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Abstract: The rapid growth in Earth’s global geospatial data necessitates an efficient system for
organizing the data, facilitating data fusion from diverse sources, and promoting interoperability.
Mapping the spheroidal surface of the planet presents significant challenges as it involves balancing
distortion and splitting the surface into multiple partitions. The distortion decreases as the number
of partitions increases, but, at the same time, the complexity of data processing increases since each
partition represents a separate dataset and is defined in its own local coordinate system. In this paper,
we propose the Dual Orthogonal Equidistant Cylindrical projection method to mitigate distortion
and reduce the number of partitions. Additionally, we use the rotation of the graticule system on the
globe to achieve the oblique aspect, which effectively minimizes average angular and areal distortions
of Earth’s landmass and reduces the interruption of continental plates caused by partition edges. By
incorporating auxiliary latitudes and proposing an approximate authalic latitude, we further enhance
the mapping of the ellipsoid onto the sphere, simplifying calculations. The experimental results
demonstrate a substantial reduction in distortion and interruption of continental plates. With only
two partitions, an average landmass angular distortion of less than 3.56 degrees and an average areal
distortion of less than 1.07 were achieved.

Keywords: discrete global grid system; equidistant cylindrical projection; Yin–Yang; distortion

1. Introduction

Organizing and referencing geospatial data pose increasingly complex challenges due
to the sheer volume and rapid growth of the data collected. For example, the daily influx of
high-resolution satellite imagery alone amounts to terabytes of data. It is important to store
these data in a format that allows easy access, referencing, sharing, and analysis without
frequent re-projections to maintain accuracy.

Addressing these challenges requires the development of a spatial reference frame
capable of fusing data from diverse sources into a global mosaic at multiple resolutions.
Discrete Global Grid Systems (DGGSs) have emerged as a promising class of such reference
frames. They use hierarchical tessellation to partition and address the entire planet without
gaps or overlaps. The development of DGGS began in the mid 20th century [1] but only
became popular at the turn of the century [2–4]. A prominent subclass of DGGSs are
Geodesic DGGSs (GDGGSs) [4], which project the surface of the planet onto the faces
of regular or semi-regular circumscribed polyhedra. Commonly used base polyhedra
are the five Platonic solids, in particular the hexahedron (cube), while the most common
semi-regular polyhedron is the truncated icosahedron. The appearance of unfolded regular
polyhedra, the number and shape of faces, and the way they partition Earth’s surface can
be observed in Figure 1.
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Figure 1. Unfolded regular polyhedra used in GDDGSs: (a) tetrahedron; (b) hexahedron; (c) octa-
hedron; (d) dodecahedron; (e) icosahedron. 
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number of partitions to two. While the Yin–Yang grid has found applications in various 
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achieve the oblique aspect, which reduces the distortion of Earth’s landmass and mini-
mizes disruption of continental plates caused by partition boundaries. The utilization of 
auxiliary latitudes in reducing distortion during the mapping of the ellipsoid onto the 
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The experimental results and discussion are presented in Section 4, followed by the con-
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conducted in the early 1970s for the needs of the US Navy. The system was based on 
Quadrilateralized Spherical Cube (QSC), one of the first hexahedral projections imple-
mented on digital computers. The proposed system was soon modified [8], and, in the 
following years, it was also used as part of the Cosmic Background Explorer (COBE) 
project at NASA. 
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projections with the property of distributing 12N2 points as uniformly as possible over 
the surface of the unit sphere [9]. These hybrid projections combine the Lambert cylin-
drical equal-area projection for the equatorial region with the interrupted Collignon 
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Figure 1. Unfolded regular polyhedra used in GDDGSs: (a) tetrahedron; (b) hexahedron; (c) octahe-
dron; (d) dodecahedron; (e) icosahedron.

While increasing the number of faces in a polyhedron improves its approximation
of a spherical surface, it introduces complications when merging adjacent partitions due
to separate coordinate systems and datasets. Moreover, memory and CPU consumption
increase with the number of partitions in systems handling streaming geospatial data,
like out-of-core planet-scale terrain rendering applications [5]. Therefore, minimizing the
number of partitions becomes desirable. This paper explores the use of Dual Orthogonal
Equidistant Cylindrical projection, also known as the Yin–Yang grid [6], to reduce the num-
ber of partitions to two. While the Yin–Yang grid has found applications in various fields,
its potential as a cartographic projection has not been sufficiently explored. Additionally,
this paper investigates the rotation of the graticule system on the globe to achieve the
oblique aspect, which reduces the distortion of Earth’s landmass and minimizes disruption
of continental plates caused by partition boundaries. The utilization of auxiliary latitudes in
reducing distortion during the mapping of the ellipsoid onto the sphere is also considered.

