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Abstract: Understanding the spatial structure of a megaregion with urban and rural areas is crucial
for promoting sustainable urbanization and urban–rural integration. Compared to the city network
(or the network of urban areas), however, fewer studies focus on the network connecting rural areas
or on the comparison of regional structures between urban and rural networks. Using weighted daily
mobility flows from the massive mobile-phone signaling data, this study constructs an urban–urban
mobility (UUM) network and an urban–rural mobility (URM) network in the Pearl River Delta (PRD)
region. A weighted stochastic block model (WSBM) was adopted to identify and compare the latent
mesoscale structures in the two networks. Results investigated a gradient community mesoscale
structure nested with typical core–periphery (CP) structures in the UUM network and an asymmetric
bipartite mesoscale structure mixed with CP hierarchies in the URM network. In a comparison of
the different spatial configuration of urban/rural nodes and groupings of their roles, positions, and
linkages, the study yielded empirical insights for renewed urban–rural interaction and potential
planning pathways towards urban–rural integration.

Keywords: mesoscale structure; urban–rural integration; complex network; weighted stochastic
block model (WSBM); the Pearl River Delta (PRD)

1. Introduction

The evolutionary relationship between urban and rural areas is a global issue of
urbanization, tightly attached to economic prosperity and regional sustainability [1,2].
Witnessing the rapid process of urbanization and industrialization for decades in China,
the recent administrative promotion of rural revitalization and urban–rural integration
development [3–5] has attempted to rebalance the urban–rural divides and pursue new
urbanization [6], echoing long-term dualism, due to the biased development strategies and
investments emphasizing cities over rural areas [7,8]. Moreover, the converging gap be-
tween urban–rural individual income and the institutional reform including unified hukou
(household registration), land use, and public resource have accelerated interactions [9]
and diminished the dichotomy between cities and the countryside. Also, highlighted
by the China State Council in its 14th Five-Year Plan for Economic and Social Development
and Vision 2035, an urban–rural integration development strategy has summoned bidirec-
tional equal interlinkages between urban and rural areas to activate the latent vigor of the
countryside community.

Interconnected with exchanging information, material, population, capital, knowledge
and culture, cities and rural settlements are functionally shaped by the volume and direction
of interactions [10], thus determining the geographical layouts and spatial division in
return. With more frequent bidirectional connections nowadays, researchers [11,12] have
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shown that urban–rural integration has also renewed the spatial configuration from distinct
segmentation to spatial intersection, referring to a transformation of equal positions rather
than subordinating rural areas. Therefore, identifying integrated urban–rural spatial
structure is greatly significant in optimizing the coordination of spatial arrangement and
revitalizing rural areas.

From the perspective of “space of flow”, [13] networks characterized by spatial con-
nections exceed the static territory boundaries [14] that have constrained most traditional
understandings of urban–rural spatial structures as binary and “core–periphery” (CP) [5]
in areal studies. Complex network approaches, enabling the equal involvement of cities
and rural settlements as nodes with interactions as edges, tend to uncover the multiscale
spatial structures of urban–rural networks and break down preconceptual urban–rural
divides. The conceptualization of mesoscale [15–17] refers to the groupings of nodes with
similar positions in the network topology, as defined by their linkages, and the structural
relations between these groupings, which reveal the underlying regional organization.
Multiple mesoscale spatial structures, such as communities, core-peripheries, and hybrid
structures [15,18], have been investigated in regional networks by the weighted stochas-
tic block model (WSBM) [16,19,20], offering a comprehensive understanding of function
zoning and internal structures.

However, the “methodological cityism” [21] originating in urban–rural dualism, has
disproportionately impacted the conceptualization of urbanization, placing the city as the
default unit of regional spatial structure analysis while neglecting the active process of
“ruralization” [2]. Due to the limitation of data availability in rural areas, most network
analyses of regional spatial configuration, despite the theoretical framework of integrated
relationality, have solely focused on cities, such as the World City Network (WCN) structure
based on the data of APS firm distribution, airlines, and web pages [22–24], as well as the
regional city structure based on the transportation network and commuting flows [18,25,26].
Nonetheless, little can be known about the linkages between urban and rural areas without
considering rural nodes, and the comprehension of regional structures is biased in the
absence of the rural hinterlands.

Hence, by detecting and comparing the mesoscale structure of two networks reflect-
ing urban–urban and urban–rural daily mobility connections (i.e., the UUM and URM
networks, respectively), we attempt to enrich the scant discussion of inclusive regional
structures beyond the spatial binary threefold. First, we wonder about the consistency of re-
gional mesoscale structures in comparing urban relationality and urban–rural relationality,
highlighting the lack of substitutability and the intermingling of rural and urban activities
in the regional integration process. Second, we discuss the theoretical role of rural areas
in integrated regional systems, determining whether it interacts with the “local” urban
within administrative boundaries or converges into the “global” urban center beyond
territories. The discussion is barely present in the field of regional studies and policies.
Third, by adopting the WSBM algorithm that relies on interactions between nodes, we
consider regional mesoscale structure in a unified framework, deemphasizing predefined
conceptual urban–rural divides in nodal characteristics while bridging the gap in discursive
and disciplinary practices between the urban and rural geography.

In this study, we constructed a UUM network and a URM network, separately, in the
Pearl River Delta (PRD) region in South China, based on aggregated daily mobility flows
from massive anonymous mobile-phone signaling data. A WSBM was adopted to detect
the underlying mesoscale structure in both networks to compare different spatial config-
urations of nodes and groupings of their roles, positions, linkages, and agglomerations.
As one of China’s most urbanized and populated regions, we attempted to understand
the complicated mesoscale structures for interurban and urban-rural mutual relations,
clarifying different motivations and mechanisms in urban–rural interactions. Thus, three
insights into the mesoscale structure yielded empirical experience for renewed urban–rural
interplay and potential practical pathways to urban–rural integration.
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The rest of the paper is organized as follows. Section 2 reviews related works on
regional spatial structure analysis and evolutional urban–rural relationships. Section 3
introduces the research area and data source, while Section 4 proposes the conceptualization
of potential mesoscale structures in mobility networks and the detection approach of WSBM.
Section 5 represents the major findings of the mesoscale structure in the UUM network and
the URM network. Section 6 concludes and represents the discussion.

2. Literature Review

Regional spatial structure, which sketches out the organization of spatial entities and
their interplays, has experienced a paradigm shift from static to dynamic characteristics.
Based on fractal and spatial morphology, regional studies of areal attributes have dis-
tinguished various spatial configurations such as monocentric, bicentric and polycentric
structures [27,28] in megaregions. However, such paradigms are bounded within the arbi-
trary administrative spatial segmentation, neglecting the accelerating mobility frequency
of materials and reinforcement of internal relations [14].

The perspective of a complex network has arisen with a transfer from concentrating
on areal attributes to “flow space [13]”, focusing on interactions between spatial entities.
Network analysis investigates more than the characteristics of network space and entities
composed of relations, in addition to the dynamical interacting process. Relational net-
works that are measured by individual behaviors such as housing migration, commuting,
and traveling facilitate the bridging of the microscale of individual characteristics and the
macroscale of regional patterns, thus manifesting the nature of regional spatial configu-
ration [29]. Zhong et al. [30] revealed that the changing roles of local areas in the overall
spatial structure of urban movement could be mined from the aggregation of smart card
data. Functional linkages also assist in identifying the subdivision of functional urban
regions [31], critical city components [32] and the evolution of urban spatial structures [33].

