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Abstract: In forestry research, for forest inventories or other applications which require accurate 3D
information on the forest structure, a Terrestrial Laser Scanner (TLS) is an efficient tool for vegeta-
tion structure estimation. Light Detection and Ranging (LiDAR) can even provide high-resolution
information in tree canopies due to its high penetration capability. Depending on the forest plot size,
tree density, and structure, multiple TLS scans are acquired to cover the forest plot in all directions
to avoid any voids in the dataset that are generated. However, while increasing the number of
scans, we often tend to increase the data redundancy as we keep acquiring data for the same region
from multiple scan positions. In this research, an extensive qualitative analysis was carried out to
examine the capability and efficiency of TLS to generate canopy top points in six different scanning
combinations. A total of nine scans were acquired for each forest plot, and from these nine scans,
we made six different combinations to evaluate the 3D vegetation structure derived from each scan
combination, such as Center Scans (CS), Four Corners Scans (FCS), Four Corners with Center Scans
(FCwCS), Four Sides Center Scans (FSCS), Four Sides Center with Center Scans (FSCwCS), and All
Nine Scans (ANS). We considered eight forest plots with dimensions of 25 m × 25 m, of which four
plots were of medium tree density, and the other four had a high tree density. The forest plots are
located in central Slovakia; European beech was the dominant tree species with a mixture of European
oak, Silver fir, Norway spruce, and European hornbeam. Altogether, 487 trees were considered for
this research. The quantification of tree canopy top points obtained from a TLS point cloud is very
crucial as the point cloud is used to derive the Digital Surface Model (DSM) and Canopy Height Model
(CHM). We also performed a statistical evaluation by calculating the differences in the canopy top
points between ANS and the five other combinations and found that the most significantly different
combination was FSCwCS respective to ANS. The Root Mean Squared Error (RMSE) of the deviations
in tree canopy top points obtained for plots TLS_Plot1 and TLS_Plot2 ranged from 0.89 m to 14.98 m
and 0.61 m to 7.78 m, respectively. The relative Root Mean Squared Error (rRMSE) obtained for plots
TLS_Plot1 and TLS_Plot2 ranged from 0.15% to 2.48% and 0.096% to 1.22%, respectively.

Keywords: forest; TLS; scan combinations; top canopy points; vegetation structure

1. Introduction

Forest inventories are essential to understanding tree structure dynamics. To under-
stand the productivity of the forest, a biomass assessment is required, which is dependent
on the Diameter at Breast Height (DBH) and tree height information. Forest ecosystems
play a crucial role in maintaining the natural balance since biogeochemical cycles are also
dependable on the healthy vegetation structure. Due to these reasons, accurate and precise
assessment of forest biomass has become a critical concern. Quantification of forest biomass
by calculating the forest volume is one of the important factors for estimating accurate
forest biomass for the maintenance of the global carbon cycle [1]. Therefore, the estimation
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of individual tree parameters is of utmost importance; the total structural information
of the tree also accounts for the canopy. Thus, out of the whole structure of the tree, the
accurate assessment of the total canopy cover allows us to understand the physiological
behaviors of a tree to the whole forest ecosystem [2].

Canopy cover is a very crucial indicator in forest monitoring and management appli-
cations. Canopy cover is not only important for the measurement of trees, but it can also
predict wildfire. Ladder fuels can bridge the gap between the surface and canopy of the
tree and can be responsible for more severe canopy fires [3]. Treetop points can be referred
to as the highest point of a particular tree, whereas canopy top points are the top points
obtained throughout the entire canopy region. Imagine it as all the points that would come
into contact first if a large blanket was laid from above the forest point cloud. These canopy
top points contribute to the generation of the Digital Surface Model (DSM) and Canopy
Height Model (CHM). However, in this research, only a few of the canopy top points are
considered for evaluation, i.e., canopy top points present at each tree location. Tree canopy
point extraction using a Terrestrial Laser Scanner (TLS) has always been difficult because of
sparse points and higher noise at the treetop during the scans, which can be due to dense
canopies, occlusions, larger tree heights, etc.

