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Abstract: Calculating the least-cost path (LCP) is a fundamental operation in raster-based geographic
information systems (GIS). The LCP is applied to raster cost surfaces, in which it determines the most
cost-effective path. Increasing the raster resolution results in a longer computation time to obtain LCP.
This paper proposes a method for calculating the LCP using a multi-resolution raster cost surface
model to enhance computational performance for large-scale grids. The original raster cost surface
is progressively downsampled to generate grids of decreasing resolutions. Subsequently, the path
is determined on the low-resolution raster. By performing operations such as filtering directional
points and mapping path points, the final path on the high-resolution raster can be obtained. The
method enables a parallel computation of paths. Therefore, it significantly improves the efficiency
for synthetic raster cost surfaces with continuous or discrete characteristics, as well as for raster cost
surfaces generated from real terrain datasets, while also providing an end-to-end path output. The
experiments show that 80% of the results are very close to the original LCP, and the accuracy of the
remaining paths falls within an acceptable range. At the same time, our method greatly improves the
efficiency of path solving on a large-scale raster, fulfilling practical application requirements.

Keywords: least-cost paths; raster cost surfaces; multi-resolution raster model; shortest-path problem

1. Introduction

The least-cost path (LCP) is a common geographic analysis problem in raster-based
geographic information systems (GIS) applied to infrastructure path planning, such as
highways [1], power lines [2], and pipelines [3]. It is also used for wildlife conservation
corridors [4] and exploring land routes in marine environments [5]. Additionally, differ-
ent landscape paths can be defined by combining visual information with the least-cost
path [6,7].

The least-cost path in raster space is a path consisting of adjacent cells from the starting
point to the end point that have the least cumulative cost. Raster space divides a geographic
area into equally sized squares, with each square capable of storing types of geographic
features, such as elevation and land use. Connecting the center points of each square in
the raster space generates a graph, with paths represented by a series of adjacent cells
and implicitly hidden arc. The common connection structure between cells is the eight-
neighborhood, which means that a cell is connected to its four orthogonal and four diagonal
adjacent cells [8]. As for the situation where there are more movement directions between
the cells, the 16-neighborhood can be applied. However, while applying a 16-neighborhood
results in more accuracy in the path construction, the graph becomes more complex [9].

Raster cells are assigned a cost value or a risk indicator, and planners can determine the
optimal spatial pathway through analyzing the distribution of these values. By evaluating
the cost situation along the pathway, the quality of the route can be assessed [10]. Searching
for the least-cost path on a cost surface can be seen as finding the shortest path on the
graph. Hence, graph-based path search algorithms, such as Dijkstra’s [11], A* [12], D* [13]
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and theta* [14] algorithms, can be applied. Graph-based path search algorithms commonly
begin by checking if the starting node is the target node. If it is not, the search expands
to neighboring nodes of the current node. Subsequently, a neighboring node is selected,
and if it is not the target node, the search also expands to the neighboring nodes of this new
node. The choice of nodes relies on various algorithms and their associated cost functions.
This process is iterated until a path solution is found or the search process terminates after
examining all nodes in the graph.

For graph-based path search algorithms, the environment is decomposed into cells,
creating a defined configuration space. Changing the size of the configuration space incurs
a time cost. Consequently, sample-based planning algorithms utilize random samples
to represent the configuration space, which can solve various high-dimensional motion-
planning problems [15,16]. The rapidly exploring random tree (RRT) algorithm [17,18] is
employed to search for paths from a given starting point to a target location. The algorithm
benefits from the strong exploratory capabilities of random points and utilizes a shortest-
edge connectivity structure to simplify the analysis. The probabilistic road map (PRM)
method [19] is employed for a path search between multiple starting points and multiple
target points. It applies graph-based path search algorithms by randomly sampling and
connecting points in free space prior to performing the path search. By integrating the
random points with the obstacle areas, an abstracted path network graph is constructed to
simplify the entire search space, making it more effective in solving paths with complex
spatial configurations and constraints. Owing to the randomness of the sample points,
variations in solutions for the same problem can arise, rendering this method unsuitable
for stability-dependent scenarios.

Additionally, researchers take environmental factors into account when seeking the
optimal path for specific application scenarios. For instance, Bagli et al. [2] assessed criteria
related to human health, landscape, and ecosystems in order to plan power lines based
on varying environments. Effat and Hassan [20] designed a railway route that minimized
environmental impact by integrating model engineering, environmental, and hybrid per-
spectives, and eventually chose a hybrid route. Previously, the minimum cost path analysis
primarily focused on terrestrial environments. Currently, maritime transportation has
emerged as a prominent mode of transportation. Unlike land, the sea is characterized by a
flat and slopeless terrain. This entails not only considering factors such as time, distance,
energy consumption, and distance from land resources but also understanding the cultural
aspects of maritime travel [21].

As raster accuracy improves, optimizing the algorithm’s performance alone is insuf-
ficient to handle the computational burden of large-scale grids. The literature suggests
that these improving LCP strategies can be divided into three groups: limiting the search
range, decomposing the search problem and using “abstract” problem-solving strategies,
as well as a combination of the above strategies [22,23]. Moreover, parallel processing using
multiple hardware devices is also adopted as the main method [24,25].