Urban and rural areas, spatially separated, functionally cooperate via human economic,
commercial, cultural and social behaviors, as well as material flows such as transport, lo-
gistic, capital and information. Similarly, the relationship between urban and rural areas
evolves from division to integration during urbanization [21,34], mapping the transforma-
tion in spatial structure from the dualism of center-edge division to the intersected network,
emphasizing relations.

Early theories of economic geography and regional planning, such as the location
theory [35] and Howard’s Garden Cities theory, have stated the ideas of urban–rural coop-
eration. However, rural areas were taken for granted as being subordinated to urban areas,
calculated from the advantages in the labor force and adsorption effects from the agricul-
tural sectors of modern industrial areas [2,34,36]. The subordinate position divided the
urban–rural space into a “center-edge” structure, simultaneously unbalancing investment,
land use, labor-force flows, and public facilities [7,8].

Not until the up-speeding of mobility was the interdependency between the urban
and rural substantially re-considered. Researchers have found more rapid, frequent flows
between cites and countryside communities [10,11], with multi-directions including urban–
urban, rural–rural, urban–rural and vice versa. The decaying resistance of administrative
limitations on flows shifted the urban–rural spatial layouts into interconnections and
integration with mutual intersection and penetration [12]. Specifically, the megaregion
concept, with its orderly flow of elements, smooth traffic, coordinated industrial division
and harmonious environment, has the most potential space organization to promote free
flows of urban and rural elements and construct an integrated urban–rural system [37,38].

Nevertheless, studies concerning urban–rural spatial structures have remained dually
divided, accounting for the pre-conceptualization of urban–rural dualism and the limitation
of data availability. The discussion on multiscale city networks has been in-depth, ranging
from the well-known WCN research from the GaWC group on a global scale [22] to the
recent spatial optimization on a metropolitan scale [28,29,39]. However, rural spatial
structures have been investigated with a narrow concentration of hierarchical systems,
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based on the gravity model and its derivations (e.g., field models, spatial interaction models,
and breaking-point formulas) [40]. Therefore, the spatial configuration of the rural network
system has been less understood, not to mention the integrated urban–rural network from
a comprehensive perspective.

The PRD, located in one of the most vital strategic megaregions of China, the Great
Bay Area, has been substantially concerned about its spatial layouts through intercity
interactions. An array of studies [41–44] have concluded a polycentric structure of the PRD
via multi-source data. However, opposite to the polycentric structure in functional space,
Zhang et al. [45] have found that the PRD represents a monocentric structure in institutional
space defined by the intercity co-occurrence in the mass media, which advocates a more
profound comprehension of multidimensional spatial structures of the PRD megaregion.
Moreover, questions remain as to whether spatial structures derived from urban activities
are representative and unbiased, and the role and mechanism the rural area, the “back-of-
house”, serves in regional urban–rural systems.

Therefore, mesoscale structures, which describe the intermediate characteristics of
complex networks for network abstraction [15–17], including the grouping properties
of nodes and the interplay between these groupings, offer the potential to discover la-
tent regional structures and intrinsic mechanisms that might not be apparent at either
macroscale or microscale. Zhang et al. [18] detected a hybrid polycentric configuration of
two community components, each with a core–periphery structure inside, in the Pearl River
Delta of South China. Underneath the large-scale “core–periphery” structure of Western
China, Yang et al. [46] revealed a variety of network structure modes, such as dual-core,
single-core, and multicore modes within the internal network of each urban agglomeration.
Guimera et al. [47] demonstrated that the multicommunity structure in the worldwide
air-transportation network leads to anomalies in centrality values. Core–periphery, commu-
nity, stochastic, hybrid structures, mesoscale, and variant types of mesoscale include those
which have been recognized in urban networks [15,48,49], identifying variant positions
and roles for city agglomeration while presenting the potential for clarifying differentiated
roles between the urban and rural in regional networks.

The detection of mesoscale in networks has originated from sociologists of the Social
Network Analysis (SNA), who tried to find cohesive subgroups of critical social actors [50]
(pp. 345–391). With predefined schemas of complete subgraphs, corresponding algorithms
such as k-cores, k-cliques, k-components, k-plex, k-club, etc., searched for the maximal
sub-network that fits into the strictly-defined topological structure with k as a threshold.
Recent techniques from community detection, such as graph partitioning, hierarchical
clustering, modularity optimization and spectral methods, facilitate the detection of more
flexible mesoscale topological structures as they search for groups of nodes that are densely
connected within, and more sparsely connected between, groups. The popular Louvain
algorithm [51] relies on an iteratively greedy method to maximize a modularity score by
Newman and Girvan [52] for each community, where the modularity quantifies the quality
of an assignment of nodes to communities.

Notably, the modularity optimization approach has been widely adopted in regional
structure analysis [53,54] for its efficient calculation and assessment of the suitability of
the partition. Nevertheless, only regional agglomerations were concerned, due to the con-
straint of the inherent presupposition of community structures in these approaches, which
neglected the interactive pattern of the rest and of the other potential mesoscale structures.
Similarly, the algorithms of core–periphery (CP) structure detection [55] predefined the CP
schema presentation, ruling out complex mesoscale structures.

Stochastic block models (SBM) offer a powerful alternative to a modularity approach
for distinguishing multiple mesoscale structures. As a generative model, SBM splits nodes
into blocks, within which all nodes are stochastically equivalent, and has been adopted
robustly in various network datasets [56–58]. A weighted stochastic block model (WSBM)
was extended to capture more complicated features for weighted networks by assigning
weights as covariables. Stepping beyond the “methodology determinism” issue [15] of
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ruling out other potential mesoscale structures, SBM loosens the pre-definition by stochastic
processes, capable of modeling multiple mesoscale structures, including disassortative,
random and core–periphery structures. Additionally, the WSBM algorithm recognizes that
the mesoscale structure relies on relationality rather than the semantic attributes of nodes,
advancing an integrated analysis framework for various regional structures.

3. Research Area and Data

This study investigated the spatial structure of the UUM and URM networks in the
PRD area in South China, which is the essential component of the Great Bay Area in the
mainland, consisting of nine prefecture-level cities: Guangzhou, Shenzhen, Foshan, Dong-
guan, Huizhou, Zhuhai, Zhongshan, Jiangmen, and Zhaoqing. Since 2000, the PRD area has
gradually won the position of a manufactural center in the global supply chain, growing
into one of the most developed areas, with a premier urbanization rate and infrastructure
construction intensity in China. Intensive, polycentric, urbanized spatial layouts have laid
the foundation for an integrated development strategy in the PRD. Nevertheless, deep
contradictions in the disorderly expansion of urbanization, the incoordination of urban–
rural development and pressures on ecology have challenged its sustainable development.
Hence, we attempted to clarify the underlying mesoscale structure, to aid the local govern-
ment and policymakers with the insights into urban–rural interplays and integration.