When the forest structures are complex with high tree densities, it is quite challenging
and time-consuming to acquire accurate tree attributes [4]. There is also a margin of error
while calculating tree heights through manual measurements in the field as there are
foliage occlusions which makes it difficult to identify the treetop or canopy top points
at a particular location. The rapid modelling of vegetation structures with accurate 3D
geometrical information has been gaining a lot of demand in recent years, especially
when field measurements are very expensive or nearly impossible. This has spurred
the development of the latest technologies. The extraction of forestry parameters (such
as DBH and tree height) is also possible using a multi-platform Light Detection and
Ranging (LiDAR) system [5]. A TLS is a ground-based static LIDAR portable system. TLS
has already shown promising results in acquiring forest metrics, including individual
tree parameters [6] with millimeter-level details [7]. It is also used for capturing the
branch-level information of trees in the forest plots and the local physiological state of the
structure [8]. TLS has shown potential in assessing the canopy fuel properties in terms of
canopy cover, canopy height, fuel strata gap, etc. [9]. TLS not only provides insights into
the tree canopy but also helps to understand the vegetation’s structural complexity and
its relationship with biodiversity. The 3D information has also been utilized to explore
other models and measurements of trees. To this end, the fundamentals of forest ecological
theories have also been tested by the Radiative Transfer (RT) model approach, which
is used to analyze the radiation mechanism in plants for photosynthesis, responses to
stress, and partitioning in energy consumption [10,11]. TLS is used to derive unbiased
and nondestructive estimates of the tree structure and volume and can, therefore, be
used to address key uncertainties in forest Above Ground Biomass (AGB) estimates [12].
A comparative analysis was also performed using TLS and traditional forest inventory
methods, including pixel and pipe methods [13], to evaluate the best and most automated
method for tree parameter extraction.

TLS has also been used for tropical forest structure estimation [14]. Since tropical
forests are the most complicated structure and comprise a large portion of underexplored
forest ecosystems, the relative vegetation profile was generated using a TLS point cloud.
It is also essential to assess the type of structural differences between the various types of
tropical forests [15]. TLS can also help to understand the correlation and cause of Basal
Stem Rot (BSR) and its effects on the oil palm plantation and its canopy architecture [16]. To
correctly estimate tree attributes, a 3D Quantitative Structure Model (QSM) is very useful
for measuring DBH and tree height and estimating AGB [17,18].

In forests, it is always thought that a greater number of TLS scans are required to obtain
more detailed information on the vegetation structure. However, this may not be efficient in
all cases. As the number of scans increases, it also increases the redundancy in the dataset,
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overall data size, and acquisition and processing time of the TLS scans. Therefore, it is very
important to evaluate the TLS approach in different forests and with different constraints. A
study was also carried out to analyze the influence of scan resolution, scanner parameters,
pulse duration, and scan speed on the tree stem diameter and volume extraction using
phase-shift FARO Photon 120 TLS data [19]. The influence of TLS visibility in forest
plots for tree metrics also has an important contribution. The efficiency and effectiveness
of 40 TLS scanning positions were tested, and the results showed that distributing TLS
scanning positions evenly within the forest plot produced good results. Setting similar
distances between each scanning position and edges of the plots produced an accurate
overall visibility of the forest stand [20]. Another study was conducted to test how different
scanner positions and plot sizes affect tree detection and diameter measurements for forest
inventories data collection, which was tested for circular plots with a radius of 20 m [21].

In our previous research [22], we analyzed the efficiency of all six different scanning
combinations for the ground coverage and quality of the Digital Terrain Model (DTM)
produced in different forest plots. It was observed that the Four Sides Center with Center
Scans (FSCwCS) combination was the most suitable scan combination to generate a DTM
similar to that of the All Nine Scans (ANS) combination. This research motivated us
to analyze the effect and efficiency of the TLS combinations at canopy surface points in
forest plots to determine if the FSCwCS combination is also suitable for canopy top points
extraction with respect to the ANS combination.

An extensive qualitative analysis was conducted for eight forest plots, of which four
plots had medium tree densities, and the other four had high tree densities. The main
objective of this research was to extract the tree canopy points in all six TLS scanning
combinations considered and to evaluate their performances in the canopy cover region.
Qualitative analysis of the efficiency of the TLS in canopy penetration and generation of
vegetation structure was evaluated above each tree stem position in all of the eight plots
considered in this research. CHM and DSM are derived from the point cloud dataset, and if
there are noise and occlusions in the point cloud dataset, it will affect the quality of the DSM
or CHM. Therefore, we have focused on the technical aspect of the raw point cloud dataset
itself and evaluated the TLS efficiency in canopy top points in different combinations.

2. Materials and Methods
2.1. Study Area

The forest plots considered for this research are located in central Slovakia within
the Kremnica Mountains. Multiple tree species are present in the study area region. The
dominant tree species is European beech (Fagus sylvatica) with a mixture of European oak
(Quercus robur), Silver fir (Abies alba), Norway spruce (Picea abies) and European hornbeam
(Carpinus betulus). The location information for both study areas (TLS_Plot1 and TLS_Plot2)
is depicted in Figure 1.