Previous research has utilized “abstract” problem-solving strategies to create net-
work abstractions through hierarchical structures and disregard irrelevant local details
to decrease the graph’s size, resulting in a reduced computation time. Likhachev and
Ferguson [26] proposed an anytime-incremental search for autonomous vehicles on a multi-
resolution lattice state space. Apart from using a high-resolution space near the robot or
goal region, the search was conducted in a low-resolution space elsewhere. Botea et al. [27]
proposed the hierarchical pathfinding A* (HPA*) method that incorporated the A* algo-
rithm and an abstraction strategy. The grid was partitioned into blocks of equal or irregular
sizes [28] to build an abstract representation. Next, entrances along the block boundaries
were identified and interconnected with the nodes on both the block and the internal
boundaries. Subsequently, the initial and destination points were connected to the graph to
create the final path. The method has undergone several improvements [29,30]. HPA* is
designed to perform path planning on a nonuniform cost grid and is primarily employed in
the fields of robotics and gaming. Sánchez-Ibánez et al. [31] proposed a novel path planning
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method for planetary exploration rovers that utilizes a two-layer multi-resolution grid.
MRA* [32] reduces the computational cost of memory and preprocessing, and in the search
process, it timely constructs a graph based on multi-resolution to ensure the integrity and
suboptimality. Even though these methods all use the idea of multi-resolution hierarchical
abstraction, our method is different in that it proposes a universal path computation frame-
work that can be integrated with different raster-based path search algorithms. The specific
process of the method also has its own characteristics, and parallel computing is introduced
to greatly improve efficiency. The paper [33] proposed a method for path solving utilizing
a multi-resolution raster model. However, it only incorporated the A* search algorithm
while considering slope and distance factors, without taking into account downsampling
on the raster cost surface. Additionally, it diverged in terms of the criteria used for selecting
the path’s points. The experimental section in this paper is more extensive and detailed,
with a comprehensive consideration of these factors.

This paper proposes an effective method for calculating the least-cost path using a
multi-resolution raster cost surface model, which addresses the challenges encountered
in large-scale raster computation. Through a series of computational experiments, we
demonstrate the effectiveness of this approach. We refer to this method as multi-scale
least-cost path (MS-LCP) since it computes the least-cost path on a multi-scale raster.
The structure of this paper is organized as follows: In Section 2, we provide an overview of
the fundamental theory of the least-cost path based on raster. Section 3 presents the detailed
process of the proposed MS-LCP method, accompanied by the experimental process and
results in Section 4. Section 5 discusses the advantages and limitations of our approach.
Section 6 summarizes the primary findings of the experiments, identifies the shortcomings,
and suggests future research directions.

2. Least-Cost Paths on Raster Cost Surfaces

A pixel is the smallest unit of measurement in a raster. The size of a pixel determines
the level of information and resolution in a raster. Every pixel has a spatial resolution and
attribute values. The spatial resolution pertains to the surface area that a single pixel covers.
For instance, when the raster precision is set at 5 m, every pixel represents an area of 5 m
squared. Increasing the spatial resolution improves the representation of surface features
in a raster, at the cost of requiring more storage and processing power. The attribute values
indicate the prominent features of the corresponding area, either in whole numbers or
decimal points. As an illustration, each single pixel in a raster digital elevation model
(DEM) corresponds to a square region. The elevation value within that region is the average
or median.

A raster cost surface assigns different cost values to different locations in space. It is
formed by combining raster landscape features in a weighted manner. The costs required
for different landscape features are measured using various comparable units. Generally,
the values of each landscape are scaled to the same range for weighting [34]. The cost value
can represent the time and resource consumption required for the location in the path or
space analysis. The problem of the shortest path on a grid-based map consists in finding
the minimum length between two given points, where the map may include obstacles
or diverse terrains. The algorithms commonly used to solve this task are Dijkstra’s and
A* algorithms. To solve the least-cost path problem, adjusting the cost function of the
nodes based on the fundamental principles of Dijkstra’s algorithm is necessary. Assuming
a path P is given on the cost surface f , the traditional least-cost path Min Lsum(P, f ) is
expressed as:

Min ∑
i,jεP

[(
f (i) + f (j)

2

)
· l(i, j)

]
(1)

Here, f (i) denotes the value of grid i on the cost surface f , and l(i, j) denotes the straight
distance between grids i and j. The formula, known as “minimum-cost path” [10], is the
LCP model that is compared with the method in this paper. Additionally, the optimality of
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the minimum-cost path can be evaluated by minimizing the maximum cost length. This
ensures that the cost of the selected path is not too high even in the worst-case scenario.

3. Method
3.1. Overview of Proposed MS-LCP Method

The multi-scale least-cost path (MS-LCP) method utilizes a multi-resolution raster
model for data processing prior to path calculation. The multi-resolution raster model
gradually downsamples according to scale. The model is constructed by hierarchically
processing the original high-resolution cost surface raster. In the downsampling process,
multiple pixels from the high-resolution raster are compressed into one pixel in the low-
resolution raster, thereby retaining rich information. The number of pixels in the raster
progressively decreases, layer by layer.

