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Abstract: Landslide susceptibility assessment (LSA) based on machine learning methods has been
widely used in landslide geological hazard management and research. However, the problem of
sample imbalance in landslide susceptibility assessment, where landslide samples tend to be much
smaller than non-landslide samples, is often overlooked. This problem is often one of the important
factors affecting the performance of landslide susceptibility models. In this paper, we take the
Wanzhou district of Chongqing city as an example, where the total number of data sets is more than
580,000 and the ratio of positive to negative samples is 1:19. We oversample or undersample the
unbalanced landslide samples to make them balanced, and then compare the performance of machine
learning models with different sampling strategies. Three classic machine learning algorithms, logistic
regression, random forest and LightGBM, are used for LSA modeling. The results show that the model
trained directly using the unbalanced sample dataset performs the worst, showing an extremely low
recall rate, indicating that its predictive ability for landslide samples is extremely low and cannot be
applied in practice. Compared with the original dataset, the sample set optimized through certain
methods has demonstrated improved predictive performance across various classifiers, manifested
in the improvement of AUC value and recall rate. The best model was the random forest model using
over-sampling (O_RF) (AUC = 0.932).

Keywords: landslide susceptibility assessment; imbalanced datasets; machine learning; oversampling;
undersampling

1. Introduction

Landslides are prevalent geological phenomena that can have severe adverse effects
on property, the environment, and the economy. With the rapid development of society
and the economy, human activities have increasingly destabilized natural slopes, resulting
in more frequent landslides. This has drawn the attention of researchers worldwide.

Landslide susceptibility assessment (LSA) is an important tool in geological hazard re-
search [1–3], which is of great value for studying regional landslide probability distribution
and correlation between landslides and environmental factors [4–6]. The machine learning
method has an excellent effect on solving nonlinear problems and has been widely used in
landslide susceptibility evaluation.

The two most common approaches to LSA are knowledge-driven model and data-
driven model [7–11]. The knowledge-driven approach is a straightforward and practical
means of comprehending landslide hazards, without the need for data samples. This
approach yields results that can more effectively illustrate the underlying mechanisms of
these events. However, the current knowledge base on landslide hazards is incomplete and
lacks the capacity for transforming data into useful knowledge. Moreover, the identification
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of environmental factors affecting landslide hazards is reliant on expert judgment, making
it challenging to adapt to diverse geographic areas and disaster scenarios. In contrast,
data-driven models employ algorithms and data to generate predictions. Machine learning
models are a type of data-driven model that are increasingly being applied to LSA [2,3].

In the field of machine learning, data are more important than models. Unlike tradi-
tional machine learning tasks, the number of positive and negative samples in LSA often
varies widely. The performance of machine learning models is contingent, to some extent,
on the quantity and quality of data available for training. Neglecting to address the issue
of data balance can result in suboptimal model performance and low model recall, as was
evidenced in this study. The results show that the three models of the mAP score only 0.5,
or a 50% probability of obtaining the correct judgment, at the same time, the G-mean score
is also meager, and the Recall score is 0. Therefore, it can be concluded that the models
cannot be used to customize policies for landslide disaster prevention.

The issue of imbalanced data in landslide susceptibility modeling has been recog-
nized by scholars in previous studies, prompting further research into potential solu-
tions. For instance, some studies have proposed the use of advanced techniques such as
combining XGBoost, LightGBM, and dice cross-entropy loss function to improve model
performance [12]. Other studies have explored the use of data augmentation techniques
such as the SMOTE algorithm to expand the sample size [13], or under-sampling the
original dataset to create a balanced dataset [14].

In this study, we tackle the imbalanced data problem in landslide susceptibility analysis
by treating it as a special dichotomous problem. Specifically, we approach the problem
from the perspective of the dataset, working to address imbalances between sample classes.
By adopting such a novel approach, we aim to enhance the accuracy and efficacy of
landslide susceptibility modeling, improve the robustness [15–17] of the model, and provide
practical and theoretical guidance for disaster prevention and mitigation policies, ultimately
contributing to more effective disaster prevention and mitigation efforts.