For the experiment, we established eight research plots spread within two forest stands
with two levels of densities; four subplots had a medium tree density (TLS_Plot1), and four
subplots had a high tree density (TLS_Plot2) (Figure 1). The number of trees in the medium-
density subplots varied from 32 to 49 trees, and in the high-density subplots, from 72 to
102 trees per plot (Table 1). The forest plots were considered with 25 m × 25 m dimensions.

Table 1. Number of trees in each of the four subplots for both research plots TLS_Plot1 and TLS_Plot2.

TLS_Plot1 TLS_Plot2

Subplots Number of Trees Subplots Number of Trees

TLS_1a 49 TLS_2a 102

TLS_1b 45 TLS_2b 72

TLS_1c 32 TLS_2c 78

TLS_1d 33 TLS_2d 76
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Figure 1. Study area map depicting the location of TLS_Plot1 and TLS_Plot2.

2.2. Data Acquisition and Pre-Processing

The forest plots were established through a geodetic survey using the Global Naviga-
tion Satellite System (GNSS) receiver Topocon Hiper SR combined with the total station
Topocon 900. A total of nine TLS scans were performed in each of the eight forest plots
using the Faro Focus s70 laser scanner (FARO Technologies, Inc., Lake Mary, FL, USA).
Eight positions were evenly placed on the border of the plots, and one was placed in the
plot’s center. We used plastic spheres on reference sticks for co-registering the individual
TLS scan point clouds. These spheres were evenly spread around and inside the plots to
ensure that at least four of them would be seen from each TLS scan position. We used a
TLS resolution (point spacing) of 6.14 mm/10 m. Each scan took 2 min and 24 s (2 kpt/s).

All the raw TLS scans were imported into Faroscene software for pre-processing.
Reflectors (plastic spheres) were detected automatically, and false reflectors were manually
deleted. These detected reflectors from each scan position were used to merge the point
clouds obtained from each scan position. Six checkerboards were placed at the center of
the plot so that the checkerboards were visible from the center TLS scan position. These
checkerboards were automatically detected and used for georeferencing the point clouds.

From all the scan positions, a total of six possible combinations were considered for
the data analysis, which is briefly presented in the following section.

2.2.1. CS Combination

In this combination, only one scan position was considered, which was positioned at
the center of the forest plot. As the scan was in the center, the TLS could collect the data in
one complete sphere of influence. The sphere of influence is the imaginary region in which
the TLS is capable of generating a point cloud (Figure 2).
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Figure 2. (a) Diagram of a TLS with its 360◦ Horizontal Field of View (HFOV) and 320◦ Vertical Field
of View (VFOV), and the region of data generation is its sphere of influence. (b) Image of the TLS
instrument in one of the forest plots.
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2.2.2. FCS Combination

In this combination, four scan positions were considered, which were positioned at the
four corners of the forest plot. The TLS scans were placed at the corners so that the scans
could cover only 90◦ HFOV of the plot from each corner position, generating a point cloud
in a quarter sphere of influence. Thus, all four scans at the corners could only contribute to
one sphere of influence for the dataset when combined together.

2.2.3. FCwCS Combination

In this combination, five scan positions were considered. Four scans were placed at the
four corners and one at the center of the forest plot. As the scans were placed at the corner
and center, they could cumulatively contribute to two spheres of influence for the dataset.
Four corners scans contribute to one sphere of influence, and the center scan contributes to
one sphere of influence.

2.2.4. FSCS Combination

In this combination, four scan positions were considered. Which were placed at the
center of all four sides. As each scan could cover only a 180◦ HFOV of the plot, they
contributed to a half sphere of influence for the dataset. Therefore, a total of two spheres of
influence for the dataset could be created in this combination.

2.2.5. FSCwCS Combination

In this combination, five scan positions were considered. Four scans from the center of
each side and one at the center of the forest plot. Each side center scan contribute half of a
sphere of influence, and the center scan contributes one complete sphere of influence. Therefore,
a total of three spheres of influence for the dataset could be created with this combination.

2.2.6. ANS Combination

In this combination, nine scan positions were considered. Four scans were placed at the
four corners, four other scans at the four side centers, and one at the center of the forest plot.
The corner scans contribute to a quarter sphere of influence, the side center scans contribute
half a sphere of influence, and the center scan contributes a complete sphere of influence. A
total of four spheres of influence for the dataset could be created with this combination.

