the difficulties of road generation. Secondly, such trajectories imprint mixed traffic
flow for different agents (e.g., pedestrians and vehicles). The hybrid features in
community-like spaces greatly degrade the performance of current methods. Thirdly,
unlike the driving behavior of vehicles on general roads, pedestrians walk freely in
the community, such as across lawns, squares, etc. This may result in trajectories with
non-uniform density distribution, and random sampling may further exacerbate this
problem. Existing trajectory-based methods of road extraction have limitations in
dealing with such community trajectory data.

(iii) For community space, community roads are tighter and denser (i.e., adjacent roads
are closer in space) than urban-scale roads. The features adopted by existing methods
are insufficient for extracting the mixed staggered roads with different levels from
low-frequency trajectories. In addition, the GPS drifts caused by dense tall buildings
and residents induce spatial uncertainties and increase the difficulty of distinguishing
adjacent roads.

Against this backdrop, we develop a MAC-GAN model to derive visually and mor-
phologically realistic community roads from GPS tracking data and building footprint
datasets. We fully consider the relationship between different features in the community-
built environment, especially the relationship between building footprints and roads. On
the one hand, the trajectory that records the location information of road traffic activities
can reflect the geometric structure and topological relationship of roads to a certain extent.
Note that in a community-like compact space, buildings and roads are the two main ge-
ographical elements closely related to people’s daily commute. According to Poincare’s
dual characteristics, building footprints have rich road-related context information, which
can compensate for the defects of density difference and incompleteness of GPS trajectory.
Therefore, with the help of adjacent roads and surrounding buildings, roads in the residen-
tial scene can be inferred more precisely to supplement a more realistic community road
network and enrich alternatives for community navigation.

The main contributions of this study are summarized as follows:

(1) We combine trajectory information with rich road geometry and topological features
and building footprints with road contextual spatial information to enrich the research
dimension of road extraction methods.

(2) We propose a generative adversarial model named MAC-GAN for community road
extraction. We configure the generator MACU-Net for MAC-GAN, which has cross-
perceptual field convolution blocks to enhance the attention to and perception of road
space neighborhoods. It builds skip connection and adaptive attention mechanisms
to fuse multi-scale features. MACU-Net captures the ternary features of the “road
trajectory-building footprint” for generating roads with sparse and uneven trajectories.

(3) We explore a new geodata transformation application of GANs on a community scale
to transform a coarser and accessible geospatial dataset (trajectories and building
footprints) into another geospatial dataset (roads), and we verify the feasibility and
effectiveness of this application to generate road data.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
elaborates on the structures of the proposed model (MAC-GAN). Section 4 presents the
study dataset, baseline models, and evaluation metrics. Section 5 discusses the experimental
results. Section 6 concludes the study.

2. Related Work
2.1. Road Generation Methods Based on Trajectory
Trajectory clustering methods are commonly utilized to generate roads. The turning

points are treated as intersections, and the trajectory segments are clustered into a road
segment [2,3]. For instance, Xie et al. [4] utilized the clustering of turning points on GPS
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trajectories to identify potential intersections and then a point-by-point alignment strategy
to determine the road geometry between these intersections. Zhang et al. [5] utilized a
combination of K-means clustering and Gaussian modeling to recognize road centerlines
and lanes. However, the scarcity of crowd-sourced trajectories prevents them from being
modeled as a Gaussian distribution, resulting in poor clustering outcomes.

Raw noise data pose a challenge to road generation algorithms. Numerous scholars
have proposed strategies of suppressing noise by the incremental merging of trajecto-
ries [3,6-9]. Based on the constraints of the geometric and movement characteristics (i.e.,
Fréchet distance, speed, and direction) between trajectory points, a graph representing
the road network is incrementally generated, and the road sections with fewer trajectory
data points are trimmed to remove some of the noise data [2,7,10,11]. Cao and Krumm [7]
simulated physical forces to optimize GPS trajectories by pulling trajectory points closer
to each other when they are in close proximity and prevent them from deviating too far
from the road among the traces, which effectively suppresses the noise in the raw traces.
The resulting graphics accurately display critical road connectivity and road geometry.
However, it cannot make the GPS traces with significant errors and spatially scattered traces
into tight bands. Both noisy residual trajectories and unevenly distributed trajectories lead
to the extraction of false roads.

In addition, methods based on graph theory and image processing have been devel-
oped. Density analysis (e.g., kernel density estimation, Morse theory, improved sliding
methods, etc.) is used to convert GPS trajectories into discretized images (i.e., density sur-
faces) [12-14], and then stable manifolds from the image are extracted for road skeletoniza-
tion algorithms and topology refinement [15-17]. For example, Biagioni and Eriksson [18]
suggested an incremental approach based on kernel density estimation (KDE) that involves
obtaining a road sketch via gray-scale skeletonization, trimming it utilizing Viterbi map
matching, and refining its topology and geometry. This image-based approach overcomes
the disadvantage of insufficient GPS trajectory sampling, because it deals with trajectory
points instead of GPS traces [19]. However, due to the uneven density of GPS trajectory
points, it is hard to extract roads using a unified threshold.

In summary, the over-reliance on the quality of the input trajectories presents a chal-
lenge in the task of community road generation. How to deal with the nontrivial noise and
unevenness of trajectories is always the key to affecting the quality of road data. It would
be highly useful to develop new methods to reduce this direct dependence.