The following three methods have been generally used in the past to deal with the
sample class imbalance problem. (1) A balanced sampling method is used, in which
an equal number of non-slip points (negative samples) are randomly selected from the
study area after obtaining data on the slip points (positive samples) to build a dataset for
training and prediction [13,18]. This approach is practical, but can result in wasted data
and prevent the model from performing as well as it should. (2) Think of the problem as a
misclassification cost-sensitive learning problem, where the misclassification weights of the
model are set based on sample proportions or expertise. Misclassification cost-sensitive
learning aims to mitigate the effects of sample category imbalance by using a modified loss
function that sets a non-equal misclassification cost per category. This cost can be thought of
as a penalty factor introduced during the training of the classifier with the aim of increasing
the importance of a few classes (landslide samples) [19–21]. By imposing a stricter penalty
for errors in a given class, we force the classifier training process (which aims to minimise
the total cost) to concentrate on samples from this distribution. This approach is somewhat
subjective and relies on the expertise of the researcher. (3) Model training is performed
directly using the original imbalanced dataset after a simple cleaning. Due to the small
number of positive samples (landslide), the model tends to judge the samples as negative
(non-landslide) already for the purpose of maximum accuracy. However, the recall [22]
and G-mean [23] scores of this model are low and cannot be used for practical applications.

In this paper, two data processing strategies, over-sampling and under-sampling,
are used to address the above problems, so that the original sample data become balanced
data. The advantages and disadvantages of these two processing strategies are also com-
pared. Finally, some research results with reference values for disaster prevention and
mitigation work are derived.
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2. Study Area and Data

In this paper, Wanzhou District [24,25] of Chongqing City is taken as the research
target. As shown in Figure 1, the thumbnail located at the bottom of this image provides a
revealing glimpse into the selection process for the study area, which was carefully chosen
from the Three Gorges reservoir area in the middle section of the Yangtze River in China.

Figure 1. Location map of the study area. Part A shows the remote sensing image of the study area,
and part B shows the geographical location of the study area.

Wanzhou District is under the jurisdiction of Chongqing, in the upper Yangtze River,
northeast of Chongqing, and the heart of the Three Gorges reservoir area [26]. In the
Wanzhou district rivers, streams cut deep, there is a significant drop, and a branch distribu-
tion is the Yangtze River system. Wanzhou District is in the subtropical monsoon humid
belt, with four distinct seasons, long frost-free periods, abundant rainfall, and frost and
snow scarcity. The geological age of outcrop strata in the Wanzhou district is mainly found
in the Triassic and Jurassic of the Mesozoic era. Jurassic is the most widely distributed,
followed by Triassic. In addition, some places have Permian strata of the Paleozoic era
and Quaternary strata of the Cenozoic era. During the July 1982 rainstorm, more than
80,000 landslides occurred in Wanzhou District, Chongqing. It destroyed 36,000 houses and
left 14,000 families homeless. A major landslide occurred in July and August 1993. There
were 11,000 landslides that destroyed 198,000 mu of farmland and 56,300 houses, causing
economic losses of 1.8 billion yuan. On 5 September 2004, a landslide occurred in Wanzhou
Ji’an [27], with an area of 0.7 km2 and a volume of about 7.0× 106 m3. The landslide de-
stroyed a critical local market town, road and highway under construction. From 16–23 July
2020, more than 40 landslides occurred in Wanzhou, Chongqing [28]. Wanzhou District in
Chongqing, China, is an ideal area for studying landslides due to its unique geographical
features. The region is characterized by numerous mountains and waterways, as well as
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its proximity to the Three Gorges dam and the Yangtze River. These factors make the area
particularly susceptible to landslide disasters, which can have severe consequences for both
the environment and the local population. Studying landslides in this area can provide
valuable insights into the underlying mechanisms and causes of such events, as well as the
most effective methods for mitigating their impacts. In summary, using Wanzhou District
as a study area for landslides is a scientifically sound approach due to the region’s unique
geological characteristics and susceptibility to such disasters.