The theoretical representation of the patterns and positions of the TLS combinations
followed for the data acquisition and processing are depicted in Figure 3; However, these
behaved differently because of the standing trees in the forest plots. Hypothetically speak-
ing, based on the theoretical maps from Figure 3, the combination FSCwCS should produce
the most similar canopy top points to those of the ANS combination even with 4 fewer scan
positions, as was observed for terrain points [22]. Further evaluation is needed to support
or reject this hypothesis.

As the ANS scan combination had the highest number of scans and sphere of influence,
the ANS scan combination was used as the reference dataset, which the other scan combi-
nation dataset was evaluated against. For visualization, the ANS scan combination point
cloud datasets obtained for plots TLS_1a and TLS_2a are shown in Figure 4a,b, respectively.

2.3. Research Methodology

Six different TLS scan combination datasets were generated for each forest plot. Then,
the canopy top points were extracted in each TLS scan combination, and a few canopy top
points at the local grid of each tree stem position were clipped using the clipping tool in
Cloudcompare [23]. Here, a local grid represents an imaginary region bounding the tree
stem above which the canopy top points were extracted (Figure 6).

Multiple top points were extracted within the local grid for each combination. The
highest point among these multiple points was considered the canopy top point for that
particular combination at that local grid of that particular tree stem. These points were used
for further analysis. Using the canopy top points extracted in the ANS scan combination as
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a reference, relative height differences with the canopy top points extracted in the other
five scan combinations were calculated. The spatial analysis of relative height deviation
was performed, and the results are shown in Figures 9 and 11. The research methodology
followed throughout this research is represented as a workflow in Figure 5.
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2.3.1. Canopy Top Points Extraction at Each Stem Local Grid Positions

The canopy top points were extracted in all the scan combinations for all eight forest
plots in Dendrocloud [24]. The extract surface tool in the Dendrocloud software Version
1.53 was used to extract all the canopy surface points from the point cloud datasets with
a grid size of 10 cm. The tool basically extracts the highest points within a cuboid region
on the grid size mentioned as the canopy top point. The overall point cloud datasets are
represented in the larger cuboid, and the canopy points extracted in a local cuboid region
are shown in a smaller cuboid (base shown in blue) in Figure 6.
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The canopy top points extracted from all the TLS scan combinations are shown for
TLS_1a and TLS_2a in Figure 7a,b, respectively.
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Figure 7. Canopy top points obtained in each TLS scan combination for forest plots (a) TLS_1a,
(b) TLS_2a.

All the canopy top points obtained from all six combinations were opened together
along with tree stems, and the point clouds were manually clipped to obtain the highest
canopy point at that tree stem position. Then, the highest point in each canopy top point
cloud at that tree stem position was used to represent the canopy top point at that tree stem
position from all six TLS combinations (Figure 8). The canopy top points extracted at each
stem grid position were used for spatial analysis of the variations in the heights between
all the TLS scan combinations.
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Figure 8. (a) Image representing canopy top points from all six combinations and a tree stem within a
local grid (shown as a green bounding box) in which the canopy top points were extracted corresponding
to the tree stem (top view). Canopy top points extracted above the tree stem for (b) CS shown in white,
(c) FCS shown in pink, (d) FCwCS shown in blue, (e) FSCS shown in yellow, (f) FSCwCS shown in green,
(g) ANS shown in red (front view), and (h) scale bar for points shown in (b–g).
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2.3.2. Data Evaluation

The point cloud data collected using TLS were divided into 6 TLS scan combinations
for the plots in TLS_Plot1 and TLS_Plot2. Afterward, the relative elevation deviation
between the canopy top points was calculated for each combination in the plots with
respect to the ANS combination. Using all the combinations, we calculated the errors to
evaluate the data.

The Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and relative Root
Mean Squared Error (rRMSE) were calculated to compare the results obtained from the
different combinations in the plots as shown in Equations (1)–(3), respectively.

RMSE =

√
1
N ∑N

i=1

(
Yi − Ŷ

)2 (1)

MAE =
1
N ∑N

i=1

∣∣Yi − Ŷ
∣∣ (2)

rRMSE =

√
1
N ∑N

i=1
(
Yi − Ŷ

)2

1
N ∑N

i=1 Yi
× 100 (3)

where,

Yi is the actual observation (m),
Ŷ is the estimated observation (m), and
N is the total number of observations.