When downsampling a raster, we first need to choose downsampling coefficients and
methods. Common downsampling coefficients is 2:1, and methods such as the average
and maximum can be used. Downsampling results in a change in scale. Selecting a 2:1
ratio factor, as shown in Figure 1, halves the number of pixels in the rows and columns,
thereby reducing the original raster by half. Downsampling affects the spatial resolution
as well. For instance, if a high-resolution raster has a 5-meter resolution, the spatial
resolution becomes 10 m after using a 2:1 downsampling coefficient. Considering the
required practical applications and the limitations of computational resources, it is essential
to select appropriate downsampling methods and coefficients carefully.

Figure 1. A multi-resolution raster cost surface model (MRCSM) using a 2:1 downsampling
coefficient.

The multi-resolution raster cost surface model (MRCSM) we constructed bears re-
semblance to a raster pyramid, yet there are distinctions between them. A raster pyramid
model is frequently employed in geographic information systems (GIS) to improve the
efficiency of the raster display. This is commonly accomplished through the utilization of
three resampling techniques: nearest neighbor, bilinear, and bicubic convolution, wherein
a 2:1 ratio is employed for successive downsampling. However, the MRCSM we devised
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exclusively incorporates downsampling, wherein the use of average or maximum down-
sampling methods is permissible. Additionally, the downsampling ratio is not confined to
a strict 2:1 proportion, affording flexibility for any adjustment.

Using a downsampling coefficient of 2:1 may result in the rows and columns of the
original raster not being a multiple of 2. In such cases, the original raster is typically either
padded or cropped to make it a multiple of 2, or the downsampling coefficient is directly
changed (for example, to 3:1) to solve the problem. Cropping may have a serious impact on
the subsequent path search and is not recommended. To aid in the mapping of path points
between different-level rasters, we maintain a constant downsampling coefficient and
perform padding on the original raster, copying the raster edge data from the last row or
column value as well. It should be noted that values that are too large, too small, or special
values (such as “no data”) should not be used for padding, otherwise the downsampling
and path search will be affected, leading to edge effects on the path.

Excessive downsampling can result in the loss of important details in low-resolution
grids. Therefore, in the proposed method, a threshold is set to control the level of the
MRCSM. A low-resolution raster needs to be kept within a certain range in order to obtain
an undistorted path. If the scale of the low-resolution raster is less than a certain value,
better path results cannot be obtained, and this value can be the minimum scale threshold.

After constructing the MRCSM, the second stage involves a path calculation. The num-
ber of pixels directly affect the calculation and storage of the paths. Figure 2 ignores the
spatial resolution of pixels and focuses on changes in the raster scale. We first solve the
least-cost path at the lowest resolution to obtain a coarse-grained path. Then, in the follow-
ing steps, we select some directional points on the coarse-grained path, and the collection
of directional points represents the approximate direction of the path. After obtaining a
series of directional points, it is mapped to the higher resolution raster of the next layer,
and then the least-cost path between each pair of path points is calculated. The above steps
are repeated until the final path of the original high-resolution raster has been obtained.
The steps of the MS-LCP method are as follows:

step 1. Acquired data from remote sensing are utilized to produce cost maps based on
various criteria as input data.

step 2. Set the threshold of the minimum resolution for the grid scale. Downsample the
cost of each grid. Record the new scales of each layer grid and the positions of the
starting and the target point in each layer. Use a grid-based path search algorithm.

step 3. Traverse the grid layers from low to high. Calculate the path and record the sequence
of paths starting from the minimum resolution grid.

step 4. Filter the directional points and map the path points on the medium-high resolution
grid one by one. Each time a new graph structure is established based on the path
search range, calculate the paths between each group of path points serially or in
parallel to obtain the final sequence of paths.

step 5. Each layer can output the corresponding path map. Steps 2–4 complete the calcula-
tion of a cost map. In the case of multiple cost maps, iterate through steps 2–4.
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Figure 2. The multi-scale least-cost path (MS-LCP) method: The first stage is to obtain a multi-
resolution raster cost surface model of different scales using downsampling. The second stage is the
path search on the raster cost surface at different scales.

3.2. Determination of Search Area

The raster-based least-cost path first needs to create a graph. Given the starting
point and target point, we determine the search area of the path search algorithm to save
computation time. The search area is usually a rectangle or polygon, where each unit or
grid of raster is considered a path node, and all nodes form a shape. If the search area is
a rectangle with the top-left corner node as (x1, y1) and the bottom-right corner node as
(x2, y2), then all the nodes it contains can be represented as:

S = {(i, j)|x1 ≤ i ≤ x2, y1 ≤ j ≤ y2} (2)

Among them, S is the set of all nodes in the search area, i is the x-coordinate of the
node, and j is the y-coordinate of the node. Therefore, the size of the search area can be
obtained by calculating (x2 − x1 + 1)× (y2 − y1 + 1), which is the number of nodes.