This paper is divided into five sections. After this brief introduction, Section 2 provides
an overview of the historical development and importance of organizing global geospatial
data, as well as the emergence and standardization of DGGSs. Section 3 addresses the
projection of geospatial data onto a plane using the proposed method, which encompasses
ellipsoid to sphere mapping using auxiliary latitudes, sphere to plane mapping using Dual
Orthogonal Equidistant Cylindrical projection, and the rotation of the graticule system.
The goal is to minimize distortions and the number of partitions. The experimental results
and discussion are presented in Section 4, followed by the conclusion in Section 5.

2. Related Work

The need to develop a system for organizing global geospatial data is not new. One
of the first studies on the feasibility of implementing the Earth Data Base System [7] was
conducted in the early 1970s for the needs of the US Navy. The system was based on Quadri-
lateralized Spherical Cube (QSC), one of the first hexahedral projections implemented on
digital computers. The proposed system was soon modified [8], and, in the following years,
it was also used as part of the Cosmic Background Explorer (COBE) project at NASA.

Due to the regular and uniform structure of the grid consisting of square cells, consis-
tency with the Cartesian coordinate system, ease of interpolation and extrapolation, and
straightforward visualization, hexahedral projections have gained wide popularity and are
used in many different fields.

Hierarchical Equal-Area isoLatitude Pixelization (HEALPix) is a class of spherical
projections with the property of distributing 12N2 points as uniformly as possible over the
surface of the unit sphere [9]. These hybrid projections combine the Lambert cylindrical
equal-area projection for the equatorial region with the interrupted Collignon projection
for the polar regions. Of this infinite class of projections, only the projection with three
base resolution pixel layers between the north and south poles and four equatorial base
resolution pixels can be rearranged to a hexahedral projection.

Rotated HEALPix (rHEALPix) [10] is an extension of the HEALPix scheme that in-
troduces rotation capabilities, is better adapted to standards, and inherently combines
polar triangles into quadratic partitions. Further, rHEALPix has found wide application
in organizing global geospatial data [10–12]. All the previously mentioned projections
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are equal-area, but with significant angular distortions and even discontinuities. Due
to their simpler implementation and relatively good balance between angular and areal
distortion, many hexahedral projections also find application in computer graphics [13]
and, in particular, in planet-scale terrain visualization [14]. Among the best known are
Adjusted Spherical Cube (ASC) [15], Continuous Cube Mapping (CCM) [16], and Cartesian
Spherical Cube (CSC) [17].

In addition to polyhedral projections, the UTM and Equi7 grid systems and equidistant
cylindrical projection, also known as plate carree, are commonly used today. Equidistant
cylindrical projection, despite its considerable distortion, is still widely used to organize
global data because it is simple, has a regular grid structure, and can cover the entire world
in a single rectangular map. The Universal Transverse Mercator (UTM) grid system, on the
other hand, divides Earth into 60 zones, which reduces distortion but limits its application
to medium-scale mapping. Equi7 [18] is an example of a compromise that combines seven
continental grids based on equidistant azimuthal projections.

The expansion of the system for organizing and referencing global geospatial data
occurs at the turn of the century, when the first classifications appear and the term Discrete
Global Grid System (DGGS) is introduced for a very significant class of such systems. The
importance of DGGSs is also reflected in the fact that the Open Geospatial Consortium
(OGC) established the DGGS Standard and Domain Working Groups to support the stan-
dardization of these systems. In 2017, the OGC published the first version of the DGGS
Abstract Specification [19]. The standardization process continued, resulting in a formal
specification defined by ISO 19170-1:2021 standard [20] and a revised version of the OGC
Abstract Specification [21]. The popularity of DGGS has also increased due to numerous
open source implementations [22].