The nine cities in the PRD were partitioned into 609 subdistrict-level administrative
divisions for the purpose of urban/rural classification and fine-grained spatial structure
detection. According to the Statistical Compilation Rules for Administrative Division Codes
and Urban-Rural Division Codes (index no. 410A03-1201-201708-0006) from the National
Bureau of Statistics, we classified the urban/rural attributes of each subdistrict-level unit
by the first digit of their urban/rural classification codes: 1 represented urban areas and
2 represented rural areas. We identified 324 urban subdistricts and 285 rural subdistricts in
the PRD, as shown in Figure 1a.

We used the mobile-phone-signaling dataset of April, 2018 from the China Telecom,
one of China’s three leading communication carriers, to approximate the regional daily
mobility connections. The dataset traced the daily trajectories of anonymous users in the
PRD and included the information of estimated residence and workplace locations. To
quantify the pairwise connections, we aggregated mobility flows for each pair of subdistrict-
level units into 3 steps:

(1) Home/Workplace identification. The locations of individuals’ homes and workplaces
were derived from the most frequent places that the user remained during work-
ing hours (10:30–18:00) and sleeping hours (23:00–06:00), which were provided by
the dataset. In a spatial accuracy of about 500 m, according to the cell range and
layout density of base stations, we dropped the locations into the subdistrict-level
spatial resolution.

(2) Residents filtering. Considering the approximation to inter-subdistrict linkages by
residents’ daily mobility, we filtered out passers-by and visitors and, extracted in-
dividuals who visited their estimated residence and workplace more than 15 days
in a month as permanent residents in the PRD for further analysis. Over 12 million
residents were identified, of which 24.76% resided in Guangzhou, 21.26% in Shenzhen,
14.37% in Dongguan, 13.97% in Foshan, and 22.64% in the rest.

(3) Flow weight aggregation. A directed mobility record was generated when a resident
moved from home to workplace or from workplace to home. Directed mobility
flows for each inter-subdistrict pairwise were weighted by aggregating the number of
mobility records, standing for the total volume of mobility connections between the
two subdistricts. Among all the mobility records, urban–rural flows accounted for
64.81% of the mobility volume, while urban–urban flows were 28.32%, constituting
most of the daily mobility landscape in the PRD area. The spatial distribution of
urban–urban mobility flows and urban–rural mobility flows is shown in Figure 1b,c.
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Based on aggregated mobility flows, we constructed two disparate, weighted directed
mobility networks by distinguishing the urban/rural attributes of the origin subdistrict
and the destination subdistrict for each flow. The urban–urban mobility (UUM) network
contained 324 nodes of urban subdistricts and 104,652 links of interurban flows. The urban–
rural mobility (URM) network contained 609 nodes and 92,340 links of flows originating
from the urban, and ending at the rural, subdistrict (urban-to-rural) and vice versa (rural-
to-urban) to represent urban–rural interactions. Notably, with the focus on the regional
structure based on interactions between subdistricts, we omitted the self-loops of intra-
subdistrict mobility within a minimum spatial unit, which were beyond our research
scope. The categorized constructions provided pathways to investigate and compare the
consistency of spatial configurations in regional urban–urban and urban–rural systems.

4. Conceptual Framework and Methodology
4.1. Conceptualization of Mesoscale Structure in Regional Studies

Apart from macroscale patterns describing the entire regional-connection landscape by
measurements (e.g., degree distribution and average path length) and microscale features
capturing specific regional crucial nodes by indicators such as degree centrality, mesoscale
structures have been frequently neglected in regional network studies.

Merging the gap between the two discrete scales, mesoscale structures in complex
networks, characterized by partitioning the entire network into groups and identifying
group interactions and functions, offered a pathway to comprehensively understanding
the regional organization of functional zoning and internal structures. The grouping mem-
bership of mesoscale structures was defined based on node-pair connection patterns rather
than a singular node property, clustering nodes with similar roles, positions, functions
and contributions in the network. Meanwhile, mesoscale structures facilitated the iden-
tifying of group interplays and roles in the network by retaining compressed intra- and
inter-group relations.
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Figure 2 illustrates multiple hypothetical mesoscale structures in the regional mobility
network derived from the adjacency matrix of group ties as per Zhang and Thill [16]. Since
most linkages appear on the diagonal line of the adjacency matrix, the community structure
(Figure 2a) corresponds to the functional separation and decoupling of the whole network.
Connections exist solely within each group and barely inter group, thus symbolizing the
territorialism in the regional structure. In contrast, the bipartite/disassortative structure
(Figure 2b) oppositely inverses the linking patterns of community structure so that different
groups are densely connected and intra-group ties are sparse. The bipartite structure
integrates two disjoint groups by flows that directly connect groups of a disparate nature,
standing for regional penetration and intersection.
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Figure 2. Hypothetical mesoscale structures in regional mobility networks (as per Zhang and
Thill [16]): (a) community, (b) bipartite/disassortative, (c) core–periphery, (d) random, (e) hybrid.

The CP structure represents a hierarchical order while accounting for the gradients of
continuous connection density, where the core group more densely connects with other
groups and within itself, while the peripherical groups are sparsely connected, as shown
in Figure 2c. The arbitrary large dispersion of weight density, an analogy to the diverging
deviation of degree in scale-free networks, corresponds to the theoretical scenario of the
monocentric region owning a competitive central metropolis. In a narrow range of weight
divergence echoing the degree distribution in random networks, the amount of intra-
and inter-groups connections are close to each other, so that the gradient is relatively flat
(Figure 2d). Neither distinct partition nor hierarchy is recognizable in the random structure,
reflecting a hypothetical regional structure in equilibrium. Additionally, the mesoscale
structure may be more complicated and hybrid in reality (Figure 2e), considering multiple
types of entities and multidimensional interactions, which is why mesoscale structure
detection is needed.

4.2. Mesoscale Structure Detection: A Weighted Stochastic Block Model (WSBM)

We employed a WSBM approach to measure and compare the mesoscale structures
in the UUM and URM networks to verify our hypothesis. Based on a stochastic process,
WSBM has been examined to overcome the “methodology determinism”, since it views
two nodes in the same group as having an equal probability of connecting to other nodes
so that it clusters nodes stochastically and equivalently, to refrain from pre-defined block
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structures. Notably, Aicher et al. [19] extended the stochastic model to the weighted
network by assigning weights as covariables, as mainly incorporated in this study.