2.2. Generative Adversarial Networks and Geospatial Data Translation

Generative adversarial network (GAN) is a deep learning architecture in which gen-
erator G and discriminator D contest each other in a zero-sum game [20]. Mirza and
Osindero [21] proposed a conditional generative adversarial network (CGAN), an exten-
sion of GAN, and its generators obtain more controllable outputs under the influence and
control of input data.

The goal of domain mapping in deep learning is to acquire the mapping function that
transforms the source domain into the target domain [22]. Many scholars actively try to use
the domain mapping capability of CGAN to discover deep-level spatial features to generate
geospatial data. For example, Dong et al. [23] designed a shadow-constrained CGAN
(SCGAN) to fill in the gaps of mountainous SRTM data. Zhu et al. [24] designed CEDGANSs,
which can learn the spatial relationship between sample data and corresponding real
spatial data to generate real DEMs with local topographic structural patterns similar to
real images. Many studies also predicted missing data on urban infrastructure based on
urban geospatial data [25-27]. It has been reported that using the domain knowledge
of urban morphology and spatial networks, building heights can be derived from the
street networks and buildings data of 2D urban morphology [25]. Taking advantage of
the CGAN's capability, Wu and Biljecki [28] developed a GANmapper, which transforms
data from road networks into building footprints. They demonstrate the powerful ability
of CGAN to identify potential patterns in intricate geospatial contexts and the feasibility
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of discovering deep features based on CGAN from the intertwined features in the built
environment. This inspired us to generate community roads through CGAN using building
footprints and trajectory data.

The generator of a CGAN for domain mapping is usually configured as an encoder—
decoder architecture [29], where its encoder captures features from external information
(conditions) and its decoder utilizes these captured features to generate the ultimate output
image. The design of the encoder—-decoder architecture plays a key role in determining
whether the CGAN will accurately perform the domain mapping task. Numerous re-
searchers have improved the encoder-decoder structure to achieve geospatial information
mining. The encoder—decoder architecture U-Net is a common network configuration
scheme for road semantic segmentation. Its several skip connections between the encoder
and decoder are used to improve the semantic extraction capability within the frame-
work [30,31]. However, insufficient utilization of information flow impedes its potential.
Wu and Biljecki [28] incorporated nine residual blocks [32] into the middle of an encoder—
decoder architecture to increase the generator network’s depth, which makes the generative
model more expressive in geographical content translation tasks. However, the omission
of skip connections in this structure may fail to extract the geospatial features sufficiently.
Zhou et al. [33] suggested a D-LinkNet for road segmentation, which integrates skip con-
nections and residual blocks. In addition, the dilated convolution layers are included
between the encoder and decoder. This facilitates the expansion of the perceptual domain
and integration of multi-scale features. However, D-LinkNet still suffers from wrong
recognition and weak connectivity. The raw U-Net, resnet_9block, and D-LinkNet cannot
fully extract multi-scale road features. U-Net 3+’s full-scale skip connections try to address
this issue, but at the same time, a tremendous amount of computation are required [34].
Considering the complexity of community scenarios, extracting road features from building
and trajectory data is a challenge in terms of capturing the spatial features implied in the
deep layer as comprehensively, accurately, and with as little redundancy as possible.

3. Methodology
3.1. Framework

Inspired by the ability of CGANSs to implement domain mapping to generate reli-
able synthetic data, we explore using CGANSs to generate spatially correct synthetic road
datasets using learning cues from building footprint and pedestrian trajectory datasets.
We propose a MAC-GAN based on CGAN for generating roads in community scenarios
using pedestrian trajectories and building footprints. Since this paper is an initial attempt
to generate road spatial data using CGAN for domain mapping, the input, as the initial
condition for domain mapping, largely affects the learning ability of the model, so we try
to investigate the most suitable input for this task. We design the method framework as
shown in Figure 1. The first step is data collection. We collect the mobile GPS trajectory data
and the community center’s latitude and longitude coordinate data. The second step is data
pre-processing. We create a pre-processing pipeline to produce three types of input-target
image datasets for the model: building footprints, pedestrian trajectories, and building
overlay trajectories. The third and fourth steps are model prediction and post-processing,
respectively. After obtaining a series of resultant images generated by the MAC-GAN
model, we post-process the images, that is, filter and stitch these images to finally obtain an
overall image of the community.
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Figure 1. The framework of our method.

3.2. Pre-Processing

After collecting the mobile phone GPS trajectories and coordinates of community cen-
ters, we obtain the image dataset through the following pre-processing. To avoid the impact
of other types of map elements (POI, greens, etc.) on evaluation, we customized three map
styles through the Baidu Maps APIL: buildings only, trajectories only, and building-overlaid
trajectories. Images in three map styles were used to test the optimal input-target pairs
configuration. Building footprints, trajectories, and roads were represented by orange,
black, and green pixels, and road levels were distinguished by the line width. Due to the
small building footprints and the linear geometric shape of roads in the community, to
capture the contextual features while maintaining high visual clarity, we located each com-
munity area in the custom-style Baidu map through the latitude and longitude coordinates
of the community center. We grabbed a 19-level map image with a resolution of 1024 x 512
for each specific community area, and then divided it into two images, on average, and
uniformly zoomed them to the resolution of 256 x 256.