A recent trend in geospatial data processing involves the implementation of datacubes
based on DGGSs [23], enabling efficient management of big data workflows. DGGSs,
as a standardized representation of Earth, provide the foundational platform for Digital
Earth [24]. Digital Earth is a concept that aims to create an interactive digital replica of the
entire planet, fostering a shared understanding of the relationships between the physical
and natural environment and society [25].

The design of GDGGSs is characterized by five fundamental elements [4]:

• A regular base polyhedron;
• The orientation of the base polyhedron with respect to the planet;
• A hierarchical spatial partitioning of the polyhedron faces;
• The mapping of a spherical or ellipsoidal surface to polyhedral faces and vice versa;
• Methods for indexing and addressing cells.

In the next section, we propose improvements to three of these properties of GDGGSs,
aiming to reduce the number of partitions while minimizing distortion effects. Specifically,
we replace the faces of a regular polyhedron with only two projection planes onto which
Earth’s surface is mapped using Dual Orthogonal Equidistant Cylindrical projection, called
the Yin–Yang grid [6]. The graticule system on the globe is rotated to achieve the oblique
aspect that minimizes the landmass distortion. We also consider the use of auxiliary
latitudes in mapping the ellipsoid onto the sphere. Hierarchical spatial partitioning and
methods for indexing and addressing cells are beyond the scope of this article.

3. Method Description

Organizing geospatial data of planet Earth is a significant challenge, especially given
the recent influx of large volumes of data from various sensors that need to be integrated
into a coherent mosaic while ensuring accessibility and interoperability. This data organiza-
tion should be efficient in terms of

• Storage—using a compact distributed approach;
• Addressing and indexing—enabling easy and fast data access and supporting spatial

and temporal localization;
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• Analysis—ensuring data are in a suitable form for processing, preferably without the
need for re-projection during use and with minimal loss of precision in transformations;

• Visualization—storing data in a format suitable for display.

Meeting all these requirements simultaneously is not easy given the diverse appli-
cations for geospatial data. Many applications focus solely on Earth’s surface, with data
recorded as two-dimensional raster layers, thereby determining the shape of the referenc-
ing system. However, projecting the spheroidal surface of the planet onto a plane has
been a longstanding challenge for cartographers. No transformation fully preserves all
the properties of surface entities, ensuring that they retain their shape, proportionality,
and continuity. Conformal projections preserve shape but distort area significantly, while
equal-area projections preserve area but distort shape considerably. A projection that is
both conformal and equal-area does not exist. Preserving one property more effectively
comes at the expense of the other. Furthermore, representing the entire planet’s surface on
a single plane without singularities or discontinuities is not possible. The use of a single
planar projection leads to singularities, typically occurring at the poles or along the equator,
resulting in extreme distortions. On the other hand, combining multiple projection planes,
such as faces of a circumscribed polyhedron, leads to sudden changes or breaks in the
representation of geographic features caused by the transition from one projection system
to another.

The goal of the global grids is to create a uniform tessellation of the planet’s surface
without gaps and a unique cell-addressing system. Due to the planar organization of data,
it becomes necessary to partition the surface into multiple sections. Increasing the number
of partitions reduces distortion but complicates data manipulation when merging two or
more partitions as each partition employs its own local coordinate system. These partitions
are further divided into sections, which consist of blocks of data suitable for retrieval
and processing. Subsequently, the sections are subdivided into smaller units known as
cells, which represent the smallest addressable units in the system. Figure 2 illustrates
the process of transforming the planet’s surface into an addressable system of cells using
the example of a subdivision into two partitions based on Dual Orthogonal Equidistant
Cylindrical projection.
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Figure 2. The process of transforming the surface of the planet into an addressable system of cells.
The ellipsoid (a) is mapped onto the sphere (b) and the sphere is mapped onto a set of planar surfaces
(c). A projection of a part of the planet onto a planar surface is called a partition. Partitions are further
divided into smaller units called sections (d).