Intuitively, WSBM aims to optimize the likelihood function by inferring the group-
ing z = {1, . . . , K} and stochastic block matrix θ = [θkk′ ]K×K, where K denotes the
number of groups and zi ∈ z denotes the membership of node i in group z. Given the
weighted adjacency matrix of the mobility network as A =

[
aij
]

N×N , the node set of N
subdistricts as i ∈ {1, 2, . . . , N}, and the group number parameterized with K, WSBM
in this study presumed that aij fit into a normal distribution with the mean and variance

θzizj =
(

µzizj , σ2
zizj

)
, applying the likelihood maximum method to detect the optimal zi

and [θkk′ ]K×K′ for mesoscale structures. The likelihood function is derived as follows [15]:

P(A|z, θ ) = P
(

A
∣∣∣z, µ, σ2

)
= ∏

i,j
exp

(
aij

µzi, zj

σ2
zi,zj

− a2
ij

1
2σ2

zi,zj

−
µ2

zi,zj

2σ2
zi,zj

− log θzi,zj

)
(1)

Moreover, a Bayesian approach developed by Aicher et al. [19] was adopted by
assuming an appropriate prior distribution P(z, θ) to avoid the degeneration of parameters
through direct optimization. The posterior distribution P(z, θ|A) with random variables z
and θ was estimated by Bayesian law as follows:

P( z, θ|A) ∝ P(A|z, θ )P(z, θ) (2)

A variational Bayes expectation maximization algorithm was developed by
Aicher et al. [19] to estimate the posterior distribution using several approximation tech-
niques and thus optimize an approximation of the likelihood function in Equation (1). Using
the model selection technique of Bayes factors, we compared the partitions via the differ-
ence in marginal log-likelihood of each model fit. WSBM dispensed with the predefinition
of the limited mesoscale structure as in the conventional community detection algorithms,
while providing the log-likelihood value to determine the optimal number of groups rather
than an arbitrary guess. Using opensource code “https://aaronclauset.github.io/wsbm/
(accessed on 21 March 2023)” [16], this study implemented the WSBM algorithm and the
visualization of the grouping results in MATLAB R2022a, while the geographic layouts
were drawn in QGIS 3.4.

5. Results

Focusing on regional cooperation and urban–rural integration, we obtained the clus-
tering optima by iterating the WSBM algorithm with the number of groups K ranging
from two to fifteen, separately looping twelve times. Tracing the tendency of the average
marginal log-likelihood value for each partition number, we identified the optimal K, corre-
sponding to the maximum log-likelihood value. In this study, the best-fit K was nine for
the UUM network and eight for the URM network.

5.1. Mesoscale Structure of the UUM Network

According to the results of WSBM, nine groups of urban subdistricts were detected
given the group index from one to nine. Nodes in the same group were identified with
similar roles and functions in the network based on node-pair connection patterns. Figure 3a
depicts the heatmap of the inter-subdistrict adjacency matrix weighted by aggregated
mobility connections of 324 urban subdistricts inside the PRD area, with columns and
rows sorted by the grouping index and degree centrality within each group. By comparing
the network structure in Figure 3a with the schematic mesoscale structure (Figure 2), a
hybrid and nested mesoscale structure was deduced, based on group interactions. Three
assortative communities were detected in the coarse mesoscale structure, due to the dense
mobility connections on the diagonal of the matrix, which were separately labeled as α,
β and γ. Neither a single community structure nor a CP structure, the UUM network
exhibited a gradient community structure nested with CP structures where groups #1

https://aaronclauset.github.io/wsbm/
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to #5 composed community α, groups #6 to #7 comprised community β, and group #8
independently formed community γ.
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To better identify inter-group and inter-community relations and their roles in the
network, we compressed the subdistrict-level heatmap to group-level visualization by
calculating the group average of the mobility weights. Figure 3b, therefore, intuitively
represents the concrete inter-group matrix with a vertical axis weighted by the mean of the
mobility connections among subdistricts within the group.

As connections mainly lay inside communities and inter-community connections
approach zero, community structures shape their functions and roles relative to isolation
and independence. Therefore, comparing the aggregated volume of mobility connections
among three communities in Figure 3b, we perceived the unbalanced share of mobility flows
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among three distinctive communities, denoting a rather gradient community structure.
Community α held the densest connections, while community β was second. The mobility
weight of community γ, which only contained group 9, stood at a relatively isolated and
undeveloped position in the city mobility network, holding sparse linkages inside and
toward other communities.

Projecting the corresponding group and subdistrict membership onto a geographical
layout (Figure 3c), the PRD area, coincidentally segmented into three externally indepen-
dent, internally correlative sub-regions, represented a significant regionalization pattern.
The Middle PRD region, including Guangzhou, Foshan, Zhongshan and Zhuhai, matched
to community α, experiencing the most active daily human-capital exchange within the
boundary. Shenzhen, Dongguan and Huizhou in the East PRD region functioned as commu-
nity β, tightly connected but sparsely communicating with cities outside. Finally, Zhaoqing
and Jiangmen located in the West PRD region, comprised community γ, playing a subor-
dinative, undeveloped role in the UUM network of the PRD, given the scarce exchange
towards cities, both internal and external.

Specifically, the internal mesoscale structures of community α and β displayed a
significant CP structure but held different subtle characteristics. In community α, groups
#1 and #2 containing subdistricts scattered across the cities of Foshan, Guangzhou and
Zhongshan, served as the core role, considering their prominent inner mobility frequency
dominating the exchanging network landscape. With relatively weak internal and external
connections with cores, semi-cores and other peripheries, groups #4 and #5 occupied the
position of peripheries. The semi-core position stood as group #3, whose inner connections
were atypically dense yet showed a relatively stronger linkage to the other two peripheral
groups (group #4 and #5) than did the cores (group #1 and #2). In the spatial layout, the
subdistricts in the core groups constructed a mobility belt crossing the Middle PRD from
north to south. Additionally, subdistricts clustered into a semi-core group located in the
blank space between geographically detached core districts, played a significant role in
bridging the cores and peripheries across boundaries into regional integration.

Community β represented similar CP patterns as community α, with group #6 po-
sitioned at the core, while groups #7 and #8 played a peripheral role. The core group
consisted of the major subdistricts of Dongguan and part of Shenzhen, while the rest of
Shenzhen and Huizhou comprised the peripheries. Nevertheless, the inter-linkages of the
core–periphery and periphery–periphery in community β had a more similar density than
those in community α, implying a more random and balanced connection pattern of the
East PRD. Hence, the mobility flows inside the East PRD were more likely to be evenly
distributed across multiple dimensions and orientations, bundling Shenzhen, Dongguan
and Huizhou into an organic functional entity.

Generally, the hybrid mesoscale structure mixed with community and CP structures
shed insight into the “external isolation, internal integration” landscape of the UUM net-
work. Consistent with the community detection result from the Louvain algorithm as
shown in Figure S1a, spatial division stemming from the administrative territory was
constantly maintained, limiting the free mobility of human-capital resources across the
entire region. The split of Middle, East, and West PRD defined by aspatial inter-subdistrict
relations proved that functional segmentation coexisted with the spatial territory, suggest-
ing top-down integration policies. Nevertheless, spatial spillover and integration occurred
within sub-regions, accompanied by various mesoscales. Driven by transport infrastruc-
ture and industrial collaboration, Middle and East PRD cities crossed the administrative
boundaries and integrated into tightly related functional communities, with nuanced forms
and structures. In addition to clustering and classifying, WSBM elaborated the pathway
to more profound understandings of the regional spatial structure by subtly identifying
multiple mesoscale forms.
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5.2. Mesoscale Structure of the URM Network

The URM network was defined by the exclusive mobility flows filtered out by the
urban-to-rural and rural-to-urban categories, echoing the particular concern of unified
urban–rural structures with the perspective of connection and exchange. Therefore, the
bipartite nature was buried inside the URM network, whose nodes could be divided into
two disjoint sets, and each edge connected the nodes in two sets.