To measure the statistical significance of all the combinations in terms of relative
elevation deviation between the canopy top points and plot combinations, a two-way
Analysis of Variance (ANOVA) was used. To identify the statistical significance of the
difference between combinations, plots, and the relative elevation deviation between the
canopy top points, Tukey post hoc tests were performed. The statistical analysis was
conducted in R software.

3. Results

Spatial analysis and canopy top height differences for forest plot TLS_1a are presented
in Section 3.1, forest plot TLS_2a is presented in Section 3.2, and forest plots TLS_1b, 1c 1d,
2b, 2c, and 2d are presented in Appendix A section.

3.1. Spatial Analysis for Forest Plot TLS_1a

After the canopy top points extraction at each stem grid position in the forest plots
for all the scan combinations, further analysis was conducted to observe the elevation
deviation between the canopy top points in all the scan combinations with respect to the
ANS scan combination at each tree stem position. The elevation deviations were spatially
plotted to see the observations with reference to the spatial distribution along the plot. The
plotting was based on the relative height deviation in meters; from 0 m to 1 m, 1 m to
2 m, 2 m to 5 m, 5 m to 10 m, and greater than 10 m are shown in dark green, light green,
blue, light pink, and red colors, respectively. The maximum number of canopy points
with an elevation difference of less than 1 m was generated with the FSCwCS combination,
whereas the maximum canopy height difference of more than 10 m was observed in the CS
combination. The spatial height deviations for plot TLS_1a are shown in Figure 9.

Canopy Top Height Differences for Forest Plot TLS_1a

The deviations in the relative spatial height difference between canopy top points in
CS, FCS, FCwCS, FSCS, and FSCwCS with respect to the ANS scan combination for each
tree in TLS_1a is shown as a graph in Figure 10.
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Figure 10. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for each tree in TLS_1a.

3.2. Spatial Analysis for Forest Plot TLS_2a

The spatial height difference between canopy top points obtained from each of the
TLS scan combinations for forest plot TLS_2a with respect to the ANS scan combination at
each tree stems position is shown in Figure 11. The maximum number of canopy points
with an elevation difference of less than 1 m was generated with the FSCwCS combination,
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whereas the maximum number of canopy points with an elevation difference of more than
10 m was observed in the CS combination.

Figure 11. The spatial height differences between canopy top points obtained at each tree stem
position from each of the TLS scan combinations for forest plot TLS_2a with respect to ANS scan
combination. (a) ∆h CS and ANS, (b) ∆h FCS and ANS, (c) ∆h FCwCS and ANS, (d) ∆h FSCS and
ANS, and (e) ∆h FSCwCS and ANS.

Spatial Canopy Top Height Differences for Forest Plot TLS_2a

The relative spatial height difference between canopy top points in CS, FCS, FCwCS,
FSCS, and FSCwCS with respect to the ANS scan combination for each tree in TLS_2a is
shown as a graph in Figure 12.
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3.3. Qualitative Statistical Analysis for the Relative Canopy Heights

The relative elevation deviation between the canopy top points was calculated for
each combination in the plots with respect to the ANS results in all the plots. Using
the observation and analysis results obtained in the previous sections, the rRMSE was
calculated. Statistical analysis was performed on the results obtained from the values
computed from rRMSE. The rRMSE value obtained for TLS_Plot1 ranged from 0.15% to
2.48%. Overall, the combination of Z.FSCwCS and Z.ANS in TLS_1a showed the best
results for the elevation deviation of the canopy points of trees in the respective plot.

The statistical error observed for TLS_Plot2 was analyzed. The scan combinations that
came with the lowest error in the elevation difference of canopy points are Z.FSCwCS and
Z.ANS for all the plots. The rRMSE values ranged between 0.096% and 1.22%. Overall,
the TLS_2c plot with the combination of FSCwCS and ANS had the lowest error in the
elevation differences of canopy points in all the trees among all the plots.

The rRMSE values obtained from all the relative canopy heights at each tree stem posi-
tion from CS, FCS, FCwCS, FSCS, and FSCwCS with respect to the ANS scan combination
for TLS_Plot1 and TLS_Plot2 are shown in Figure 13a,b.
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Two-way ANOVA was performed considering different scan position combinations as
one group and plots as another group to analyze the significant difference and impact on
the relative elevation deviation of all combinations between the canopy top points among
all the plots. It was performed to see whether there was any significant difference between
the groups and within the group.