3.1. Mapping an Ellipsoid to a Sphere

The ellipsoid is the most commonly used approximation for the shape of the planet
Earth today. Due to the widespread utilization of the Global Positioning System (GPS)
and the abundance of data collected using this reference frame, the WGS 84 ellipsoid [26]
serves as the primary model for creating global datasets. To ensure interoperability, the
NGA (National Geospatial-Intelligence Agency) closely aligns the WGS 84 reference frame
with other standards, particularly the International Terrestrial Reference Frame (ITRF) [27].
Consequently, the latest official revision of the WGS 84 reference frame (G2139) remains
consistent with the IGb14 realization of the ITRF2014 [28].
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In geodetic computations, the ellipsoid model is often substituted with the spherical
model due to its higher symmetry and simpler calculation of many geodetic formulas.
Since the ellipsoidal model deviates slightly from a perfect sphere in the case of Earth,
the spherical formulas can be applied to the ellipsoid by replacing the geodetic latitude
by one of the “auxiliary latitudes”. Introducing a mapping from an ellipsoid to a sphere
introduces an additional distortion that varies depending on the applied auxiliary latitude.
Snyder mentions six auxiliary latitudes in his working manual [29]: geocentric, conformal,
authalic, parametric, rectifying, and isometric. The first five of these auxiliary latitudes
were systematically described by O. Adams, who derived all the corresponding formulas in
1921 [30], but they gained popularity much later, after the publication of Snyder’s manual.

The basic latitude used in global datasets and position determination based on global
navigation is geodetic latitude (θ). It represents the angle between the equatorial plane and
the surface normal at a point on the ellipsoid. Calculating geocentric latitude (φ), which
represents the angle between the equatorial plane and the radius vector, is relatively simple
compared to other auxiliary latitudes. Equation (1) can be used to calculate the geocentric
latitude based on the geodetic latitude, where e denotes the eccentricity of the ellipsoid.

ϕ = arctan
(
(1− e2) · tan(θ)

)
(1)

Two auxiliary latitudes are of significant importance in addressing specific types of
distortion. The application of the conformal latitude (χ) results in conformal mapping of an
ellipsoid onto a sphere, effectively eliminating angular distortion. On the other hand, the
use of the authalic latitude (β) achieves equal-area mapping, eliminating areal distortion.
The conformal latitude can be computed from the geodetic latitude using Equation (2).

χ = 2 · arctan

(
tan
(

π

4
+

θ

2

)
·
(

1− e · sin(θ)
1 + e · sin(θ)

) e
2
)
− π

2
(2)

Computing the geodetic from the conformal latitude, i.e., the inverse transformation,
requires an iterative procedure or series [29,30]. Equation (3) is one of the methods for the
inverse transformation. By using the first four terms of the sum, the computational error
can be kept below 10−12. The corresponding values for the coefficients ci can be found
in [29].

θ = χ +
∞

∑
i=1

ci · sin(2χ) (3)

The authalic latitude is calculated from the geodetic latitude using Equations (4)–(6).

q =
(

1− e2
)
·
(

sin(θ)
1− e2 · sin2(θ)

− 1
2 · e ln

(
1− e · sin(θ)
1 + e · sin(θ)

))
(4)

qp = qθ=90◦ =
(

1− e2
)
·
(

1
1− e2 −

1
2 · e ln

(
1− e
1 + e

))
(5)

β = arcsin
(

q
qp

)
(6)

Similar to the conformal latitude, the inverse transformation for the authalic latitude
requires an iterative procedure or series. Figure 3a depicts the deviation of the aforemen-
tioned auxiliary latitudes from the geodetic latitude. It can be observed that the geocentric
and conformal latitudes have very similar deviations from the geodetic latitude. Figure 3b
displays the difference between the conformal and geocentric latitude values as a function of
geodetic latitude. The maximum deviation occurs at 60◦ north and south (geodetic) latitude
and is approximately 1.4 × 10−2◦ (50.4′′). Considering the small deviation from conformal
latitude, the relative simplicity of the calculation, and the availability of a straightforward
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closed-form inverse transformation, geocentric latitude can be used to mitigate the angular
distortion of mapping an ellipsoid onto a sphere.
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To simplify the calculation of authalic latitude and gain closed-form inverse transfor-
mation, we propose the following approximated formula:

β′ = arctan
(
(1− e2)

k · tan(θ)
)

(7)

The smallest maximum deviation of the approximation (β′) from the authalic latitude
(β) for the WGS 84 ellipsoid, obtained by an iterative process of checking the maximum
values of the function for various values of k, is achieved with k = 0.666741 and is smaller
than 2.16 × 10−5◦ (0.078′′), as shown in Figure 3c. This represents a 33% improvement over
the approximation presented in [31]. The proposed formula is similar to the geocentric
latitude formula, and both the forward and inverse transformations have closed forms
and can be easily computed. The ratio of the tangents of the geodetic latitude to the
approximated authalic latitude for the WGS 84 ellipsoid is approximately 1.004488.