3.3. Model Architecture

Figure 2 shows the structure of MAC-GAN. In order to make the generator capture
accurate and sulfficient spatial features of the road in the complex community environment,
we configure MACU-Net as the generator (G). In each forward pass, it converts the con-
ditional image into a road image by fully capturing the features of the conditional image
(building footprint overlaid with trajectories) and fools the discriminator (D) to label the
generated image as “real”, while D is trained to label the generated image as “fake” and the
target image as “real”. The D is configured by the Markov discriminator (PatchGAN) [35].
The generated image and the target image are connected to the conditional image, and
their authenticity is calculated through convolution operation. Then, the adversarial loss
between the generator and the discriminator and the L1 loss are calculated. Following this,
the generator and discriminator weights are updated via the backpropagation algorithm.
This process repeats until the discriminator can no longer distinguish between the target
and the generated image.
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Figure 2. The structure of the MAC-GAN. In MACU-Net, features with the same size and dimensions
are marked with the same color (blue, gray, orange, and red), and features with the same color will be
connected and fed to the CAB module.

3.3.1. Generator

Given the excellent performance of MACU-Net in solving the problem of the under-

utilization of image space features [36], especially with its two core components that can
meet the requirements of the practical application scenario (road generation) of this study
well, the two core components of MACU-Net are integrated into our encoder-decoder
structure and configured as MAC-GAN'’s generator. The following describes how the
two core components work in the road generation task.

1.

Asymmetric convolutional block (ACB). Existing neural network models typically
extract features within the square window using the square convolution kernel, which
is feasible for most block-shaped objects and spatial region blocks. However, the
community roads in our study are narrow strips whose directions mainly extend
vertically and horizontally. Using the square convolutional kernel can hardly focus
on extracting linear features of the roads. In addition, the community has many
road intersections, most of which are in the shape of “crossings” and “T-junctions.”
Due to the lack of direction sensitivity in square convolutional kernels, they cannot
concentrate on extracting road information in different directions at intersections
and geometric shape features of intersections. The nonlinear features of roads are
generally manifested as complex geometric shapes such as curves, loops, and irregular
edges. It is difficult for square convolution kernels to adequately extract nonlinear
features of different scales and shapes. Moreover, the importance of features captured
by square convolution kernels is heterogeneous. Specifically, the central crossover
location contributes more information to feature extraction and less to the corners [36],
which will cause the information extracted by the square convolution to be redundant
and unrepresentative, further weakening the model’s ability to extract nonlinear
features. To overcome these limitations of the square convolution kernel, we choose
the three-branch convolutional block (ACB) with cross-receptive fields shown in
Figure 3 to extract the spatial features of the community roads. As shown in Figure 4,
in ACB, the 3 x 3 convolution kernel is used to capture the contextual information
of the road, and the 1 x 3 and 3 X 1 convolution kernels pay attention to capturing
the road’s linear characteristics, the intersection’s geometry, and the representative
linear and non-linear features at the skeleton. Thus, ACB reduces the capture of
redundant information, ensures the extraction of essential road and intersection
features, enhances the extraction of representative nonlinear features, and maintains
sensitivity to contextual spatial features. The ACB is expressed as follows:
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Figure 3. The structure diagram of the ACB with cross-receptive field.
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Figure 4. The motivation of the asymmetric convolutional block ACB that we proposed. The

three figures show the ACB convolution on the community image, and the texts in the image indicate
the building units of the community. (a) The 3 x 3 convolution is used to capture the contextual
information of the road. (b) The 1 x 3 and 3 x 1 convolutions capture features in the road’s horizontal
and vertical extension directions. (c) The 1 x 3 and 3 x 1 convolutions capture the features of
road intersections.

X; = Convzys(xi_1) + Convixz(xi_1) + Convsyq(Xi_1), 1)
X; — E(x;)

xi = 0| vi——2 4 B |, 2

' ( VYV F g B‘) @

where x; and x;_ are the output and input of ACB, respectively. The batch norm (BN) with
v and 3 parameters in Formula (2) is employed to improve the stability of the summation
value of the three branches. The rectified linear unit o(-) is used for nonlinear transfor-
mations. V(-) and E(-) denote the functions of variance and expectation. € represents
a small constant.

2. Multiscale features skip connection and fusion. Considering that the insufficient
information flow extraction and utilization limit the original U-Net architecture’s
potential, we incorporate multi-scale jump connections into the U-Net to facilitate
interaction between encoders and decoders and to fully capture fine-grained road
location, geometric and topology features, and coarse-grained semantic features.
Figure 4 shows how X3, generates its feature map. The first step is the multi-scale
features skip connection. Firstly, the same-level encoder layer’s (i.e., X3, 's) feature
maps are concatenated. Subsequently, the transposed convolution and ACB transmit
the lower-level decoder layers’ (i.e., Xp,.’s and X3, ’s) fine-grained road geometry and
topology features. Finally, the max pooling layer and ACB deliver the higher encoder



ISPRS Int. ]. Geo-Inf. 2023,12, 181 8 of 21

layers’ (i.e., X%,’s and X%,’s) coarse-grained road semantic information. This process
can be expressed as follows:

X3, = CAB( {ACB (D(xgn)k i 1>,ACB (U(x}ge)k i 4>,x~°]5€] ) 3)

Xbe, X3, Xbe, and X3, are generated similarly. Their generation procedure can be
uniformly formulated as follows:

B 1=N
. i1 N
he = CAB({ACB(D(XEn)iz 1>,ACB(U(X{5€)k:iH>D, @
i=1,...,N-1

where the channel attention block (CAB) is used to rearrange and fuse-channel related
features, ACB(-) represents ACB, and U(-) and D(-) denote the up-sampling and down-
sampling operations, respectively. [-] denotes concatenation. After connecting five feature
maps of the same channels and resolution, we use channel attention blocks (CAB) in the sec-
ond step to reduce, rearrange, and weigh the channels to emphasize essential information
and filter redundant features. As shown in Figure 5, taking X3, as an example, this step
consists of reducing the number of channels, compressing the spatial dimension by average
pooling and max pooling, recovering the original number of channels, and generating the
final output X3, through the ACB convolution layer. Similarly, the corresponding CAB
generates Xp,, X3, and X},

» ACB 3x3 D ConvTranspose CAB3 | Chanel Attention Block
16 R Max Pooling 22— Skip connection > Convolution 4x4
» Convolution 11
32 C C C
64
XEIU) y»| |-
conv13 CAB3
64x5 128
N 32 >
\ 64 B 7
2 2
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\ 12864 ! o
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b / Conv Conv
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T\ o Y
xe L 256 128 e / ——X ’I’I
B o] | 3
XEn Xbe

deconv3

Figure 5. The construction of feature map X3,

The following is the entire workflow of the generator. In encoding, the encoder first
receives a conditional image of 256 x 256 x 3; the feature maps are extracted by using
two stacked 3 x 3 ACB convolution layers and a 2 x 2 maximum pooling following an
ACB convolution step. With the ACB convolution layer and the max pooling layer, the fine-
grained features of different sizes and dimensions contained in each layer of the encoder
can be extracted, as shown by the blue, gray, and red squares in the left and middle parts of
the MACU-Net, where patches of the same color represent features of the same size and
dimensionality. Coarse-grained features of different sizes and dimensions contained in each
decoder layer are obtained by applying a 2 X 2 transpose convolution to the feature map of
each decoder layer. In decoding, we utilize multi-scale skip connections to connect road
geometry, topology, context, and semantic features from the same-level encoder, lower-level
encoder, and higher-level decoder layers and feed them into the channel attention block



ISPRS Int. ]. Geo-Inf. 2023,12, 181

9 of 21

(CAB) to rearrange and optimize. Each decoder layer will output feature maps sequentially
until the final decoder layer generates images filled with road data.

3.3.2. Discriminator

The network structure of MAC-GAN'’s discriminator is shown in Figure 1. It is
PatchGAN [35] with a 70 x 70 receptive field, which performs binary classification on each
image patch instead of the whole, so it can better capture the local features and details
of the roads. The five convolutional layers of PatchGAN process the input image into
al x 1 x 512 tensor, which is then squashed into a one-dimensional array and transmitted
to the fully connected layer. Finally, the network outputs the probability of the input image
being true or false.

3.3.3. Loss Function

Designing the loss function is a critical link between the training and optimization
of the MAC-GAN model. Our goal is to train a generator, G, that can learn to convert a
conditional image x into the generated image G(x) similar to the target image y. At the same
time, we also need to train a discriminator D to distinguish G(x) from y. For this purpose,
we design the objective function Lyjac—gan as shown in Formula (5), which incorporates
the adversarial loss of the G and D calculated by the binary cross-entropy L.gan (D, G)
expressed in Formula (6), and the L1 loss Ly (G) expressed in Formula (7). The L;;(G)
calculated by the L1 norm denotes the difference between the generated image G(x) and the
target image y for each pixel. We set it as part of the loss to constrain the image generation
so that G(x) is as consistent as possible with y. A is a parameter adjusting the importance
of L11(G), E(*) is the expectation of the distribution function, Py, (*) represents the data
distribution, and ||*||; denotes the L1 norm.

Lmac-caN = Legan(D, G) + AL (G) (5)
LCGAN(D’ G) = ExePdata(x),yePdm(y) [log D(X/ Y)] + EXGPdata(x) [10g<1 - D(G<X)/ X))] (6)

Li1(G) = Exery, (x)yePaua(y) 1 Y — GOI14] @)

4. Study Dataset and Evaluation
4.1. Study Dataset

We randomly selected 412 communities in Wuhan, China, and marked them with
green dots in Figure 6. Only four of the communities are shown in the enlarged view.
Experimental community centers’ latitude and longitude coordinates in the WGS-84 coor-
dinate system were collected and converted to the same BD_09 coordinate system as Baidu
Maps. GPS trajectory data used for the experiment are mobile phone GPS data collected
on 8 March 2019 in the experimental community area. The sampling frequency is between
1 min and 1438 min with a mean value of 45 min and a median value of 5 min, and each
record is composed of the following fields: day, time, ID, longitude, and latitude (Table 1
shows an example). Using the pre-processing data methods described in Section 3.2, we col-
lected 824 images from these communities, which have different road layouts and building
structures. In total, 750 images are captured as the training sets and 74 images are captured
as the validation set for evaluating the effectiveness of the proposed model.
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Figure 6. The study communities in Wuhan, China.