The dataset of the experimental model is mainly derived from the Remote Sensing
Image supplied by Google Earth and the landslide geological survey. The satellite image
of Landsat-8 received on 12 August 2013 was used as the primary remote sensing data.
Landsat 8 is a satellite launched by NASA in 2013 as part of the Landsat program. It carries
two sensors, OLI and TIRS, and provides global coverage every 16 days. The data are freely
available to the public in a standard format. The data are freely available to the public
through the United States Geological Survey (USGS) EarthExplorer website. Aster GDEM
provides digital elevation model data (DEM) with a resolution of 30 × 30 m. The data
types and sources are shown in Table 1. Table 2 displays the 12 landslide factors and their
types, and Figure 2 illustrates the 12 controlling factors and influencing factors of landslide
development in the study area.

Table 1. The types and sources of raw data.

Raw Data Type Source

Historic landslide Vector geological survey and remote sensing images
DEM Raster Aster GDEM (https://earthdata.nasa.gov/)
Landsat 8 OLI Raster USGS (https://earthexplorer.usgs.gov/)
Lithology Vector local Land and Resources Bureau
Meteorological data Vector Meteorological Bureau (http://www.cma.gov.cn/)

Table 2. The name, variable type, and classification of landslide contributing factors.

Variables Name Variable Type Classification

Y Landslide Binary Landslide
X1 Elevation Continuous Topography
X2 Slope Continuous Topography
X3 Aspect Discrete Topography
X4 Curvature Continuous Topography
X5 Distance to river Continuous Hydrology
X6 NDVI Continuous Land cover
X7 NDWI Continuous Land cover
X8 Rainfall Discrete Triggered
X9 Seismic intensity Discrete Triggered
X10 Land use Discrete Triggered
X11 TRI Continuous Topography
X12 Lithology Continuous Topography

A Geological Topographic Map gives the lithology data and distances to rivers.
Landsat 8 OLI images provide the NDVI/NDWI data. The Bureau of Meteorology pro-
vides rainfall data, and land use data were obtained from Landsat 8 OLI images and the
geological survey.

The twelve factors mentioned are commonly considered as potential contributors to
landslides. The relationship between these factors and landslides is complex and multi-
faceted, as each of these factors can individually or collectively affect the likelihood and
severity of landslides.

https://earthdata.nasa.gov/
https://earthexplorer.usgs.gov/
http://www.cma.gov.cn/
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Figure 2. Landslide factors used in this study.

Elevation, slope, and aspect are physical characteristics of the terrain that have a
significant impact on the stability of soil and rock. Higher elevations and steeper slopes can
increase the potential for landslides [29–31], while south-facing slopes tend to be more prone
to landslides due to increased solar radiation and soil moisture loss [32]. Terrain curvature
is another terrain factor that can influence the likelihood of landslides. The structure and
shape of the terrain are indicated by its Terrain curvature [33]. Distance to river is also a
crucial factor that can impact the occurrence of landslides. Landslides tend to occur more
frequently in areas closer to rivers due to the increased water content and erosion caused
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by the river flow. NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized
Difference Water Index) are remote sensing indices that measure the amount of vegetation
and water content in a particular area [34]. Low NDVI values and high NDWI values can
indicate areas of high landslide susceptibility, as they suggest high water content and low
vegetation cover [35]. Rainfall is a critical trigger for landslides, as heavy rainfall events
can increase soil saturation and trigger slope failures. Seismic intensity is also a significant
factor that can increase the likelihood of landslides, particularly in areas with high seismic
activity. Land use, TRI (Terrain Roughness Index) and lithology are also factors that can
influence landslide occurrence. Human engineering activities, such as mining, construction,
deforestation, and land use changes, can alter the natural slope stability of an area and
increase the risk of landslides, while TRI and lithology can help to identify areas with high
water content and unstable soil or rock [36,37].