WSBM identified eight groups of subdistrict-level units in the URM network. In
Figure 4a, two communities’ bipartite structure (or disassortative community) labeled
as α and β was remarkably identified in the heatmap when compared to the schematic
mesoscale structure (Figure 2), denoting the connection strength of urban–rural subdis-
trict pairs. Marked by few linkages within communities and massive linkages between
communities, groups #1 to #5 constituted the urban community α, while groups #6 to #8
comprised the rural community β, whose membership was approximately consistent with
the administrative division of urban and rural subdistricts, revealing the typical bipar-
tite mesoscale structure in the URM network mixed with asymmetric patterns and CP
hierarchies. Notably, the WSBM algorithm distinguished two distinctive communities of
urban and rural nodes without any attribute characteristics, where the classical Louvain
algorithms failed (Figure S1b). Furthermore, it verified its accuracy and robustness in
community detection based on inter-connections.

Differentiated by the roughly equal volumes of directed connections back and forth
between two urban subdistricts in the city network, connections between the urban and
rural communities of two opposite orientations in the URM network were investigated
and shown to share a significant imparity in linking density. In Figure 4b, the row index i
denoted the origin of the directed linkage, while the column index j denoted the destination
of the linkage. Thus, Aij corresponded to the average weights of connections starting from
group #i and flowing into group #j. In this way, inter-group 3D blocks agglomerated in the
bottom left of the axis represented rural–urban connections, while blocks agglomerated in
the upper right of the axis stood for urban–rural connections.

Urban-to-rural connections were significantly denser than the other direction when
comparing the average density of linkages between the two directions. More urban resi-
dents move to rural districts for work, while urban areas offered labor force and human
capital supporting rural development, which was beyond our expectation. One explanation
is that since populations living in urban and rural areas are disproportionate, the greater
absolute number of people moving from urban to rural areas is the byproduct of unbal-
anced population urbanization and systematic bias rooted in mobile-phone usage between
urban and rural. In addition, given the consideration of simple distinguishment between
urban and rural areas by administrative division codes, the potential transformation of
de facto land use [59], driven by informal industrialization and urban sprawl occurring
in rural areas, may have caused informal urbanization to be neglected by administrative
division in some rural areas, leading to systematic bias.

CP mesoscale structures were detected within each community, based on pairwise
group linkages. Group #6 in rural community β served as the core of the URM network in
the PRD, accounting for its extremely dense connections with groups #1 and #2 and group
#5 in the urban community. Similarly, group #1 shared a large daily exchange of labor with
groups #6 and #7, and was thus identified as the core of the urban community. Groups
#2 and #7 were distinguished as the semi-cores, as they only held dense connections with
specific regions mostly recognized as the cores. Group #3 stood for the semi-periphery
position because it linked to various groups yet shared relatively sparse connection weights.
Finally, groups #4, #5, and #8 served as the periphery, due to a weak connection to the
corresponding urban/rural areas in the URM network.
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In mapping the geographic layout of groupings in the URM network (Figure 4c), we
investigated the prominent circular spatial configuration. The middle layers of spatial
circles, containing the urban subdistricts of the α-core group in Foshan, Zhongshan, Zhuhai,
Dongguan and Huizhou and the rural subdistricts of the β-core group surrounding the
regional metropolises of Guangzhou and Shenzhen, were identified as playing the most
significant role in the communications between cities and the countryside. The semi-cores
extended the middle layers to the inner layers of regional megacities and outer layers
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of the wider rural hinterland, cohering the integrated urban–rural system on the entire
regional scale. Meanwhile, the peripheries that rarely contributed to the integration were
subdistricts located either in geographical peripherally rural areas or at the central cores of
two metropolises, Guangzhou and Shenzhen. From the mesoscale structure, we identified
the fact that the urban–rural integration was dominated by key node cities and towns as
well as rural (or suburban) areas near megacities by their efforts to undertake massive
crossing mobility flows, breaking the obstinate dualism of pivotal urban centers and the
capacious rural hinterland.

6. Discussion and Conclusions

This study contributes to the sparse discussion on the urban–rural relationship in
transition and pathways to regional urban–rural integration in the sustaining urbanization
process by highlighting the accurate mesoscale structures of two daily mobility networks
reflecting urban–urban and urban–rural connections in the PRD region. Derived from
massive mobile-phone signaling data, we weighted the mobility connections by aggregating
the amount of traveling records and then built the UUM and the URM network using
specific categories of connections. With the implementation of WSBM, an unbiased and
unsupervised stochastic block algorithm, the distinct mesoscale structures between the two
networks were identified.

In the UUM network, a gradient, community mesoscale structure nested with CP
structures was investigated, and the PRD region was functionally and spatially partitioned
into three externally independent, internally correlative sub-regions. The hybrid structures
with multiple communities echoed the polycentric spatial configuration proposed by
the Outline Development Plan for the Great Bay Area, which was consistent with previous
studies [41–44]. Due to transportation-infrastructure development, regional integration
and urban agglomeration occurred [60,61] through dense daily mobility connections inside
city communities. Nevertheless, territories strongly constrained the linkages between
sub-regions, due to the top-down strategies for distinguished development orientations
and the relationship of co-opetition between city communities [62].

The URM network presented an asymmetric, bipartite, mesoscale structure mixed
with CP hierarchies, in which the linkages from urban to rural areas overweighed those in
the inverse direction. The URM network suggested a concentric circular global layout of
multiple layers, radiating from the highly agglomerated cities to marginal, rural hinterlands.
The mesoscale structure of mobility connections was consistent with the ongoing urban–
rural transformation in the PRD from the perspective of land use [12]. Suburban areas
surrounding metropolises and regional key node cities, which dominated the exchange
connections in the URM network, have been the spatial focus for understanding the urban–
rural integration process in PRD [11]. Their crucial roles implicate the unique impetus of
the urban–rural integration process rooted in the bottom-up spillover effect and radiation
impact from the core cities [63].

Differentiations significantly distinguished that the UUM network displayed a re-
gionalization pattern, while the diminishment of administrative boundaries in the URM
network occurred on the scale of the entire PRD. The significant dissimilarity in spatial
mesoscale structures between the two networks specified the rooted bias of regional stud-
ies trapped in “methodological cityism” [21]. Rather than frozen in a pre-existing, static,
undeveloped production of space, the rural areas dynamically map rural livelihood and
imaginings in situ and beyond, to forge an urban—rural relationship [2]. Massive interac-
tions between the urban and rural situated in the suburban area and key node cities in our
result dissembled the entrenched rural–urban binary while corroborating the necessity of
involvement of the rural in the regional-integration development strategy.