3.2. Mapping a Sphere onto a Set of Planes

While a sphere is more suitable for geodesic calculations compared to an ellipsoid,
it cannot be flattened into a plane without interruptions. To overcome this limitation,
the next step involves projecting the sphere onto another figure that has flat surfaces or
can be unrolled into a plane seamlessly. GDGGSs achieve this by utilizing the faces of
circumscribed regular or semi-regular polyhedra as the projection surfaces for the sphere.

Each face of the polyhedron represents a partition of a specific projection. Platonic
solids are commonly used as the base polyhedra [4] because they possess regularity, with
faces of the same shape (triangles, squares, or pentagons), equal areas, and an equal number
of neighboring faces. Among the regular polyhedra, the hexahedron (cube) is particularly
popular due to its relatively small number of partitions (six) and the square shape of both
the partitions and cells.

In addition to regular polyhedra, a commonly used semi-regular polyhedron is the
truncated icosahedron [32], which belongs to the group of 14 Archimedean solids. The
truncated icosahedron lends itself to a hexagonal cell structure, although its sides are not
all identical. It consists of 12 pentagonal and 20 hexagonal sides.

Cylindrical projections have low distortion along a freely chosen pseudoequator [33],
so they can represent very long areas with moderate distortion. One of the oldest and
simplest cylindrical projections still in use today is equidistant cylindrical projection. It
was invented by Marinus of Tire around 100 AD and, despite its considerable distortion,
remains the most commonly used projection for organizing global data. This projection
establishes a straightforward relationship between map positions and the corresponding
geographic locations.

By combining two orthogonal equidistant cylindrical projections, a projection known
as Yin–Yang [6] is obtained. The Yin–Yang projection, together with its associated grid, has
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found applications in a variety of fields, such as simulations of geodynamo and mantle
convection [6], visualization of 3D mantle convection [34], global shallow water models [35],
3D hydrodynamic simulations of core-collapse supernova evolution [36], feature extraction
from omnidirectional panoramic images [37], and many others. However, its potential as a
cartographic projection has not been extensively explored.

In general, the Yin–Yang approach uses two complementary components, and the
mapping need not be based on orthogonal equidistant cylindrical projections. However, for
simplicity, it is usually implemented in this way. To refer to the projection more precisely in
this paper, we use the term Dual Orthogonal Equidistant Cylindrical (DOEC) projection.
The name is proposed according to the modern classification of map projection [38]. Ac-
cording to the type of distortion, DOEC is an equidistant projection since the local linear
scale factor along one of the main directions is equal to one. According to the shape of the
pseudograticule, it is a cylindrical projection that represents pseudomeridians as mutually
parallel straight lines and pseudoparallels as mutually parallel straight lines perpendicular
to the pseudomeridians.

The first partition (P0), in the normal aspect, extends along the equator and is symmet-
rical about the equator and the prime meridian. It uses polar coordinates identical to global
geographic coordinates (ϕ, θ). The second partition (P1), in the transverse aspect, extends
along the anti-meridian (180th meridian), is symmetric about it, and includes both poles.
Figure 2d shows the two partitions in a rectangular shape that facilitates the determination
of their boundaries, as defined in the logical expression (10). In this shape, however, the
partitions overlap by about 6.4% of their total area. Figure 4 shows the partitions without
overlaps and their distribution over the globe. The non-overlapping shapes of the partitions
shown in Figure 4 result from the elimination of cells that satisfy condition (11). Due to the
rectangular shape of the sections and cells, there is still some overlap at the edges of the
partitions, but it decreases with increasing resolution and tends to zero.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 7 of 16 
 

 

truncated icosahedron lends itself to a hexagonal cell structure, although its sides are not 
all identical. It consists of 12 pentagonal and 20 hexagonal sides. 

Cylindrical projections have low distortion along a freely chosen pseudoequator 
[33], so they can represent very long areas with moderate distortion. One of the oldest 
and simplest cylindrical projections still in use today is equidistant cylindrical projection. 
It was invented by Marinus of Tire around 100 AD and, despite its considerable distor-
tion, remains the most commonly used projection for organizing global data. This pro-
jection establishes a straightforward relationship between map positions and the corre-
sponding geographic locations. 