Hence, the relative elevation deviation of all combinations between the canopy top
points among all the plots was significant at all tree stem positions. The scan combinations
and their interactions with the plots were significantly impacting the relative elevation devi-
ation of canopy top points. The ANOVA is shown in Table A1. Later, we performed a Tukey
post hoc test to support ANOVA because we found a significant difference between the two
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groups (combinations and plots). So, due to the significant difference between these groups,
the change in combinations of scan positions in the plot significantly affected the difference
in the elevation of canopy points. Moreover, plots and combinations were significantly
different from each other. When only combinations were compared, the Z.FCwCS-Z.ANS,
Z.FSCwCS-Z.ANS, Z.FSCS-Z.FCS, and Z.FSCwCS-Z.FCwCS were not significant. When
the Canopy Top Points Layer (CTPL) obtained from all plots was compared, CTPL_1c-
CTPL_1b, CTP L_1d-CTPL_1c, and CTPL_2c-CTPL_2b were insignificant. To compare
interactions, 1125 pairs were generated, out of which 732 pairs were significantly different
from each other. The differences are depicted in Tables A2 and A3.

4. Discussions
4.1. Noise Removal above the Canopy Regions

After merging the point clouds obtained from each TLS scan position, noise filtering is
an important step, as noise can produce false results during canopy top points extraction.
We have manually removed the noise as best as possible in this research using prior
experience in point cloud data processing. However, we would like to present the situation
of the points obtained at the canopy and above the canopy layer. Some points are too far
from the canopy, which can easily be segmented out as noise, which is shown as sure noise
points within red boundaries in Figure 14. Some points were close to the canopy and very
sparsely dispersed. In this case, it is quite challenging to determine whether they are noise;
they are shown as unsure noise points within violet boundaries in Figure 14. Since we are
evaluating the canopy top points, it was critically important to segment out noise precisely.
This was performed by observing the point cloud in different views and at small chunk
levels to determine if a point is a noise.
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4.2. Selection of Grid Size for Canopy Top Points Extraction in Dendrocloud

The canopy top points can be extracted at different grid sizes in Dendrocloud software.
We have tried different grid sizes, and we came to a conclusion to extract the canopy
top points using a 10cm grid size. If the grid size was more than 10 cm, the number of
points being extracted was quite dense; similarly, if the grid size was less than 10 cm, the
number of points being extracted was too low, which would not have served our purpose
of extracting canopy top point at each tree stem position.
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4.3. Highest Point Extraction at Each Tree Stem Position

The canopy top points at each tree stem position were manually extracted from all the
TLS combinations from the canopy top layer points obtained from the process mentioned in
Section 4.2. As the axis of the trees was not perpendicular for all the trees, there were some
trees whose trunks were in between two plots which was a critical situation to consider; for
example, there were some trees whose trunks were in one plot and the top in a different
plot and there were also fallen trees whose branches were perpendicular which were falsely
identified as individual trees, etc. With all these constraints under consideration, analyzing
all eight plots and with six combinations was quite time-consuming. However, the accuracy
of these extracted points was critical for the relative spatial analysis of the canopy top
points at each tree stem position.

4.4. Effect of Number of Scans and Position of Scans on the Point Cloud Generation

In research carried out by Trochta J. et al., they found that the number of trees de-
tected in a forest plot depended on the number of scanners and the close proximity of
the trees to the scanner position. They tested tree detection in four scenarios with one
scan, two scans, three scans, and four scans in different forest sites with different terrain
undulations [25].Wan. P et al. conducted similar research to evaluate the efficiency of tree
detection using TLS. However, they only used single scans in forests with three levels of
densities and concluded that a single scan is only reliable for small forest plots that are less
than 10 m in size [26].

In our research, we observed that the CS combination had the highest number of
points with a relative height deviation greater than 10 m as the coverage of the TLS
radially decreased towards the corners and edges of the plots. The combination of FSCwCS
produced the least difference in canopy top points compared to the ANS combination,
which we had predicted based on our previous work.

5. Conclusions

In this paper, we presented the statistical evaluation of the generation of point clouds
at the top of the tree canopies in eight forest plots with varying tree densities using different
TLS scan combinations. Different TLS scan positions have a varying penetration depth of
the LiDAR beam through the dense canopy regions due to tree occlusions and various other
factors. This aspect was evaluated with respect to the ANS scan combination, which was
considered a reference scan combination for this research. The results in Sections 3.1–3.3
and Appendix A show that the Four Sides Center with Center Scans (FSCwCS) combination
is quite efficient in producing canopy top points above the tree stem positions, similar to
the ANS scan combination, which consists of nine TLS scanning positions. The deviation
of the canopy top points was the lowest in the FSCwCS combination. Hence, the authors
recommend that if the forest plots are around 25 m × 25 m in size, the FSCwCS combination
can be considered for the optimum generation of canopy top surface points without
increasing the time, number of scans, or size of the data.