Moreover, few studies have discussed the issue of the theoretical urban–rural inter-
acting model in the field of regional integration. Inferred from Thünen’s model, rural
settlements would separately serve as the “back-of-house” for corresponding local urban
areas within the administrative territory, leading to a “local” model. On the other side of



ISPRS Int. J. Geo-Inf. 2023, 12, 183 15 of 18

the spectrum, a “global” model hypothesizes a monocentric/polycentric spatial pattern
where all rural supply flows converge into regional central cities to build a hub-and-spoke
structure. The question remains as to which scale of the urban–rural interactions would
maximize the regional competitiveness and sustainability. Our findings of the concentric-
circle spatial structure, where the middle layer of suburban and key node cities shared the
densest interactions, suggested an intermediate scenario and a long-term tendency to cross
the boundaries. Nevertheless, recent regional-integration strategies, for coordinating an
urban–rural interaction system between different administrative divisions, have remained
blank, and have needed further investigation in network science to guide well-aligned
urban–rural and regional integration.

Therefore, our findings offer potential practical pathways and policy implications for
urban–rural integration in the PRD area. First, by recognizing the differentiated spatial
organization mechanism in the two networks, the integration process in the metropolises
and their neighboring rural (suburban) areas should be promoted and then extended to
the rural hinterlands. Second, with the measurements of a unified market construction,
interconnected infrastructure development and public service sharing, the elimination of
institutional barriers between the urban and the rural could further strengthen the free
mobility of resources in-between them and the radiation impacts of regional core cities,
accelerating the integration process. Third, key node cities such as Foshan, Zhongshan
and Jiangmen play a significant role in urban connections and the urban–rural integration
process, emphasizing the support for innovative and coordinated development for the
node cities.

Several limitations in this study mean that the study deserves further improvements
and investigation. First, the uneven usage and distribution of mobile-phone signaling data
may lead to systematic bias in mesoscale detection and underestimate the active role of
rural areas in the integration process. Data from other sectors such as transportation and
economics, and techniques including multi-source data fusion, may help eliminate the
bias. Second, a consensus WSBM workflow [57] will further improve the consolidation of
the detected mesoscale structure. And a causal inference approach [64,65] may enrich the
causality of mesoscale structures especially for the dynamic patterns. Third, considering
the high computational cost brought by the variational Bayes expectation maximization
algorithm in WSBM, which limits the mesoscale analysis in a relatively small network
dataset, a non-parametric WSBM approach [20] is needed to reduce computational cost and
mine the optimal regional mesoscale structure without prior input. Fourth, typical issues
of urban–rural relationship, such as de facto land use in suburban neighborhoods and the
urban village phenomenon in China, are neglected under the definition of administrative
urban–rural division used in the study. These issues are worth discussing in the progress of
urban–rural integration. Dynamic definitions of urban–rural divisions and higher-precision
data on urban–rural connections are needed for further investigation of these issues.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijgi12050183/s1, Figure S1: Community detection results by
Louvain algorithm.

Author Contributions: Conceptualization, Wenjia Zhang; methodology, Wenjia Zhang; software, Pu
Zhao, Yurun Wang and Senkai Xie; data curation, Yurun Wang, Pu Zhao and Senkai Xie; writing—
original draft preparation, Yurun Wang; writing—review and editing, Yurun Wang and Wenjia Zhang;
visualization, Yurun Wang and Pu Zhao; supervision, Wenjia Zhang; project administration, Wenjia
Zhang; funding acquisition, Wenjia Zhang. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (Grant No.
2018YFD1100304-2), the National Natural Science Foundation of China (42171201) and the National
Natural Science Foundation of China (42130402).

Data Availability Statement: The data are not publicly available, due to privacy. Data will be made
available on request.

https://www.mdpi.com/article/10.3390/ijgi12050183/s1
https://www.mdpi.com/article/10.3390/ijgi12050183/s1


ISPRS Int. J. Geo-Inf. 2023, 12, 183 16 of 18

Acknowledgments: We thank Christopher Aicher for providing Matlab codes to run the WSBM and
the reviewers and editors for their valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Y.; Li, Y. Revitalize the World’s Countryside. Nature 2017, 548, 275–277. [CrossRef] [PubMed]
2. Gillen, J.; Bunnell, T.; Rigg, J. Geographies of Ruralization. Dialogues Hum. Geogr. 2022, 12, 186–203. [CrossRef]
3. Zhou, Y.; Li, Y.; Xu, C. Land Consolidation and Rural Revitalization in China: Mechanisms and Paths. Land Use Policy 2020, 91,

104379. [CrossRef]
4. Liu, Y.; Zang, Y.; Yang, Y. China’s Rural Revitalization and Development: Theory, Technology and Management. J. Geogr. Sci.

2020, 30, 1923–1942. [CrossRef]
5. Chen, K.; Long, H.; Liao, L.; Tu, S.; Li, T. Land Use Transitions and Urban-Rural Integrated Development: Theoretical Framework

and China’s Evidence. Land Use Policy 2020, 92, 104465. [CrossRef]
6. Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The Integration of New-Type Urbanization and Rural Revitalization Strategies in China:

Origin, Reality and Future Trends. Land 2021, 10, 207. [CrossRef]
7. Yang, D.T. Urban-Biased Policies and Rising Income Inequality in China. Am. Econ. Rev. 1999, 89, 306–310. [CrossRef]
8. Park, A. Rural-Urban Inequality in China. In China Urbanizes: Consequences, Strategies, and Policies; World Bank: Washington, DC,

USA, 2008; pp. 41–63.
9. Ma, L.; Liu, S.; Fang, F.; Che, X.; Chen, M. Evaluation of Urban-Rural Difference and Integration Based on Quality of Life. Sustain.

Cities Soc. 2020, 54, 101877. [CrossRef]
10. Zhang, Y.; Long, H.; Ma, L.; Tu, S.; Li, Y.; Ge, D. Analysis of Rural Economic Restructuring Driven by E-Commerce Based on the

Space of Flows: The Case of Xiaying Village in Central China. J. Rural Stud. 2022, 93, 196–209. [CrossRef]
11. Lin, G.C. Evolving Spatial Form of Urban-Rural Interaction in the Pearl River Delta, China. Prof. Geogr. 2001, 53, 56–70. [CrossRef]
12. Yang, R.; Zhang, J.; Xu, Q.; Luo, X. Urban-Rural Spatial Transformation Process and Influences from the Perspective of Land Use:

A Case Study of the Pearl River Delta Region. Habitat Int. 2020, 104, 102234. [CrossRef]
13. Castells, M. Grassrooting the Space of Flows. Urban Geogr. 1999, 20, 294–302. [CrossRef]
14. Matthew, R.; Shambaugh, G. The Limits of Terrorism: A Network Perspective. Int. Stud. Rev. 2005, 7, 617–627. [CrossRef]
15. Zhang, W.; Thill, J.-C. Mesoscale Structures in World City Networks. Ann. Am. Assoc. Geogr. 2019, 109, 887–908. [CrossRef]
16. Aicher, C.; Jacobs, A.Z.; Clauset, A. Learning Latent Block Structure in Weighted Networks. J. Complex Netw. 2015, 3, 221–248.