Table 1. An example of a GPS trajectory record.

Day Time Id Longitude Latitude

8 March 2019 23:31:00 7 114.310290 30.523696

4.2. Baselines and Settings

This study selects three generative models as baselines for evaluation, namely Pix2pix,

GANmapper, and DLink-GAN. Pix2pix [35] is the original image-to-image CGAN that
learns image mapping from input to output. GANmapper and DLink-GAN are constructed
by redesigning the generator based on Pix2pix.

1.

Pix2pix configures a U-Net generator whose skip connection improves the seman-
tic extraction capability of the encoder—decoder framework. U-Net has become a
standard scheme to capture nonlinear and hierarchical features of input images to
reconstruct images, so we take it as one of the baseline models.

GANmapper’s generator is configured as an encoder—-decoder, which includes nine
residual blocks (He et al., 2016). With the setting of the residual blocks, the loss of
spatial information from down-sampling that cannot be restored by up-sampling is
reduced to some extent.

DLink-GAN configures D-LinkNet [33] as the generator. D-LinkNet is a common
encoder-decoder for road segmentation and extraction. D-LinkNet uses ResNet34 [37]
to replace the encoder of U-Net, which reduces the loss of spatial information from
down-sampling. In addition, the central part of its encoder and decoder uses several
skip connections. The dilated convolutional layers at the center obtain a larger recep-
tive field, which can extract and retain detailed “trajectory-building footprint-road”
triple information of spatial features.

In this experiment, the minimum batch number is set to 6. The Adam optimizer

(Kingma and Ba, 2014) [38] is chosen. The exponential decay rate of the first-order and
second-order moment estimation is set to 0.5 and 0.999, respectively. The weight decay is
setto 5 x e*, and the initial learning rate is set to 2 x e *. We use the same learning rate
for the first 150 training epochs and linearly decrease it to zero during the final 150 training
epochs, and the model uses the Lyjac—can given by Formula (4) as the total loss, where A is
set to 100. Python3.7 and the PyTorch framework are used for experiments. The proposed
model is trained on a single GPU on an Ubuntu 18.04 (64-bit) system.



ISPRS Int. ]. Geo-Inf. 2023,12, 181

11 of 21

4.3. Evaluation Metrics

Road extraction can be treated as a task of classifying image pixels as either road
(positive) or non-road (negative). In this research task, we counted the number of generated
pixels in four categories: the true example (TruePositive, TP), the negative examples
(TrueNegative, TN), false positive examples (FP), and false negative examples (FN). This
study selects four common indicators: pixel precision (Precision), pixel recall (Recall),
Intersection-over-Union (IOU), and F1-score. They are calculated using Formulas (8)—(11).

.. TP

Precision = TP + EP 8)

TP

Recall = ————

T TP EN ©)

TP
OU= g rtrr N {10
Floscore — 2 X Precision x Recall 2TP (11)

Precision + Recall ~ 2TP + FN + FP

The F1-score and IOU comprehensively consider both precision and recall in evaluat-
ing the model. Their higher values indicate that the generated image overlaps more pixels
with the ground truth image. However, the generated images have higher IOU scores (close
to 1), which may be caused by the generator over-fitting the training data. In addition, due
to the generative characteristics of GAN, although its generated roads appear to be roughly
consistent with the real road in terms of overall road structure and shape, there is typically
not a complete pixel-by-pixel overlap. Therefore, this paper does not rely solely on the
pixels of the generated image to evaluate the road generation effect.

The Fréchet inception distance (FID) [39] is a benchmark commonly used to evaluate
the GAN’s performance. It assesses the quality of the generative model using the Fréchet
distance of the feature distribution of the generated and real images in Inception v3 [40]
cyberspace. In our experiments, a lower FID score indicates that the generated community
roads have more realistic shapes, sizes, distribution densities, and topologies. The FID can
be represented as Formula (12):

FID:‘pr—ug‘2+Tr(Zr+Zg—2\/Zng>, (12)

where the p, and pg refer to the averages of 2048 activation feature values obtained by
inputting the real and generated images into the Inception v3 classification model, respec-
tively, ) r and }_ g are the covariance matrices for the real and generated feature vectors,
and Tr represents the trace of the matrix.

5. Experimental Results and Analysis
5.1. Test for the Optimized Configurations of Input-Target Pairs

The input data serve as the critical initial condition of the generator of MAC-GAN.
There are close spatial relationships between roads, trajectories, and neighboring buildings.
Our method couples such relations to supervise the generation of community roads. We
examine the effect of different input types on MAC-GAN'’s performance in predicting
community roads and derive the most efficient input-target pair configuration for this
research task. Figure 7 shows the three different input-target pairs adopted in this study.
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Input—Target Pair

\\
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Figure 7. Examples of three different input-target pairs: (1) building footprints as input and building
footprints overlaid with roads as a target (noted as Cb); (2) trajectories as input and roads as a target
(noted as Ct); (3) building footprints overlaid with trajectories as input and building footprints
overlaid with roads as a target (noted as Cbt).