These 12 landslide factors were selected because they are widely recognized as among
the major factors influencing landslide occurrence and have been extensively explored
in past studies. For example, many studies have shown that factors such as high ele-
vation, steep slopes, south-facing slopes, and hydrologic conditions increase the risk of
landslides. In addition, many studies have explored the relationship between vegetation
cover, landform curvature, seismic activity, and other factors and landslides [38–40].

3. Methodology

This paper uses three classical machine learning algorithms combined with two sam-
pling methods to train models for unbalanced datasets.

In order to highlight the influence of the balanced dataset on the training model,
conventional preprocessing methods are used to process the dataset. The main process is
shown in Figure 3. The algorithms and formulas involved in the workflow will be described
in detail in the later part of this chapter.

In general, the process of machine learning model building consists of two phases:
training and testing. In the training phase, features are fed into the model together with
the target and the internal parameters of the model are tuned according to certain rules.
In the testing phase, only the features are fed into the trained model, and the model is
allowed to predict the target by the features, and the model’s performance is analyzed
based on the prediction results. Representative machine learning methods are Support
Vector Machines (SVM), Logistic Regression (LR), Random Forest (RF), Bayesian Networks
(BN), Back Propagation Networks (BP), etc. These models are the so-called shallow machine
learning methods, which are able to handle more complex data compared to knowledge-
based models [7]. In addition, the reliability of LSA models can be improved by combining
machine learning methods for quantitative analysis with qualitative analysis.

The first step in the workflow is to complete the data preparation. Firstly, the landslide
sample point data are combined with the geographic information of the study area to
obtain the original dataset, which is done so that it is clear which location in the study area
is represented by the landslide susceptibility of a certain sample point after the training
is completed. Then the dataset was subjected to a VIF test to check whether collinearity
existed in the features of the selected samples. Finally, the dataset is divided into 70%
training set and 30% test set. The 70/30 split is a commonly used ratio, but it is not a hard
and fast rule. This step uses the train_test_split method in the Sklearn toolkit to divide the
dataset after setting the division ratio and related parameters.

The second step involves training the model. The test set is used to evaluate the
performance of the model, while the training set undergoes three types of processing
before being sent to the training pipeline. The three data processing methods are no
processing, over-sampling processing, and under-sampling processing. The datasets are
then processed in the pipeline using the StandardScaler and Principal Component Analysis
(PCA) techniques before being sent to three classical machine learning models for training.
Following these steps, three datasets and three algorithms are cross-trained, resulting in
nine models being obtained.
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Figure 3. Algorithm workflows of this study.

Finally, the nine models were used to predict the test set divided in the first step,
and the confusion matrix and other prediction results of the nine models were obtained,
and the results were analyzed.

3.1. Model Training Algorithm

Three classical machine learning algorithms were selected to help us experiment. They
are Logistic Regression (LR), LightGBM (LGBM), and Random Forest (RF).

LR often handles regression problems where the dependent variable is categorical.
The dependent variable of logistic regression can be binary or multiclass. In order to avoid
overfitting, the regularization method is introduced in Logistic Regression. The regularizer
increases as the complexity of the model increases; the more complex the model, the higher
the regularization term. LGBM (Light Gradient Boosting Machine) [41,42] is a framework
that enables the application of the GBDT (Gradient Boosting Decision Tree ) [42] algorithm,
supporting efficient parallel training. Moreover, it boasts a faster training speed, lower
memory requirement, enhanced accuracy, distributed support capability and faster process-
ing of large amounts of data. It is usually used for CTR prediction, multi-classification, sort
search, and other tasks. RF is a particular Bagging [16] method that uses the Decision-Trees
models in Bagging. First, some training sets were developed by Bootstrap [43]. Then,
per the training set, a Decision-Tree is constructed. The Random Forest has the idea of
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integration in which samples and features are sampled to avoid overfitting. We found that
RF classifiers always lead to good models, as in a landslide susceptibility prediction article
that finally found that RF classifiers worked best [44].