[CrossRef]
17. Tunç, B.; Verma, R. Unifying Inference of Meso-Scale Structures in Networks. PLoS ONE 2015, 10, e0143133. [CrossRef]
18. Zhang, W.; Fang, C.; Zhou, L.; Zhu, J. Measuring Megaregional Structure in the Pearl River Delta by Mobile Phone Signaling

Data: A Complex Network Approach. Cities 2020, 104, 102809. [CrossRef]
19. Aicher, C.; Jacobs, A.Z.; Clauset, A. Adapting the Stochastic Block Model to Edge-Weighted Networks. arXiv 2013, arXiv:1305.5782.
20. Peixoto, T.P. Inferring the Mesoscale Structure of Layered, Edge-Valued, and Time-Varying Networks. Phys. Rev. E 2015, 92,

042807. [CrossRef]
21. Wachsmuth, D. City as Ideology: Reconciling the Explosion of the City Form with the Tenacity of the City Concept. Environ. Plan.

D Soc. Space 2014, 32, 75–90. [CrossRef]
22. Taylor, P.J.; Catalano, G.; Walker, D.R. Measurement of the World City Network. Urban Stud. 2002, 39, 2367–2376. [CrossRef]
23. Derudder, B.; Witlox, F. An Appraisal of the Use of Airline Data in Assessing the World City Network: A Research Note on Data.

Urban Stud. 2005, 42, 2371–2388. [CrossRef]
24. Derudder, B.; Taylor, P.J. Three Globalizations Shaping the Twenty-First Century: Understanding the New World Geography

through Its Cities. Ann. Am. Assoc. Geogr. 2020, 110, 1831–1854. [CrossRef]
25. Jiao, J.; Wang, J.; Jin, F. Impacts of High-Speed Rail Lines on the City Network in China. J. Transp. Geogr. 2017, 60, 257–266.

[CrossRef]
26. Reggiani, A.; Bucci, P.; Russo, G.; Haas, A.; Nijkamp, P. Regional Labour Markets and Job Accessibility in City Network Systems

in Germany. J. Transp. Geogr. 2011, 19, 528–536. [CrossRef]
27. Griffith, D.A. Spatial Structure and Spatial Interaction: 25 Years Later. Rev. Reg. Stud. 2007, 37, 28–38. [CrossRef]
28. Dadashpoor, H.; Malekzadeh, N.; Saeidishirvan, S. A Typology of Metropolitan Spatial Structure: A Systematic Review. Environ.

Dev. Sustain. 2022. [CrossRef]
29. Illenberger, J.; Nagel, K.; Flötteröd, G. The Role of Spatial Interaction in Social Networks. Netw. Spat. Econ. 2013, 13, 255–282.

[CrossRef]
30. Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the Dynamics of Urban Structure through Spatial Network

Analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [CrossRef]
31. Wang, T.; Yue, W.; Ye, X.; Liu, Y.; Lu, D. Re-Evaluating Polycentric Urban Structure: A Functional Linkage Perspective. Cities 2020,

101, 102672. [CrossRef]
32. Feng, H.; Bai, F.; Xu, Y. Identification of Critical Roads in Urban Transportation Network Based on GPS Trajectory Data. Phys. A

Stat. Mech. Its Appl. 2019, 535, 122337. [CrossRef]

https://doi.org/10.1038/548275a
https://www.ncbi.nlm.nih.gov/pubmed/28816262
https://doi.org/10.1177/20438206221075818
https://doi.org/10.1016/j.landusepol.2019.104379
https://doi.org/10.1007/s11442-020-1819-3
https://doi.org/10.1016/j.landusepol.2020.104465
https://doi.org/10.3390/land10020207
https://doi.org/10.1257/aer.89.2.306
https://doi.org/10.1016/j.scs.2019.101877
https://doi.org/10.1016/j.jrurstud.2018.12.001
https://doi.org/10.1080/00330124.2001.9628434
https://doi.org/10.1016/j.habitatint.2020.102234
https://doi.org/10.2747/0272-3638.20.4.294
https://doi.org/10.1111/j.1468-2486.2005.00536.x
https://doi.org/10.1080/24694452.2018.1484684
https://doi.org/10.1093/comnet/cnu026
https://doi.org/10.1371/journal.pone.0143133
https://doi.org/10.1016/j.cities.2020.102809
https://doi.org/10.1103/PhysRevE.92.042807
https://doi.org/10.1068/d21911
https://doi.org/10.1080/00420980220080011
https://doi.org/10.1080/00420980500379503
https://doi.org/10.1080/24694452.2020.1727308
https://doi.org/10.1016/j.jtrangeo.2017.03.010
https://doi.org/10.1016/j.jtrangeo.2010.05.008
https://doi.org/10.52324/001c.8286
https://doi.org/10.1007/s10668-022-02641-8
https://doi.org/10.1007/s11067-012-9180-4
https://doi.org/10.1080/13658816.2014.914521
https://doi.org/10.1016/j.cities.2020.102672
https://doi.org/10.1016/j.physa.2019.122337


ISPRS Int. J. Geo-Inf. 2023, 12, 183 17 of 18

33. Zhang, Y.; Marshall, S.; Cao, M.; Manley, E.; Chen, H. Discovering the Evolution of Urban Structure Using Smart Card Data: The
Case of London. Cities 2021, 112, 103157. [CrossRef]

34. Davoudi, S. Urban-Rural Relationships: An Introduction and Brief History. Built Environ. 2002, 28, 268–277.
35. North, D.C. Location Theory and Regional Economic Growth. J. Political Econ. 1955, 63, 243–258. [CrossRef]
36. Young, A. Inequality, the Urban-Rural Gap, and Migration. Q. J. Econ. 2013, 128, 1727–1785. [CrossRef]
37. Zheng, Y.; Tan, J.; Huang, Y.; Wang, Z. The Governance Path of Urban–Rural Integration in Changing Urban–Rural Relationships

in the Metropolitan Area: A Case Study of Wuhan, China. Land 2022, 11, 1334. [CrossRef]
38. Lin, G.C. Metropolitan Development in a Transitional Socialist Economy: Spatial Restructuring in the Pearl River Delta, China.

Urban Stud. 2001, 38, 383–406. [CrossRef]
39. Ye, C.; Zhu, J.; Li, S.; Yang, S.; Chen, M. Assessment and Analysis of Regional Economic Collaborative Development within an

Urban Agglomeration: Yangtze River Delta as a Case Study. Habitat Int. 2019, 83, 20–29. [CrossRef]
40. Han, R.; Cao, H.; Liu, Z. Studying the Urban Hierarchical Pattern and Spatial Structure of China Using a Synthesized Gravity

Model. Sci. China Earth Sci. 2018, 61, 1818–1831. [CrossRef]
41. Hui, E.C.; Li, X.; Chen, T.; Lang, W. Deciphering the Spatial Structure of China’s Megacity Region: A New Bay Area—The

Guangdong-Hong Kong-Macao Greater Bay Area in the Making. Cities 2020, 105, 102168. [CrossRef]
42. Chen, W.; Golubchikov, O.; Liu, Z. Measuring Polycentric Structures of Megaregions in China: Linking Morphological and

Functional Dimensions. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2272–2288. [CrossRef]
43. He, X.; Cao, Y.; Zhou, C. Evaluation of Polycentric Spatial Structure in the Urban Agglomeration of the Pearl River Delta (PRD)