In the future, we would like to test the quality of the DSM or CHM produced using
different TLS scan combinations, as this research was based on point cloud-based analysis
at the top points of the canopy at the location of each tree. It would be interesting to see the
variation in the DSM or CHM surface at each pixel, including canopy top points, points
above branches, and surface points in non-canopy regions.
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Appendix A.

Appendix A.1. Statistical Errors Obtained for Plots TLS_Plot1 and TLS_Plot2
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Figure A2. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_1b with respect to ANS scan
combination. (a) ∆h CS and ANS; (b) ∆h FCS and ANS; (c) ∆h FCwCS and ANS; (d) ∆h FSCS and
ANS; (e) ∆h FSCwCS and ANS.
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Appendix A.3. Spatial Analysis for Forest Plot TLS_1c

Figure A4. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_1c with respect to ANS scan
combination. (a) ∆h CS and ANS, (b) ∆h FCS and ANS, (c) ∆h FCwCS and ANS, (d) ∆h FSCS and
ANS, and (e) ∆h FSCwCS and ANS.
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Appendix A.5. Spatial Analysis for Forest Plot TLS_2b

Figure A8. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_2b with respect to ANS scan
combination. (a) ∆h CS and ANS, (b) ∆h FCS and ANS, (c) ∆h FCwCS and ANS, (d) ∆h FSCS and
ANS, and (e) ∆h FSCwCS and ANS.
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FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2b. 
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position in each of the TLS scan combinations for forest plot TLS_2c with respect to ANS scan com-

bination. (a) Δh CS and ANS, (b) Δh FCS and ANS, (c) Δh FCwCS and ANS, (d) Δh FSCS and ANS, 

and (e) Δh FSCwCS and ANS. 

  

Figure A9. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2b.
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Appendix A.6. Spatial Analysis for Forest Plot TLS_2c

Figure A10. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_2c with respect to ANS scan
combination. (a) ∆h CS and ANS, (b) ∆h FCS and ANS, (c) ∆h FCwCS and ANS, (d) ∆h FSCS and
ANS, and (e) ∆h FSCwCS and ANS.
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bination. (a) Δh CS and ANS, (b) Δh FCS and ANS, (c) Δh FCwCS and ANS, (d) Δh FSCS and ANS, 

and (e) Δh FSCwCS and ANS. 

  

Figure A11. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2c.
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Figure A13. Graph showing relative spatial height differences between canopy top points in CS, 

FCS, FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2d. 

Table A1. Analysis of variance results. 

S.no. Terms Df Sum Sq Mean Sq F Value Pr (>F) 

1 Combination 5 9171 1834 67.015 <2 × 10−16 *** 

2 Plot 7 577,370 82,481 3013.445 <2 × 10−16 *** 

3 Combination: Plot 35 3057 87 3.191 1.04 × 10−9 *** 

4 Residuals 2874 78,665 27 NA NA 

Signif. codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘ ’ 1. 

Table A2. Tukey post hoc test results for multiple comparisons of means of combinations. 
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Z.FCS-Z.CS 2.21093374 1.254861871 3.167005609 0 
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Z.FSCS-Z.CS 3.10386841 2.147796541 4.059940279 0 
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Z.FCwCS-Z.FCS 1.900103449 0.94403158 2.856175318 2.37 × 10−7 

Z.FSCS-Z.FCS 0.89293467 −0.063137199 1.849006539 0.083054818 

Z.FSCwCS-Z.FCS 2.500685043 1.544613173 3.456756912 0 

Z.FSCS-Z.FCwCS −1.007168779 −1.963240648 −0.05109691 0.032108868 
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Z.FSCwCS-Z.FSCS 1.607750372 0.651678503 2.563822241 2.52 × 10−5 

Table A3. Tukey post hoc test results for multiple comparisons of means by the plot. 

Terms Plot. diff Plot. lwr Plot. upr Plot.p.adj 
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Figure A13. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2d.
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Table A1. Analysis of variance results.

S.no. Terms Df Sum Sq Mean Sq F Value Pr (>F)

1 Combination 5 9171 1834 67.015 <2 × 10−16 ***

2 Plot 7 577,370 82,481 3013.445 <2 × 10−16 ***

3 Combination: Plot 35 3057 87 3.191 1.04 × 10−9 ***

4 Residuals 2874 78,665 27 NA NA
Signif. codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘ ’ 1.

Table A2. Tukey post hoc test results for multiple comparisons of means of combinations.