Assuming that the raster surface has a width of W and a height of H, each cell is
of size s × s. To determine the search area from starting point

(
startx, starty

)
to target

point
(

goalx, goaly
)
, a rectangle is used. The search radius represented by r is the max-

imum distance that can be searched, defined as a multiple of s and calculated in grid
units. A circle with a radius of r using the starting or target point as the center is drawn,
and all cells encompassed by the circle are considered part of the search area, as shown in
Figure 3a. The upper left cell of the rectangular area representing the search area is located
at (xmin, ymin), and the lower right cell at (xmax, ymax). The upper left and lower right
corner coordinates of the search area can be recalculated based on the starting point, target
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point, and search radius r. The calculation method for the coordinates of the upper left cell
is as follows:

xmin = min(startx, goalx) − r/s

ymin = min
(
starty, goaly

)
− r/s

s.t. xmin, ymin ≥ 0

(3)

The cell coordinates in the lower right corner are:

xmax = max
(
startx, goaly

)
+ r/s

ymax = max
(
starty, goaly

)
+ r/s

s.t. xmax < H, ymax < W

(4)

Figure 3. Determination of the search area: (a) search area determined by the starting point and target
point; (b) search area determined together by the starting point, target point, and other auxiliary
edge points.

Therefore, the search area SA can be represented as:

SA = {(i, j)|xmin ≤ i ≤ xmax, ymin ≤ j ≤ ymax} (5)

During the path calculation process on the MRCSM, the search area on the lowest
resolution raster can be determined as the area between the starting point and target point
as mentioned above. However, the search area on subsequent higher resolutions may need
to be further adjusted. As shown in Figure 3b, a point is needed to assist the above starting
point

(
startx, starty

)
and target point

(
goalx, goaly

)
in the selected sequence of directional

points for the path, in order to obtain the new search area formed by (xmin, ymin) and
(xmax, ymax).

3.3. Selection of Directional Points

Directional points differ from turning points on a path and the extraction method is
relatively loose, including some not very obvious turning points. Consider a set of row and
column coordinates on the path as (x1, y1), (x2, y2), . . . . . . , (xn, yn). Here, n represents the
number of points along the path. This paper extracts directional points according to the
following steps:

1. For each point on the path (xi, yi), calculate its direction with the previous point

(xi−1, yi−1) using the vector representation
−−−→
PiPi−1 = (xi − xi−1, yi − yi−1).
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2. For the points that are in the middle of the path (x2, y2), (x3, y3), . . . ., (xn−1, yn−1),
calculate the direction of the line connecting it with the previous point (xi−1, yi−1)

and the next point (xi+1, yi+1), that is,
−−−→
PiPi−1 = (xi − xi−1, yi − yi−1) and

−−−→
Pi+1Pi =

(xi+1− xi, yi+1− yi). Then, add these two vectors to obtain
−−−−−→
Pi+1Pi−1 =

−−−→
PiPi−1 +

−−−→
Pi+1Pi.

When the judgment condition cos θ =
−−−−−→
Pi+1Pi−1·

−−−→
Pi Pi−1

|−−−−−→Pi+1Pi−1|·|
−−−→
Pi Pi−1|

≥ cos 45◦ =
√

2
2 , and cos θ 6= 1

is met, that is, the angle between
−−−−−→
Pi+1Pi−1 and

−−−→
PiPi−1 is no more than 45 degrees and

greater than 0 degrees, the point is recorded as a path directional point.
3. The starting point and the target point should also be recorded as directional points,

since they also represent the direction of the path.

The list of directional points obtained from the previous steps is collected. In addition
to the method used to extract directional points from the path described above, polynomial
curve fitting is an alternative method. This approach involves segmenting the path into line
segments, performing a polynomial curve fitting on each segment, and filtering directional
points after calculating the curvature. An appropriate curvature threshold must be chosen
when using polynomial curve fitting to avoid issues resulting from exaggerated bending.

3.4. Mapping of Directional Points on Multi-Scale Raster

After obtaining the path nodes on the low-resolution grid, if the row and column values
of the resulting path are different from the row and column values of the low-resolution
grid, the row and column coordinates of the path nodes should be changed. For example,
the row–column sequence of the search area determined on the low-resolution grid is
(xmin, ymin), (xmin, ymin+1), . . . ., (xmax, ymax), when a new graph structure is created
from the search range and the path calculation is performed, if the rows and columns
are redefined as starting from 0, the coordinates of the path directional points need to
be magnified.

After obtaining the coordinates of appropriate path directional points, they are then
mapped to a high-resolution raster. With a downsampling coefficient of 2:1 and using the
averaging method, the row and column of a certain cell on the low-resolution raster are
denoted as (x, y), which correspond to (2x, 2y), (2x + 1, 2y), (2x, 2y + 1), and (2x + 1, 2y + 1)
on the high-resolution raster. If the path directional points are the starting and target point,
they are mapped directly to the starting and target points of the high-resolution raster.
For other directional points, the point with the minimum cost among the four located on
the high-resolution raster is chosen.