We train MAC-GAN using the input-target pairs of three configurations, Cb, Ct,
and Cbt, to obtain the corresponding models, labeled Modelc,, Modelc,, and Modelc,,,
respectively. Figure 8 shows the generated road images of these three trained models.
Modelc, can learn the spatial structural relationship between roads and buildings and
roughly predict community roads, especially the main roads of the community. However, it
is difficult for Modelc, to accurately predict the geometric distribution and shape of refined
branches in areas where buildings are sparsely distributed. As shown in the seventh row of
Figure 8, the generated branches mostly appear as clumps and short discontinuous strips.
This may be attributed to the weak spatial relationship between the fine branches and
buildings. Specifically, it is very challenging for MAC-GAN to capture the characteristics
and distribution of fine branches through the supervision of building footprint data only.

Modelc, generates continuous and accurately distributed roads in regions with com-
plete trajectories. However, the generated roads are mostly wrong or missing in areas
with sparse or significantly missing trajectories. There are even erroneous cases where the
generated roads intersect with building footprints. This suggests that the trajectory, the
directly relevant element of roads, is the essential guide for the geometric distribution and
morphology of roads. In addition, the spatial information of the road neighborhood is
indispensable to constraining the generation of the road’s direction, distribution, shape,
topology, etc. However, MAC-GAN trained with only trajectory data cannot capture
this information.

Modelc,, generates roads more completely and accurately. Compared with Modelc,,
the generated roads have more regular shapes and higher integrity. Compared with
Modelc, the generated roads’ direction, shape, and topology are effectively constrained
in areas with sparse and missing trajectories. This is attributed to the advantages of
the two data sources of trajectory and building footprints; our model can fully combine
the context features such as road geometry, topology, and building distribution of the
neighborhood, thereby effectively constraining the generation of the roads.
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Figure 8. Road images of nine areas (a—i) generated by Modelc,, Modelc,, and Modelc,,.

Table 2 lists the evaluation metrics values of the results generated by Modelc,, Modelc,,
and Modelc,,. Modelc,, trained with building footprint-overlaid trajectories has the best
performance. The accuracy and recall are 70.2% and 75.2%, respectively, and the FID
is 92.20. Compared with Modelc, trained with building footprints, the F1 score and
IOU are increased by 34.6% and 41.3%, respectively, and the FID is decreased by 22.09%.
This indicates that the trajectory, as the directly correlated element of roads, can guide
road generation to a great extent. In addition, compared with Modelc, only trained by
trajectories, the recall of Modelc,, increases by 7.1%, and the F1 score and IOU increase
by 3.1% and 3.2%, respectively. The building footprints containing rich context semantic
information of roads play the role of neighborhood supervision, which makes the generated
roads more complete. In terms of F1 score, IOU, and FID indicators, the performance of
Modelc,, is the best. This indicates that Cbt is the best input-target pair configuration for
road generation. Therefore, it will be chosen as the configuration of input-target pair of
our model for later comparison and analysis.

Table 2. The evaluation metrics values of the results generated by Modelc,, Modelc,, and Modelc,,.

Configuration Model Accuracy Recall F1 Score 10U FID
Cb Modelc, 0.356 0.339 0.341 0.212 114.29
Ct Modelc, 0.706 0.681 0.687 0.542 161.84
Cbt Modelc,, 0.702 0.752 0.718 0.574 92.20

5.2. Comparison with Baselines

This subsection compares MAC-GAN’s result with three baseline models (Pix2pix,
GANmapper, and DLink-GAN). All models are trained with the input-target pairs of the
configuration Cbt. The six rows of images shown in Figure 9 are, in order, the inputs, the
generated results of the four models, and the ground truths. As shown in the region marked
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with red boxes in Figure 9, MAC-GAN can generate more realistic roads in complex areas
with sparse or even missing trajectories compared to Pix2pix, GANmapper, and DLink-GAN.

Input

Pix2pix

GANmapper

D-LinkGAN

MAC-GAN

Groundtruth

Figure 9. Results of MAC-GAN, Pix2pix, GANmapper, and DLink-GAN. Columns 1-6 in Figure 9
represent the six different study areas. In order, the six rows of images in columns 1-6 are the input,
the generated results of the four models, and the ground truth. The area marked with a red box is the
complex area with sparse or missing trajectories.

In the second row of Figure 9, there are some prediction errors and unsmooth road
edges in the results generated by Pix2pix for the detailed roads. This is because U-Net’s skip
connections are only performed on feature maps of the same size, while the lack of multi-
scale features as a complement makes the detailed features of the expression insufficient and
incomplete. GANmapper performs better in regions with complete trajectories than regions
with incomplete trajectories. For example, in scenes with complex building distribution
and missing trajectories, as shown in the second row of the fifth column, it can roughly
predict the roads in areas with trajectories. However, prediction errors and omissions exist
in the areas with missing trajectories. The reason may be that GANmapper does not have
multi-scale skip connections and feature fusion, resulting in insufficient consideration of
the contribution of spatial features of neighborhood structures in road generation.

Compared with Pix2pix and GANmapper, DLink-GAN predicts road shape better but
appears to have poorer topological continuity, as shown in the second and fifth columns of
the fourth row. The reason may be that DLink-GAN uses dilated convolution to enlarge fea-
ture receptive fields in the central part of the network and integrates multi-scale features in
the central part, which can better retain fine branch features. However, the information lost
in the down-sampling module, and the dilated convolution pixels that do not participate in
the computation lead to poor road topological continuity.