By combining two orthogonal equidistant cylindrical projections, a projection 
known as Yin–Yang [6] is obtained. The Yin–Yang projection, together with its associated 
grid, has found applications in a variety of fields, such as simulations of geodynamo and 
mantle convection [6], visualization of 3D mantle convection [34], global shallow water 
models [35], 3D hydrodynamic simulations of core-collapse supernova evolution [36], 
feature extraction from omnidirectional panoramic images [37], and many others. How-
ever, its potential as a cartographic projection has not been extensively explored. 

In general, the Yin–Yang approach uses two complementary components, and the 
mapping need not be based on orthogonal equidistant cylindrical projections. However, 
for simplicity, it is usually implemented in this way. To refer to the projection more pre-
cisely in this paper, we use the term Dual Orthogonal Equidistant Cylindrical (DOEC) 
projection. The name is proposed according to the modern classification of map projec-
tion [38]. According to the type of distortion, DOEC is an equidistant projection since the 
local linear scale factor along one of the main directions is equal to one. According to the 
shape of the pseudograticule, it is a cylindrical projection that represents pseudomerid-
ians as mutually parallel straight lines and pseudoparallels as mutually parallel straight 
lines perpendicular to the pseudomeridians. 

The first partition (P0), in the normal aspect, extends along the equator and is sym-
metrical about the equator and the prime meridian. It uses polar coordinates identical to 
global geographic coordinates (φ, θ). The second partition (P1), in the transverse aspect, 
extends along the anti-meridian (180th meridian), is symmetric about it, and includes 
both poles. Figure 2d shows the two partitions in a rectangular shape that facilitates the 
determination of their boundaries, as defined in the logical expression (10). In this shape, 
however, the partitions overlap by about 6.4% of their total area. Figure 4 shows the par-
titions without overlaps and their distribution over the globe. The non-overlapping 
shapes of the partitions shown in Figure 4 result from the elimination of cells that satisfy 
condition (11). Due to the rectangular shape of the sections and cells, there is still some 
overlap at the edges of the partitions, but it decreases with increasing resolution and 
tends to zero. 

  
(a) (b) 

Figure 4. Two complementary partitions P0 (a) and P1 (b) of DOEC projection, respectively, in the 
normal and transverse aspects, and with no overlapping areas. The extent of the land mass and the 
graticule are displayed.  

The local coordinate system of partition P0 coincides with the global geographic 
grid, so no coordinate conversion is required. On the other hand, the local polar coordi-

Figure 4. Two complementary partitions P0 (a) and P1 (b) of DOEC projection, respectively, in the
normal and transverse aspects, and with no overlapping areas. The extent of the land mass and the
graticule are displayed.

The local coordinate system of partition P0 coincides with the global geographic grid,
so no coordinate conversion is required. On the other hand, the local polar coordinates of
partition P1 are determined based on either the geographic coordinates or the coordinates
of partition P0 using Equations (8) and (9).

θP1 = arcsin(− cos(θP0) · sin(φP0)) (8)

φP1 = −sgn(θP0) · arccos
(
− cos(θP0) · cos(φP0)

cos(θP1)

)
(9)

Because of the orthogonality of the partitions, Formulas (8) and (9) can also be used
to convert coordinates from partition P0 to P1 by simply exchanging the arguments. The
condition indicating that a point with local polar coordinates (ϕp, θp) belongs to the current
rectangular partition, including overlapping areas, is defined by the logical expression (10).
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The expression (11) additionally indicates that the point belongs to the overlapping area,
where θq is the latitude in the complementary partition obtained by Equation (8).(

−3π

4
< φp <

3π

4

)
∧
(
−π

4
< θp <

π

4

)
(10)

(
φp < −π

2
∧ θq <

π

4

)
∨
(

φp >
π

2
∧ θq > −π

4

)
(11)

3.3. Rotation of the Graticule System

The distribution of the distortion depends on the projection applied and is never
uniformly distributed over the surface of the partition. Typically, the distortion is minimal
in the center of the partition and increases toward the edges and corners, indicating a
greater distance of the projection plane from the surface of the sphere.