These three algorithms are selected in this study because they are classic and pow-
erful, simple in principle but rigorous in logic, and significantly influence machine learn-
ing. At the same time, this study aims to highlight the improvement effect of balanced
datasets on model training, so it is appropriate to choose these three classical algorithms.
A comparison of the advantages and disadvantages of the three algorithms is shown in
Table 3.

Table 3. Comparison of the advantages and disadvantages of the three algorithms.

Algorithm Advantages Disadvantages

LightGBM
High accuracy and efficiency Prone to overfitting with small datasets
Handles large datasets well Requires careful tuning of hyperparameters
Can handle missing values Less interpretable compared to simpler models

Random Forest
High accuracy and robustness Can be computationally expensive with large datasets
Handles high-dimensional data well Limited interpretability compared to simpler models
Can handle missing values and categorical features May not perform well with imbalanced datasets

Logistic Regression
Simple and interpretable May not perform well with nonlinear relationships
Fast and efficient
Performs well with small datasets Can be sensitive to outliers and influential observations

3.2. Over-Sampling and Under-Sampling

For imbalanced datasets, the simplest over-sampling method is randomly replicating
new samples from the minority class [45,46]. This study used the SMOTE (Synthetic
Minority over-Sampling Technique) [47,48] algorithm to sample the dataset. The principle
is to sample the minority class a, randomly select a nearest neighbor sample b according
to its eigenvalue distribution, and then take the attachment point c between a and b as a
randomly selected point on the new sample, that is, the new sample.

There are two schemes for under-sampling dataset manipulation [17,49], prototype
generation and prototype selection. Prototype generation algorithms will reduce the
number of samples in the dataset. The samples are generated from the original dataset.
The prototype selection algorithm is most directly obtained from the original dataset class
samples. This study employs a prototype selection scheme for under-sampling.

3.3. Model Evaluation

The evaluation method is to provide decision-making services for the whole exper-
iment, which needs to be selected based on actual tasks and datasets. Therefore, dif-
ferent evaluation criteria will produce significant differences in experimental results for
different problems.

In this experiment, the dataset shows a vast difference in the number of positive and
negative samples. The purpose of modeling is to detect a tiny number of positive samples in
the entire dataset. Therefore, this experiment should focus on how many positive samples
the model finds in the test set: the recall rate. If the model finds no abnormal samples, the
recall rate is 0. In addition, this experiment introduced ROC [50], mean Average Precision
(mAP) [51], F1-score and G-mean as evaluation criteria. These metrics can be used to
evaluate experimental models more comprehensively.

ROC is a tool used to measure non-equilibrium in classification. For example, the ROC
curve and AUC [52] are often used to evaluate the merits and demerits of a binary classifier.
A nice feature of the ROC curve is that it can remain constant when there is a class imbalance
in the dataset, i.e., there are many more negative samples than positive ones (or vice versa).
However, the ROC curve is unable to provide a cost-sensitive evaluation of the model’s
performance; for a more detailed assessment we can use metrics such as mAP and G-
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mean provided by Sklearn. The F1 score is a commonly used metric in machine learning
for evaluating the performance of binary classification models. It is a measure of the
balance between precision and recall, two important metrics for assessing the accuracy of a
model. In such cases, accuracy alone may not be a sufficient metric for evaluating model
performance, as a model that always predicts the majority class will have high accuracy but
poor recall. The F1 score provides a more balanced measure of model performance, taking
into account both precision and recall. When the dataset is balanced, the Precision index
and mean Average Precision are equivalent. However, mAP reflects the model’s problems
more when unbalanced dataset. Similarly, the G-mean score [23,53] is of great reference
value when unbalanced data. A typical binary classification confusion matrix [54–56] is
a 2 × 2 matrix, respectively: true positive (TP), false positive (FP), true negative (TN),
and false-negative (FN).