Terms Combination. Diff Combination. Lwr Combination. Upr Combination.P.Adj

Z.CS-Z.ANS 5.321615678 −6.277687548 −4.365543809 0

Z.FCS-Z.ANS −3.110681938 −4.066753807 −2.154610069 0

Z.FCwCS-Z.ANS −1.21057849 −2.166650359 −0.25450662 0.004199711

Z.FSCS-Z.ANS −2.217747268 −3.173819137 −1.261675399 0

Z.FSCwCS-Z.ANS −0.609996896 −1.566068765 0.346074973 0.453265265

Z.FCS-Z.CS 2.21093374 1.254861871 3.167005609 0

Z.FCwCS-Z.CS 4.111037189 3.15496532 5.067109058 0

Z.FSCS-Z.CS 3.10386841 2.147796541 4.059940279 0

Z.FSCwCS-Z.CS 4.711618783 3.755546913 5.667690652 0

Z.FCwCS-Z.FCS 1.900103449 0.94403158 2.856175318 2.37 × 10−7

Z.FSCS-Z.FCS 0.89293467 −0.063137199 1.849006539 0.083054818

Z.FSCwCS-Z.FCS 2.500685043 1.544613173 3.456756912 0

Z.FSCS-Z.FCwCS −1.007168779 −1.963240648 −0.05109691 0.032108868

Z.FSCwCS-Z.FCwCS 0.600581594 −0.355490275 1.556653463 0.471492715

Z.FSCwCS-Z.FSCS 1.607750372 0.651678503 2.563822241 2.52 × 10−5

Table A3. Tukey post hoc test results for multiple comparisons of means by the plot.

Terms Plot. Diff Plot. Lwr Plot. Upr Plot.P.Adj

CTPL_1b-CTPL_1a −1.24421 −2.58179 0.093376 0.090111

CTPL_1c-CTPL_1a −1.50771 −2.98012 −0.03529 0.040289

CTPL_1d-CTPL_1a −3.27041 −4.72927 −1.81156 0

CTPL_2a-CTPL_1a 30.49071 29.36467 31.61674 0

CTPL_2b-CTPL_1a 27.91473 26.71499 29.11448 0

CTPL_2c-CTPL_1a 28.32723 27.14632 29.50814 0

CTPL_2d-CTPL_1a 26.54387 25.35698 27.73076 0

CTPL_1c-CTPL_1b −0.2635 −1.76155 1.234545 0.999483

CTPL_1d-CTPL_1b −2.02621 −3.51093 −0.54148 0.000935

CTPL_2a-CTPL_1b 31.73491 30.57557 32.89426 0
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Table A3. Cont.

Terms Plot. Diff Plot. Lwr Plot. Upr Plot.P.Adj

CTPL_2b-CTPL_1b 29.15894 27.92787 30.39001 0

CTPL_2c-CTPL_1b 29.57144 28.35872 30.78416 0

CTPL_2d-CTPL_1b 27.78808 26.56953 29.00662 0

CTPL_1d-CTPL_1c −1.7627 −3.36996 −0.15545 0.020074

CTPL_2a-CTPL_1c 31.99841 30.6858 33.31103 0

CTPL_2b-CTPL_1c 29.42244 28.04607 30.79882 0

CTPL_2c-CTPL_1c 29.83494 28.47495 31.19493 0

CTPL_2d-CTPL_1c 28.05158 26.68639 29.41676 0

CTPL_2a-CTPL_1d 33.76112 32.46373 35.05851 0

CTPL_2b-CTPL_1d 31.18515 29.82329 32.54701 0

CTPL_2c-CTPL_1d 31.59764 30.25235 32.94294 0

CTPL_2d-CTPL_1d 29.81428 28.46373 31.16483 0

CTPL_2b-CTPL_2a −2.57597 −3.57314 −1.5788 0

CTPL_2c-CTPL_2a −2.16347 −3.1379 −1.18905 0

CTPL_2d-CTPL_2a −3.94684 −4.9285 −2.96517 0

CTPL_2c-CTPL_2b 0.412498 −0.64625 1.471247 0.937254

CTPL_2d-CTPL_2b −1.37087 −2.43628 −0.30545 0.002467

CTPL_2d-CTPL_2c −1.78336 −2.82752 −0.7392 6.54 × 10−6
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