3.5. Calculation Method between Multiple Sets of Path Points

To map a sequence of path directional points onto a high-resolution raster, compu-
tations are made between each pair of adjacent points along the path, and the resulting
path values are connected to create the final path. The use of a serial calculation method
for numerous sets of path points is inefficient. The parallelization of this task is deemed
feasible if it can be decomposed into independent, noncommunicating subtasks. The results
of the subtasks for each path must merge seamlessly without any data-dependent conflicts.

We divide the multiple path calculation tasks into left and right subtrees, recursively
compute the least-cost paths of each, and then merge the results. We set a threshold
based on the number of selected directional points to determine whether to parallelize the
path calculation. If the number of directional points is less than 4, parallel resources are
unnecessary. By adjusting the threshold, the path calculation can be configured to be either
serial or parallel. Further optimizations can be achieved by fine-tuning the task partitioning
and load balancing to take full advantage of the strengths of parallel computing technology.

Simultaneously during multi-threaded parallel computing, the search area may affect
the process. Two scenarios exist in our computation processes. In one scenario, each
thread acquires the search area of the complete high-resolution raster, while in the other
scenario, each thread determines the search area based on individual path-point groups.
We conducted experiments on both scenarios. The first scenario offers a higher path
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accuracy than the latter, while the latter provides a faster efficiency. Balancing efficiency
and accuracy, our method, in the following section, employs the initial scenario for testing.
We simultaneously employed Dijkstra’s algorithm as the path search algorithm in our
experiment. Furthermore, we can employ different path search algorithms, such as the A*
algorithm and dynamic programming algorithm, without jeopardizing the efficiency and
functionality of our method.

4. Experiments

To validate the effectiveness of our approach, three computational experiments were
conducted, utilizing Dijkstra’s algorithm as the path search in all of them. We selected
the widely employed downsampling methods of averaging, maximum values, and a 2:1
proportion factor for downsampling the raster cost surface. The initial experiment entailed
a comparison of the path accuracy using synthetic data. The subsequent experiment
examined the efficiency of the method. The final experiment aimed to assess the limits of
the proposed method using real data. Java was employed as the programming language
for all experiments, conducted on a computing system featuring an Intel Core i7-12700H
CPU processor operating at 2.30 GHz and equipped with 32 GB of memory.

4.1. Data
4.1.1. Experiment 1

Realistic neutral landscape models with diverse spatial configurations can be gen-
erated by employing multiple algorithms. As described in the work of Murekatete and
Shirabe [10], we generated two categories of random raster cost surfaces, totaling one
thousand, using the midpoint displacement method [35] and the random-cluster nearest-
neighbor algorithm provided by PYTHON software package, NLMpy [36]. We discretized
the random values into equidistant integer intervals and saved them as raster files. These
raster surfaces exhibited two distinct spatial structures: one with a continuous gradient of
values (named “cloudy”) and the other with constant values separated by clear boundaries
(named “patchy”).

The “cloudy” raster was generated using the mid-point displacement method pro-
vided by the NLMpy function. The function takes three parameters and generates a grid
with randomly assigned values ranging from zero to one. The parameters nRow and nCol
determine the dimensions of the grid, and the parameter h controls the level of spatial
autocorrelation. Moreover, the “patchy” raster was created by utilizing the random-cluster
nearest-neighbor algorithm, which partitions the grid into irregular shapes of relatively
consistent dimensions. The parameter s was used to control the approximate size of the
patch. After obtaining the grids within the specified range, both types were converted
into cost surfaces. The cost values for the two types of cost surfaces ranged from 1 to 100,
and the class of values was determined by the number of unique values in the synthetic
landscape raster.

This experiment involved generating 1000 sets of cost surface data for the two types
separately. Moreover, the number of rows (nRow) and columns (nCol) both equaled 200.
Figure 4 showcases examples of cost surfaces with various classes, including “cloudy” and
“patchy” types.
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Figure 4. Examples of (a,b) cloudy cost surfaces and (c,d) patchy cost surfaces: (a) 4 classes,
(b) 10 classes, (c) 7 classes, and (d) 4 classes. Darker shades represent higher values.

4.1.2. Experiment 2

We created three additional sets of data, each containing 200 cloudy cost surfaces,
with cell sizes of 250× 250, 500× 500, and 750× 750, respectively. The experiment was run
on a computer with 14 cores and 20 threads, as well as 32 GB of memory.

4.1.3. Experiment 3

A cost surface comprising three datasets, elevation, land cover, and infrastructure, was
obtained for road planning, aiming to assess the performance of the proposed method on
actual data [37]. The cost surface could be weighted based on various criteria, including
water, land cover, slope, and buildings. For this experiment, a cost surface of around
500 square kilometers was utilized, featuring a spatial resolution of 20 m and cost values
ranging from 1 to 820. Figure 5 shows that water sources contribute the highest proportion
of the cost in this cost surface, followed by land use.
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Figure 5. Raster cost surface comprising three datasets: elevation, land cover, and infrastructure.