The equations of G-mean score, Accuracy, and Recall are Equations (1)–(3). The mAP
Equation (5) comes from averaging AP (4) over all classes, where AP is the area covered
under the PR curve. The PR curve is obtained using Recall as the X-axis and Precise as the
Y-axis. The F1_score Equation (6) is derived from both Recall and Precision.

True
positivep′

p

False
negative

n total

P′

False
positiven′

total P

True
negative N′

N

actual
value

prediction outcome

G− mean =
√

Reacll ∗ Specificity (1)

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

mAP =
∑k

i=1 APi

k
(5)

F1− score =
2 Precision ∗ Recall
Precision + Recall

(6)

3.4. Data Processing

Multicollinearity verifies, in multiple regression models, that there is a specific linear
relationship between explanatory variables. Suppose the linear relationship between
variables is too strong. In that case, the parameters are no longer practical estimators,
or even the parameters cannot be identified. This eventually leads to inaccurate test results
and a decrease in model accuracy.
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In this study, the Variance Inflation Factor (VIF) is utilized to assess whether the
multicollinearity among the explanatory variables is severe.

Var
(

β̂i
)
=

σ2

∑n
t=1(xit − x̄l)

2
1

1− R2
i

(7)

VIF =
1

1− R2
k

(8)

Equation (7) is the variance of the parameter estimator, where R2
i is the ith explanatory

variable as the dependent variable, and Equation (8) can be obtained by taking the latter
part of the formula alone. The higher the degree of collinearity between xi and other
explanatory variables, the more prominent R2

i is, the higher the VIF value will be, and the
more significant the VIF value is. Generally, VIF > 10, and we believe this variable has
collinearity problems with other variables.

The collinearity analysis results of the selected datasets in this study are shown in
Table 4. There is no severe problem of collinearity among the explanatory variables.

Table 4. Variance Inflation Factor (VIF) of 12 attributes of the dataset.

Variables Name Variance Inflation Factor
(VIF)

X1 Elevation 2.4049
X2 Slope 9.6671
X3 Aspect 1.0288
X4 TRI 9.3899
X5 Curvature 1.0156
X6 Lithology 1.6362
X7 River 1.9169
X8 NDVI 2.1679
X9 NDWI 1.4324

X10 Rainfall 1.4463
X11 Earthquake 1.6907
X12 Land_use 1.6336

The StandardScaler algorithm can normalize the mean and variance of each char-
acteristic dimension of the sample, so that the processed data are more aligned with the
standard normal distribution, with a mean of 0 and a standard deviation of 1. Its conversion
function is shown in Equation (9), where µ is the mean value of all sample data and σ is the
standard deviation.

x∗ =
x− µ

σ
(9)

The Principal Component Analysis (PCA) is applied to the original data for processing.
The algorithm aims to transform the original N-dimensional features into a K-dimensional
feature space, which consists of a new orthogonal feature and a K-dimensional feature
generated from the original N-dimensional features, k ≤ n. This can reduce the noise and
redundancy of the samples and reduce the possibility of overfitting the model.

4. Results
4.1. Consequences of Landslide Sensitivity Prediction

This study uses both a sample balanced dataset and a sample unbalanced dataset
when training the model in order to compare the results and highlight the findings.

Using Logistic Regression, Random Forest, and LightGBM algorithm models, three
sampling methods (original dataset, under-sampling dataset, and over-sampling dataset)
were applied, respectively, to make landslide susceptibility predictions. The 12 landslide
factors mentioned in Chapter 2 were selected as input variables in this study, such as eleva-
tion, curvature, aspect, NDVI, NDWI, slope, distance to river, rainfall, land use, earthquake



ISPRS Int. J. Geo-Inf. 2023, 12, 197 11 of 17

power, topographic roughness index (TRI), and lithology [19], as inputs. Furthermore, the
predicted values obtained are 0 and 1, via the Landslide Prediction Index (LPI). Finally,
the predictions of the nine models for the landslide samples were derived and combined
with the geographical information of the study area to obtain a picture of the landslide
susceptibility of the area. It is shown in Figure 4.