MAC-GAN uses an ACB with a cross-receptive field, which ensures the importance of
contextual road features and effectively extracts key road features simultaneously. Notably,
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it performs exceptionally well in ensuring the continuity of the road segments and intersec-
tions, as shown in the fifth and sixth columns of Figure 9. In addition, MAC-GAN replaces
ordinary skip connections with multi-scale connections and a channel attention block (CAB),
which can combine multi-scale information of trajectories and neighborhood buildings,
thus making the generated roads more complete and have better topological continuity.

Table 3 lists five comprehensive evaluation indices for the four models. The F1 score
and IOU values of MAC-GAN are better than the three baseline algorithms. MAC-GAN has
an F1 score improvement of nearly 6.8% and IOU of almost 7.5% over Pix2pix. Compared
with GANmapper, the F1 score and IOU gain is about 1.7% and 2.2%. Compared with the
DLink-GAN, the profits of the F1 score and IOU increased by 2.4% and 3.2%, respectively.
Compared with the three baselines, the profits of indicators indicate that introducing the
ACB and the multi-scale connection with the channel attention block (CAB) is effective.
It ensures the importance of the features in the central cross area and the multi-scale
combination of the trajectory’s location and neighborhood structure to road generation.
Thus, MAC-GAN can produce results more consistent with the ground truth.

Table 3. Comparison of the five evaluation indices.

MAC-GAN Pix2pix GANmapper DLink-GAN
Accuracy 0.702 0.668 0.778 0.809
Recall 0.752 0.499 0.552 0.613
F1 score 0.718 0.650 0.701 0.694
10U 0.574 0.499 0.552 0.542
FID 92.20 86.61 77.92 100.17

5.3. Effect of ACB Block

To verify the impact of ACB, we compare and analyze the performance of three-
branch convolution blocks (ACB) and square convolutions. The ACB convolution block
and square convolution are used to extract road features. Then, the feature map of the
last up-sampling layer (conv9) is generated to visually compare the difference between
the two kinds of blocks. As shown in Figure 10, each pixel in the heatmap represents
the sum of the pixel values of all channels in the output tensor, and the color bar on the
right represents the correspondence between pixel values and colors. The results indicate
that the ACB module can significantly improve the feature extraction ability of the model.
Specifically, even in instances where pedestrian trajectories are messy and sparse, it can
still extract the linear geometry and regular boundary of the road. However, the square
convolution kernel without cross-receptive fields cannot pay special attention to the linear
features of the road, resulting in inaccurate extracted features. It is of interest that the ACB
module outperforms the square convolution in capturing nonlinear road geometry features
(e.g., curved and intersecting road regions), as shown in the red boxed area of Figure 10.
This is because skeleton locations can contribute more information to feature extraction
than corner points [36]. Although the 3 x 1 and 1 x 3 convolution kernels cannot fit all
types of road orientation and geometric features in realistic scenes, the extra focus of the
three-branch convolution block on the skeleton enables it to capture more representative
nonlinear road features than square convolution.
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100

150

200

Figure 10. Feature visualization results of the last up-sampling layer (conv9), non-linear road features
are selected in the red box. (a) The input image of the network model. (b) Feature visualization
results of the conv9 layer extracted by the ACB convolution block. (c) Feature visualization results of
the conv9 layer extracted by the square convolution. (d) Ground truth.

5.4. Impact of Trajectories of Different Sparseness and Missing Degrees

MAC-GAN learns basic features from the trajectory and building footprints for a
given sample to predict unknown roads. However, as the degree of sparseness or absence
of trajectories intensifies, the feature of the ternary spatial relationship “road trajectory—
building footprint” becomes weaker, which poses a significant challenge to road prediction
with sparse trajectories.

This subsection examines the impact of trajectory sparsity on model performance.
We manually sample trajectories with five sparse levels and five missing levels from the
real trajectory data (achieved by setting the trajectory sampling rate and the size of the
sampling area). That is, the experiment is carried out by randomly adopting positions
(labeled as sparse levels 1, 2, 3, 4, and 5 at the ratio of 100%, 80%, 50%, 30%, and 10%) and
block sampling methods with different ratios (sampling trajectories in blocks at the ratio of
100%, 80%, 50%, 30%, and 10% of the area width, labeled as missing levels 1, 2, 3, 4, and
5). The samples, which are superimposed building footprints, are fed into our model to
generate roads, which are used to test the model’s performance in predicting sparse and
missing trajectory data.

Figure 11 shows the results using trajectories with different sparsity. The sparser
the trajectories are, the fewer trajectory features the model can extract, but the quality
of road results does not degrade much under the inspiration of building footprints. For
trajectories with different missing degrees, as the completeness of the trajectories decreases,
the generation effect of the model decreases significantly. However, even if the integrity of
the trajectory is only 10%, the model can effectively learn the spatial structure relationship
between the building footprints and roads and predict the location and basic morphology
of roads. This shows that at the meso-level, the spatial structure relationship of “building
footprint-road” is quite robust. This relationship can be used to supervise the process of
road generation in MAC-GAN and then robustly handle different sparsity and missingness
of trajectory data to better achieve road generation. This provides a feasible alternative for
community road prediction with sparse trajectories.