4.2. Results
4.2.1. Experiment 1

On the cloudy and patchy cost surfaces, we obtained 1000 pairs of LCP and serial
MS-LCP path results and calculated the total cost length of each path. Meanwhile, we
adopted the approach proposed by Murekatete and Shirabe [10] to measure the maximum
cost length and measured the segment length that intersected with the “undesirable” cell,
which is greater than or equal to the maximum cost length of the LCP, for comparison.

Tables 1 and 2 show the partial path results for 1000 pairs of LCPs and MS-LCPs
generated on cloudy and patchy cost surfaces. Among them, the MS-LCP selected two
types of downsampling methods: average and maximum. The four groups of data chose the
same set of starting and target points to compare the path under different downsampling
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methods. l(LCP) and l(MS-LCP) represent the cost length of the total path, and the ratio of
two paths’ total lengths is shown as l(MS-LCP)/l(LCP). u(LCP) and u(MS-LCP) represent
the length of fragments intersecting with “undesirable” cells. Similarly, the ratio between
them is shown as u(MS-LCP)/u(LCP).

Table 1. Results on cloudy or patchy cost surfaces and the multi-scale least-cost path (MS-LCP) using
the average downsampling method.

Cost Surfaces ID l(LCP) l(MS-LCP) u(LCP) u(MS-LCP)

Cloudy

0 10,565.57 10,585.46 32.06 33.51
1 17,893.35 17,925.78 61.10 59.69
2 10,890.05 11,343.96 13.31 13.07
3 17,703.28 17,703.28 29.70 29.70

. . . . . . . . . . . . . . .
996 2918.50 3126.06 20.09 24.68
997 8220.12 8222.81 45.13 45.34
998 17,296.15 17,351.81 48.38 48.96
999 15,812.72 15,812.72 29.70 29.70

Patchy

0 6376.10 6558.65 8.50 6.12
1 8236.46 8284.00 17.26 17.26
2 11,515.55 11,539.67 53.16 50.75
3 10,448.90 10,505.47 9.71 9.71

. . . . . . . . . . . . . . .
996 14,437.07 14,470.38 37.36 36.53
997 9248.01 9423.55 2.83 0.00
998 9165.71 9249.36 8.95 9.36
999 15,903.55 15,903.55 55.33 55.33

Table 2. Results on cloudy or patchy cost surfaces and the multi-scale least-cost path (MS-LCP) using
the maximum downsampling method.

Cost Surfaces ID l(LCP) l(MS-LCP) u(LCP) u(MS-LCP)

Cloudy

0 10,565.57 10,738.45 32.06 40.96
1 17,893.35 17,930.61 61.10 59.69
2 10,890.05 11,450.37 13.31 14.69
3 17,703.28 17,703.28 29.70 29.70

. . . . . . . . . . . . . . .
996 2918.50 3311.17 20.09 25.68
997 8220.12 8261.94 45.13 47.13
998 17,296.16 17,352.01 48.38 49.17
999 15,812.72 15,812.72 29.70 29.70

Patchy

0 6376.10 6589.71 8.50 6.12
1 8236.46 8329.78 17.26 17.26
2 11,515.55 11,550.11 53.16 53.16
3 10,448.90 10,558.63 9.71 9.71

. . . . . . . . . . . . . . .
996 14,437.07 14,470.38 37.36 36.53
997 9248.01 9381.04 2.83 0.00
998 9165.71 9225.55 8.95 10.19
999 15,903.55 15,903.55 55.33 55.33

Figures 6 and 7 illustrate visualization results of 1000 data points in the dimensions
of l(MS-LCP)/l(LCP) and u(MS-LCP)/u(LCP), respectively. The corresponding ranges,
medians, and averages are labeled. It should be noted that for each set of data, the total
length of the path in 80% of the MS-LCP results is only slightly different from that of
the LCP. The averages and medians are both close to one, and the value range is [1, 1.33].
The u(MS-LCP)/u(LCP) dimension has value ranges of [0, 15.67], [0, 21.19], [0, 30.83],
and [0, 21.90]. Additionally, there are cases where the length of the intersection between
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the maximum downsampled MS-LCP and the “undesirable” cell exceeds the average
downsampled MS-LCP.

Figure 6. The y-axis shows l(MS− LCP)/l(LCP) or u(MS− LCP)/u(LCP), and the x-axis shows
the ID. The plotted chart displays the range, median and mean values. (a,c): results on cloudy cost
surfaces and the MS-LCP using average downsampling; (b,d): results on patchy cost surfaces and the
MS-LCP using average downsampling.

In addition, we compared the maximum value, minimum value, and Pth percentile of
path cost values to comprehensively compare the cost value composition of different paths.
In Tables 3 and 4, we compared the maximum and minimum cost values of two different
paths, as well as the 75th, 50th, and 25th percentiles. Based on the cloudy and patchy cost
surfaces, we considered the impact of different downsampling methods.

Table 3. Results on cloudy or patchy cost surfaces and MS-LCP using the average downsampling
method.