Figure 5 shows the area proportion of landslide prediction results of nine models.

Figure 4. The landslide susceptibility distribution map of 9 models.
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Figure 5. The ratios of different landslide susceptibility classes for the nine models.

4.2. Validation and Comparison of Models

Figure 6 shows the ROC curves of the nine trained models. The AUC indices of the
three models are sorted by original data, under-sampling, and over-sampling. From the
ROC curve, the sample equilibrium model is superior to the original unbalanced data
model. The model with the highest AUC value was the RF model with the over-sampling
method (AUC = 93.2%).

Figure 6. ROC curves of the nine models.

The ROC curves depict the true positive and false positive rates at different classifica-
tion thresholds. By comparing the ROC curves of two or more models, we can assess their
relative performance in distinguishing between positive and negative instances. However,
if we want to obtain a fuller picture of the actual performance of these nine models, we
need some other metrics as well.
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Table 5 shows the mean Average Precision, G-mean, Recall, Accuracy, F1_score, Pre-
cision and AUC of the nine models. A model with a Recall of about 0 is of no practical
significance because we are more concerned with how many positive sample points of
landslides can be found in the model among all sampling points in the test set with a
sample ratio of 1:19. The three models with an approximate Recall value of 0 were trained
from the original unbalanced dataset, and the other models scored very well. The accuracy
of the three unbalanced dataset models is about 0.95. However, this is not because of their
excellent performance, but because of the problems of these models. Their recall rate is
0. G-mean scores also show this point, among which three original data models have
extremely low scores. The G-mean scores of the remaining six models are normal, among
which the LGBM model with over-sampled balanced dataset has the highest score.

Table 5. Recall, Accuracy, mean Average Precision, G-mean, F1_score, Precision and AUC of the
nine models.

Models mAP G-Mean Recall Accuracy F1_Score Precision AUC

LR 0.5 0 0 0.95 0 0 0.801
U_LR 0.765 0.764 0.815 0.72 0.227 0.132 0.824
O_LR 0.772 0.771 0.803 0.744 0.24 0.141 0.835

RF 0.5 0.016 0 0.95 0.001 0.158 0.79
U_RF 0.682 0.666 0.537 0.813 0.224 0.142 0.79
O_RF 0.811 0.804 0.705 0.907 0.432 0.311 0.932
LGRB 0.501 0.046 0.002 0.949 0.004 0.169 0.797

U_LGBM 0.729 0.729 0.71 0.746 0.219 0.13 0.797
O_LGBM 0.81 0.81 0.826 0.796 0.29 0.176 0.882

The accuracy metric is represented by TP/(TP+FP), where TP represents the number
of slipped samples correctly predicted by the model and FP represents the number of
non-slipped samples correctly predicted. However, considering the ratio of positive to
negative samples in the test set of 1:19, the value of TP is significantly smaller than the value
of FP, which leads to a low accuracy score of the model. The F1 metric formula is derived
from the recall and precision formulae. In this case, the low accuracy value resulted in a
lower F1 score for the model. Nevertheless, these two metrics are sufficient for comparing
the performance merits of the models.

There are issues with models directly trained from unbalanced datasets. If disaster
prevention and mitigation policies are based on such models, there is a risk of missed
judgments and security issues. Models derived from balanced datasets are superior to the
former and can be used to formulate more effective disaster prevention and mitigation
policies. In the balanced dataset model, the highest AUC score was attained by O_RF with
a value of 0.932. The highest G-mean score was recorded by O_LGBM with a value of 0.81,
while the highest mAP score was achieved by O_RF with a score of 0.811. The highest
Accuracy score was obtained by O_RF with a value of 0.907. The Recall score was highest
for O_LGBM with a value of 0.826. Consequently, the two best-performing models are
O_LGBM and O_RF. Therefore, these models can be considered for practical application.