Figures 12 and 13 show the quantitative evaluation metrics of the model under dif-
ferent degrees of sparsity and missingness of trajectories. With increasing sparsity and
missingness, the F1 score and IOU decrease, and the FID is increases, but the drop and rise
are small. The F1 score at each level decreases by 0.9-6.1%, IOU decreases by 1.1-6.7%, and
FID increases by 0.22-9.67. This shows that the sparser the trajectories, the fewer trajectory
features can be extracted. MAC-GAN can suppress the performance degradation through
the learned associated feature structure, that is, “sparse trajectory-building footprint-road
feature”. It can be observed from Figure 13 that the fourth level of the missing trajectory
degree is a threshold value. When the trajectories are missing less than the fourth level,
the model’s prediction performance is more stable, and the change is small. However, the
model’s performance decreases sharply when the missing degree of trajectories exceeds
the fourth level. This indicates that for trajectories with too few features, it is difficult
to supplement sufficient road features by building footprint data. However, even in the
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case of severely missing trajectory features (such as the trajectory with the fourth miss-
ing level), MAC-GAN can still fully learn “trajectories-building footprints-road features”
through multi-scale skip connection and asymmetric convolution with the channel atten-
tion mechanism and obtain better performance. Its F1 score reaches 51.1% and its IOU
is 35.7%.

Trajectory sparseness

Areal

Areal

Trajectory integrity

Area 2

Area 2

Figure 11. The results generated by our model on trajectory data with varying degrees of sparsity
and missingness. The first and third rows of (a—e) show the trajectory data with the sparsity and
missingness levels 1-5, and the second and fourth rows show the images generated by our model
with them.

Quantitatively evaluate the results generated by the model
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Figure 12. Evaluation metrics score of the model using the trajectory data with different sparsity.
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Quantitatively evaluate the results generated by the model
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Figure 13. Evaluation metrics score of the model using the trajectory data with different missing degrees.

5.5. Loss of Model Training

Figure 14 shows the loss curve of the 300-round adversarial training process, which
converges relatively quickly. The gray error curve represents the LI loss between the
generated and real images. In the first 150 rounds of training, the pixel accuracy of the
road image generated by the model is significantly improved, then maintains a state
of slow improvement, and finally tends to stabilize. Besides the consistent downward
trend, sudden spikes in the gray error curve are noticeable, which reflect the confrontation
between the generator and the discriminator. The subgraph at the top right of Figure 13
shows the change in binary cross entropy adversarial loss (BCELoss) in D and G during
the whole training process. It is apparent that the confusion degree of D (orange curve)
tends to be the largest, and its loss is close to 0.5, and the loss in G (blue curve) continues
to improve.
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Figure 14. Loss changes in the adversarial training process of MAC-GAN. The gray curve represents
the LI loss changes between the generated and real images. The blue and orange curves show the
binary cross-entropy adversarial loss changes of the generator and the discriminator, respectively.
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5.6. Limitations

Our model uses a combination of trajectories and building footprints around the road
as context information to supervise road generation. During the process, a unified map
zoom level and a specific image size were designated to capture road context to assist
in inferring roads. The density of road contextual information (e.g., building footprints,
trajectories) varies across communities, which may affect road generation. For areas
with detailed trajectories, the model will generate more convincing results. Figure 15
shows typical cases of prediction failures. For the first row, the sparse trajectories in this
community provide too little information, and the feature of community branches and
building footprints is insufficient, resulting in poor results. For the second line, according
to the structural duality of main roads and building footprints of the community, our
model predicts main community roads well, but the branches only moderately. The region
lacks trajectories for road extraction. For the third row, our model fails to capture effective
contextual information to support road prediction in areas with missing trajectories and
sparse building footprints. Therefore, the performance of our model depends on the
complementarity information of trajectories and building footprints and the size of the
total amount of feature information.

Input MAC-GAN Ground-truth
> =

S==jm==T
==
~°

~{l=

(a)

(b) e, A0

(c)

;*// > ENE A

Figure 15. Examples of model prediction failures. (a—c) represent three community areas.

6. Conclusions

Existing road extraction methods based on multimodal information have limitations
in identifying community roads from sparse trajectory data, resulting in low accuracy and
integrity of community roads. To solve this problem, we propose a generative adversarial
network (MAC-GAN) for the road generation task supervised by pedestrian trajectories
and neighborhood building footprints. MAC-GAN is configured with a MACU-Net with
asymmetric convolution blocks and multi-scale skip connections with channel attention.
MACU-Net replaces standard convolution layers with asymmetric convolution blocks to
enhance the network’s feature representation and extraction capabilities, and utilizes multi-
scale skip connection combination and the channel attention mechanism to adaptively fuse
the “road trajectory-building footprint” ternary spatial features contained in low-level and
high-level feature maps to supervise road generation. The combined image closely related
to road information serves as a constraint that controls the generator’s output, which is
expected to ease the heavy dependence of the generated road data quality on the trajectory
data quality alone at the community level.

Numerical experiments conducted on a large number of residential study areas in
Wuhan confirmed the feasibility of our method for generating fine-scale community road
data with different sparse and missing degrees and showed its advantages over base-
line methods. To improve the application value of the method, the multi-level semantic
constraints (pixel-level, object-level, feature-level) of road neighborhoods will be further
explored to guide optimal road generation.
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