Cost Surfaces Values LCP < MS-LCP LCP = MS-LCP LCP > MS-LCP

Cloudy

Maximum 28 950 22
75th percentile 47 911 42
50th percentile 38 915 47
25th percentile 21 951 28

Minimum 4 987 9

Patchy

Maximum 17 965 18
75th percentile 29 947 24
50th percentile 17 961 22
25th percentile 15 970 15

Minimum 2 996 2
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Figure 7. The y-axis shows l(MS− LCP)/l(LCP) or u(MS− LCP)/u(LCP), and the x-axis shows
the ID. The plotted chart displays the range, median and mean values. (a,c): results on cloudy cost
surfaces and MS-LCP using maximum downsampling; (b,d): result on patchy cost surfaces and
MS-LCP using maximum downsampling.

In Table 3, when the cost surface is “cloudy”, there are 28 cases where the maximum
cost value of the LCP is lower than that of the MS-LCP; there are 950 cases where the
maximum cost value of the LCP is equal to that of the MS-LCP; and in the remaining
22 cases, the maximum cost value of the LCP is higher than that of the MS-LCP. Other data
in the table can be explained similarly. From the table, it can be seen that the difference in
path cost between the LCP and the MS-LCP on the patchy cost surface is smaller than the
difference on the cloudy cost surface. The path accuracy of MS-CP based on the average
downsampling is higher than that of the maximum downsampling.

Table 4. Results on cloudy or patchy cost surfaces and MS-LCP using the maximum downsampling
method.

Cost Surfaces Values LCP < MS-LCP LCP = MS-LCP LCP > MS-LCP

Cloudy

Maximum 47 935 18
75th percentile 71 884 45
50th percentile 48 898 54
25th percentile 35 934 31

Minimum 4 987 9

Patchy

Maximum 18 951 31
75th percentile 47 912 41
50th percentile 35 935 30
25th percentile 25 958 17

Minimum 6 993 1

Figure 8 illustrates four path scenarios with identical starting and target points.
The green path represents the LCP, while the red path represents the MS-LCP. The blue
dotted box indicates the distinctions between the two paths. On the cloudy cost surface,
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the MS-LCP is better suited for the average downsampling. On the patchy cost surface, the
various downsampling techniques of the MS-LCP method yield favorable outcomes.

Figure 8. (a) LCP and MS-LCP using average downsampling on cloudy cost surface. (b) LCP and
MS-LCP using maximum downsampling on cloudy cost surface. (c) LCP and MS-LCP using average
downsampling on patchy cost surface. (d) LCP and MS-LCP using maximum downsampling on
patchy cost surface.

4.2.2. Experiment 2

On the raster cost surface with 250 × 250, 500 × 500, and 750 × 750 scales, two
different random cells were selected to calculate the LCP and parallel MS-LCP on the
same computing platform of the first experiment. Since there was little difference in time
between average and maximum downsampling, we compared the average calculation
time of the LCP and average downsampled MS-LCP, as shown in Table 5. The time of the
MS-LCP includes reading the raster, downsampling, determining the search area, selecting
directional points and mapping, as well as constructing graphs and calculating the path.
The time of the LCP includes reading the raster, constructing graphs, and calculating
the path.

Table 5 reveals that the average calculation time for the LCP increased gradually as the
raster scale increased; conversely, the average calculation time for the MS-LCP increased
only marginally. The LCP’s calculation time for each raster was relatively consistent, while
the MS-LCP’s calculation time varied significantly. The LCP relied on the complete diagram
of the raster construction process to perform calculations, whereas the MS-LCP set the
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search area and parallelizable characteristics, making it better-suited for large-scale data
processing under optimal computing power and storage conditions.

Table 5. Results on cloudy cost surfaces and MS-LCP using the average downsampling method.

Methods Rows and Columns of Cost Surfaces
250 × 250 500 × 500 750 × 750

LCP 0.25 s 4.06 s 20.92 s
MS-LCP 0.07 s 0.09 s 0.26 s

4.2.3. Experiment 3

Path search results were obtained for both the traditional LCP method and the pro-
posed MS-LCP method using real terrain data. Different starting and target points were
randomly selected for each set. Tables 6 and 7 display the ratios of l(MS-LCP)/l(LCP)
and u(MS-LCP)/u(LCP) for the 1000 datasets under each downsampling methods, along
with the corresponding ranges, medians, and means. Figure 9 illustrates the paths that
correspond to the results mentioned above.

Figure 9. (a) Mixture of three different paths. (b) LCP on raster cost surface. (c) MS-LCP using
average downsampling on raster cost surface. (d) MS-LCP using maximum downsampling on raster
cost surface.

Table 6. LCP and MS-LCP using the average downsampling method.

Range Median Mean

l(MS-LCP)/l(LCP) (1, 1.60) 1.04 1.05
u(MS-LCP)/u(LCP) (0, 6.24) 0 0.42

Table 7. LCP and MS-LCP using the maximum downsampling method.