5. Discussion

In this study, we compare the impact of sample balanced and unbalanced datasets
on the performance of three traditional machine learning models in the field of landslide
susceptibility research. The results demonstrate a significant improvement in the AUC,
from 0.913 to 0.932, and accuracy, from 0.793 to 0.907, compared to the latest research in the
field based on the same dataset [19].

These findings underscore the importance of training machine learning models on
balanced datasets to achieve optimal performance. Moreover, the research results have
practical implications for the development of regional disaster prevention and mitigation
policies. The study also introduces the idea of combining unbalanced datasets with machine
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learning to solve practical problems, which opens up new avenues for research in the field.
In addition, the findings of this study provide valuable insights into the application of
machine learning in landslide susceptibility research and its potential for improving disaster
prevention and mitigation efforts.

5.1. Limitations or Shortcomings of This Study

1. Only one unbalanced landslide dataset was used in this study, but no additional
high-quality unbalanced datasets were collected for the experiments, which may limit
the generalizability of the results.

2. In this study, we trained three models using an unbalanced dataset and six models
using a balanced dataset. With some metrics, we can visually compare the perfor-
mance strengths and weaknesses of the models obtained from the training of these
two datasets. However, we failed to use a suitable comprehensive metric to compare
the two models, just as one cannot use the same set of rules to compare different
things. This is a limitation of this study, and future research needs to explore more
comprehensive metrics to evaluate the performance of the models.

3. It was found that models trained on an unbalanced dataset and models trained
on a downsampled balanced dataset achieved similar values for several evaluation
metrics, suggesting the need to investigate the relationship between the two models
in greater depth.

4. All three algorithms chosen for this study are classical machine learning algorithms be-
cause they are well-interpretable compared to neural-network-based algorithms, such
as Deep Residual Shrinkage Network [57] and Squeeze-and-Excitation Network [58]
(SENet). Neural network algorithms change too much and are not reproducible
during the learning training process, and even with the same environment and param-
eters, the models obtained the next time are often very different. However, the main
idea of this study is to use the control variables method to highlight the influence of
the dataset on the model, so the neural network-based algorithm is not applicable
to this study. Nevertheless, future research could explore the possibility of using
neural network algorithms in similar studies, which would help to extend the range
of algorithm choices and improve the performance of the models.

5.2. Future Research Directions

The authors have generated some conjectures in the course of their research, which
may be investigated in depth next.

Conjecture 1 is proposed based on the dataset size. The poor performance of the
models trained from unbalanced datasets is due to the fact that the models do not extract
enough features from a small number of class samples. If an unbalanced dataset with a
sufficient number of minority class samples is used to train the model, perhaps the effect of
the dataset on the model can be eliminated.

Conjecture 2 proposes an improved idea of the over-sampling algorithm SOMTE,
whose core idea is to randomly select the feature values of two minority class samples
and obtain new features in the interval of the two feature values to generate new sam-
ples. That is, the minority class samples are clustered according to certain rules, and the
samples are randomly selected from the samples that meet the clustering conditions, and
feature extraction is performed in these samples with a view to obtaining new samples of
higher quality.

These conjectures provide useful insights for future research and can provide more
ideas and directions for solving the imbalance problem of datasets.
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6. Conclusions

This paper presents an evaluation method for predicting landslide susceptibility
by performing sample equalization on machine learning models trained on unbalanced
datasets. The models trained using two data equalization methods and three machine
learning algorithms are analyzed and validated against measured data from the Wanzhou
district of Chongqing city.

The study highlights the importance of sample equalization in machine learning
model training, providing insights for practitioners working with unbalanced datasets.
The research framework presented in this paper can serve as a reference for predicting
landslide sensitivity on unbalanced datasets in the future, potentially mitigating the damage
caused by landslides.

Overall, this study makes an important contribution to the field of machine learning
and landslide prediction. It demonstrates the effectiveness of sample equalization in
improving machine learning model performance and offers a useful framework for future
research in this area.
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