Based on Multi-Source Big Data Fusion. Remote Sens. 2021, 13, 3639. [CrossRef]
44. Zhang, X.; Chen, S.; Luan, X.; Yuan, M. Understanding China’s City-Regionalization: Spatial Structure and Relationships between

Functional and Institutional Spaces in the Pearl River Delta. Urban Geogr. 2021, 42, 312–339. [CrossRef]
45. Zhang, X.; Guo, Q.; Cheung, D.M.; Zhang, T. Evaluating the Institutional Performance of the Pearl River Delta Integration Policy

through Intercity Cooperation Network Analysis. Cities 2018, 81, 131–144. [CrossRef]
46. Yang, L.; Wang, J.; Yang, Y. Spatial evolution and growth mechanism of urban networks in western China: A multi-scale

perspective. J. Geogr. Sci. 2022, 32, 517–536. [CrossRef]
47. Guimera, R.; Mossa, S.; Turtschi, A.; Amaral, L.N. The worldwide air transportation network: Anomalous centrality, community

structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA 2005, 102, 7794–7799. [CrossRef]
48. Zhang, W.; Gong, Z.; Niu, C.; Zhao, P.; Ma, Q.; Zhao, P. Structural Changes in Intercity Mobility Networks of China during the

COVID-19 Outbreak: A Weighted Stochastic Block Modeling Analysis. Comput. Environ. Urban Syst. 2022, 96, 101846. [CrossRef]
49. Zhang, W.; Zhu, J.; Zhao, P. Comparing World City Networks by Language: A Complex-Network Approach. ISPRS Int. J. Geo-Inf.

2021, 10, 219. [CrossRef]
50. Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994.
51. Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech.

Theory Exp. 2008, 2008, P10008. [CrossRef]
52. Newman, M.E.; Girvan, M. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]
53. Zhang, M.; Lan, B. Detect Megaregional Communities Using Network Science Analytics. Urban Sci. 2022, 6, 12. [CrossRef]
54. Adam, A.; Delvenne, J.-C.; Thomas, I. Detecting Communities with the Multi-Scale Louvain Method: Robustness Test on the

Metropolitan Area of Brussels. J. Geogr. Syst. 2018, 20, 363–386. [CrossRef]
55. Rombach, M.P.; Porter, M.A.; Fowler, J.H.; Mucha, P.J. Core-Periphery Structure in Networks. SIAM J. Appl. Math. 2014, 74,

167–190. [CrossRef]
56. Kalmbach, P.; Gleiter, L.; Zerwas, J.; Blenk, A.; Kellerer, W.; Schmid, S. Modeling IP-to-IP Communication Using the Weighted

Stochastic Block Model. In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos; SIGCOMM ’18; Association
for Computing Machinery: New York, NY, USA, 2018; pp. 48–50.

57. Faskowitz, J.; Yan, X.; Zuo, X.-N.; Sporns, O. Weighted Stochastic Block Models of the Human Connectome across the Life Span.
Sci. Rep. 2018, 8, 12997. [CrossRef]

58. Betzel, R.F.; Medaglia, J.D.; Bassett, D.S. Diversity of Meso-Scale Architecture in Human and Non-Human Connectomes. Nat.
Commun. 2018, 9, 346. [CrossRef]

59. Yin, J.; Zhao, X.; Zhang, W.; Wang, P. Rural Land Use Change Driven by Informal Industrialization: Evidence from Fengzhuang
Village in China. Land 2020, 9, 190. [CrossRef]

60. Liu, X.; Derudder, B.; Wu, K. Measuring Polycentric Urban Development in China: An Intercity Transportation Network
Perspective. Reg. Stud. 2016, 50, 1302–1315. [CrossRef]

61. Yang, Y.; Lu, X.; Chen, J.; Li, N. Factor Mobility, Transportation Network and Green Economic Growth of the Urban Agglomeration.
Sci. Rep. 2022, 12, 20094. [CrossRef]

62. Demuynck, W.; Zhang, W.; Caset, F.; Derudder, B. Urban Co-Opetition in Megaregions: Measuring Competition and Cooperation
within and beyond the Pearl River Delta. Comput. Environ. Urban Syst. 2023, 101, 101951. [CrossRef]

63. Tu, S.; Long, H.; Zhang, Y.; Ge, D.; Qu, Y. Rural Restructuring at Village Level under Rapid Urbanization in Metropolitan Suburbs
of China and Its Implications for Innovations in Land Use Policy. Habitat Int. 2018, 77, 143–152. [CrossRef]

https://doi.org/10.1016/j.cities.2021.103157
https://doi.org/10.1086/257668
https://doi.org/10.1093/qje/qjt025
https://doi.org/10.3390/land11081334
https://doi.org/10.1080/00420980120027429
https://doi.org/10.1016/j.habitatint.2018.10.010
https://doi.org/10.1007/s11430-016-9191-5
https://doi.org/10.1016/j.cities.2018.10.011
https://doi.org/10.1177/2399808320974687
https://doi.org/10.3390/rs13183639
https://doi.org/10.1080/02723638.2019.1710399
https://doi.org/10.1016/j.cities.2018.04.002
https://doi.org/10.1007/s11442-022-1959-8
https://doi.org/10.1073/pnas.0407994102
https://doi.org/10.1016/j.compenvurbsys.2022.101846
https://doi.org/10.3390/ijgi10040219
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.3390/urbansci6010012
https://doi.org/10.1007/s10109-018-0279-0
https://doi.org/10.1137/120881683
https://doi.org/10.1038/s41598-018-31202-1
https://doi.org/10.1038/s41467-017-02681-z
https://doi.org/10.3390/land9060190
https://doi.org/10.1080/00343404.2015.1004535
https://doi.org/10.1038/s41598-022-24624-5
https://doi.org/10.1016/j.compenvurbsys.2023.101951
https://doi.org/10.1016/j.habitatint.2017.12.001


ISPRS Int. J. Geo-Inf. 2023, 12, 183 18 of 18

64. Zhang, W.; Ning, K. Spatiotemporal Heterogeneities in the Causal Effects of Mobility Intervention Policies during the COVID-19
Outbreak: A Spatially Interrupted Time-Series (SITS) Analysis. Ann. Am. Assoc. Geogr. 2023, 1–23. [CrossRef]

65. Niu, C.; Zhang, W. Causal Effects of Mobility Intervention Policies on Intracity Flows during the COVID-19 Pandemic: The
Moderating Role of Zonal Locations in the Transportation Networks. Comput. Environ. Urban Syst. 2023, 102, 101957. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/24694452.2022.2161986
https://doi.org/10.1016/j.compenvurbsys.2023.101957
https://www.ncbi.nlm.nih.gov/pubmed/36938101

	Introduction 
	Literature Review 
	Research Area and Data 
	Conceptual Framework and Methodology 
	Conceptualization of Mesoscale Structure in Regional Studies 
	Mesoscale Structure Detection: A Weighted Stochastic Block Model (WSBM) 

	Results 
	Mesoscale Structure of the UUM Network 
	Mesoscale Structure of the URM Network 

	Discussion and Conclusions 
	References