Range Median Mean

l(MS-LCP)/l(LCP) (1, 1.53) 1.08 1.09
u(MS-LCP)/u(LCP) (0, 11) 0 0.41
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Based on the data in the table, it is evident that for actual terrain data, the majority
of path search results obtained using the MS-LCP method fell within an acceptable range.
When the search range between the starting point and the target point became smaller
(i.e., the starting point was in close proximity to the target point, indicating a narrower
data range), the total cost length of MS-LCP increased significantly compared to that of the
LCP. Due to the downsampling being applied before each path calculation, the MS-LCP
was not suitable for datasets with a small range. Furthermore, during the experiment, it
was observed that due to the presence of obstacles on the cost surface (which signified
impassable areas), the average downsampled MS-LCP with good performance may exhibit
substantial discrepancies in overall path direction, when compared to the LCP, as depicted
in the Figure 10. However, the total cost length of the MS-LCP at that point did not
exhibit substantial differences compared to that of the LCP. Owing to the continuous
downsampling, the extent of obstacle areas gradually diminished, and even the grid
with the lowest resolution may contain no obstacle areas. Consequently, the MS-LCP
progressively deviated from the intended direction during point mapping across multiple
resolution grid layers.

Figure 10. The green path represents the LCP, the red path represents the MS-LCP using an average
downsampling, and the blue path represents the MS-LCP using a maximum downsampling. The red
rectangular area indicates the initial divergence point of the three paths. Within the cost gird, the white
areas signify areas obstructed by water.
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5. Discussion

On the patchy cost surface, both the average and maximum downsampled MS-LCP
paths achieved good results. On the cloudy cost surface, the MS-LCP obtained by the
average downsampling was more accurate and reliable than using the maximum down-
sampling. This could be attributed to the fact that the average downsampling smooths
the details in the raster to a certain extent and preserves periodic fluctuations or noise.
However, the maximum downsampling ignores some noise and detail information by only
using the maximum value, introducing discontinuities and reducing the accuracy of the
path calculation.

The continuous downsampling of the raster can introduce errors that divert the
path from the optimal solution, leading to a reduction in accuracy. While downsampling
improves efficiency, it is important to strike a balance to avoid blindly prioritizing efficiency
over accuracy. On the low-resolution grid, there are no directional points along the path
except for the start and end points, which indicates that the path is closer to a straight
line. In this situation, the additional downsampling process will decrease the efficiency of
the method. Conversely, if more path directional points are selected, suggesting multiple
bends in the path, the efficiency of the path will also be reduced. These two scenarios
represent extreme cases. When there is sufficient computational power and storage capacity,
efficiency can still be improved. However, if the selection of path directional points is too
dense, the final path will be more curved, necessitating path smoothing. Experimental
results revealed that obstacle regions in the cost grid could influence the overall direction
of the path. This occurred because as the downsampling of the obstacle region proceeded,
the region gradually shrunk. Although there was a significant change in the overall
direction of the path, the total cost length of the path did not deviate significantly.

Building a multi-resolution raster cost surface model consists in preprocessing the
abstract representation of maps at various levels. It heavily relies on smooth transitions
between high- and low-resolution abstractions, requiring a significant amount of mem-
ory to maintain the abstractions of each layer and the associated computational cost of
preprocessing. However, our method aims to enhance the efficiency of path searches in
large-scale maps. By utilizing a multi-resolution raster model, determining the search
area, and parallelizing path computations, the efficiency is significantly improved. Many
scholars have proposed schemes for multi-resolution or variable-resolution representations
of maps. However, their computational efficiency with large-scale data is not comparable
because our method can rapidly achieve efficiency. In addition to parallel computing in
path solving, it can also be utilized for path point mapping.

The analysis of the least-visible path (LVP) aims to determine the path with the lowest
cost on a visibility-associated cost surface [7]. In the traditional least-visible path approach,
the cost surface is calculated by obtaining visibility information for all terrain points in
a raster digital elevation model (DEM). The viewshed matrix utilizes the line of sight to
compute the visibility between grid cells. Our proposed method can provide a solution for
determining the least-cost path on the large-scale viewshed map.

6. Conclusions

The proposed multi-scale least-cost path (MS-LCP) method aims to perform a path
search on large-scale cost surface and is a general computational framework. Firstly,
the cost raster is preprocessed using different downsampling methods. A rough path is
obtained on a low-resolution raster representing coarse-grained information. By defining
the search area, filtering path directional points, and mapping path points, the final path
on a high-resolution raster is determined. Experimental results on synthetic and real data
demonstrated the effectiveness of the method. The efficiency of the method on large-scale
data can be significantly improved through parallel computing.

Overall, the MS-LCP method is very versatile for least-cost path calculations, consid-
ering multiple factors and producing an end-to-end path output. We mainly conducted
experiments using a downsampling ratio of 2:1, but other ratios can be attempted. In the
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directional point filtering process, we did not consider the density of the path points, which
can be further optimized. This study is applicable to the fields of geography and GIS. It
requires specific storage conditions and computing resources for effective path planning
over large areas. Furthermore, this study can be expanded to serve broader purposes.
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