Tissot’s indicatrices [29] are commonly used to visualize distortions. They are repre-
sented as ellipses formed by projecting infinitesimal circles from the surface of the globe
onto the projection plane. The size, eccentricity, and inclination of these ellipses indicate
the type and degree of distortion present.

To better observe the distribution of the deformation parameters, instead of using
ellipses that combine multiple deformation parameters graphically, we represent each
parameter individually using a red color intensity scale. The values of the distortion
parameters are still calculated using the indicatrices. For instance, the angular distortion is
determined by calculating the maximum angular deformation ω using Equation (12) based
on the major (a) and minor (b) semi-axes of the indicatrix. The formulas for calculating the
indicatrices and the corresponding deformation parameters can be found in [29].

ω = 2 · arcsin
(
|a− b|
a + b

)
(12)

Figure 5 illustrates the distribution of angular, areal, and aspect distortion for both
DOEC partitions for the basic orientation of the graticule system, as described in the
previous section. The aspect distortion refers to the ratio of the major and minor semi-axes
of the indicatrix (a/b). Due to the property of DOEC projection and the fact that b is always
equal to 1, the values for the surface and aspect distortion are identical.

Changing the projection aspect by rotating the graticule system does not affect the
distribution of the distortion [33], which can be used to reduce the deformation of the
region of interest. In cartography, adjusting the position of projection planes or rotating
circumscribed polyhedra [39] are common techniques to achieve certain desired effects.
Even in the oldest hexahedral projection [40], the base cube is rotated 27◦ about Earth’s
axis of rotation to align the westernmost point of the African continent with the edge of
the cube. An early discussion of the orientation of the base cube can be found in [8], but
without an in-depth examination of the underlying considerations and applications.

The main reasons for the change in the basic orientation, which assumes alignment
with the equator, the prime meridian, and the poles, can be summarized as follows:

• Avoiding fragmentation of target areas: Adjusting the orientation helps prevent split-
ting local or regional target areas across multiple faces of the polyhedron [41]. This
ensures the integrity of these areas in the projection.

• Encompassing an entire continent: Changing the orientation allows an entire continent,
such as North America, to be included in a single partition [8,32]. This is beneficial for
regionally focused mapping and analysis and is suitable for a polyhedron with fewer
and larger faces.

• Preventing ruptures in the continental plates after the base polyhedron has unfolded:
This is achieved by positioning the vertices of the polyhedron at the oceans, as demon-
strated in Fuller’s Dymaxion Airocean World Map [42].
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• Minimizing landmass distortion: Another important criterion for the orientation is
minimizing landmass distortion [31]. This aims to preserve the accurate representation
of land features on the map.
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Figure 5. The distribution of angular, areal, and aspect distortion for both DOEC partitions for the
basic orientation of the graticule system.

The first two reasons mentioned above are location-specific and may not be applicable
to global systems since they prioritize specific regions. On the other hand, the latter two
reasons are more universal and serve as criteria for determining the orientation used in
DOEC. However, both criteria cannot be met at the same time. So, we first used an iterative
process and a rotation around all three Cartesian axes with a check of angular and areal
distortions to determine the optimal orientation considering landmass distortion.

To determine the optimal orientation, a vector map of the world [43] was rasterized in
LatLon WGS 84 (EPSG:4326) projection at a resolution of 4096 × 2048 pixels (see Figure 6).
The map was then reprojected on-the-fly into two partitions with progressively varying
rotation angles. Nearest neighbor sampling was used in the reprojection since it is fast and
clearly delineates the continents. In addition, Antarctica was excluded from the map to
focus on more cartographically important areas. The distortion is checked only for the cells
that belong to the landmass.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. Rasterized world map without Antarctica in LatLon WGS 84 (EPSG:4326) projection used 
to test land mass distortion. 

Considering the rotation angles, denoted as φr for the vertical axis (longitudinal ro-
tation), θr for the horizontal axis (latitudinal rotation), and ρr for counterclockwise rota-
tion about the axis perpendicular to the previous two, the minimum distortion of the 
landmass at one degree resolution was obtained as φr = 131°, θr = 49°, and ρr = −20°. To 
further reduce the clipping of the continental plates, the following corrected rotation an-
gles are proposed: φr = 125°, θr = 50°, and ρr = −15°. Figure 7 illustrates the layout of the 
partitions based on the proposed rotation angles. The advantages of DOEC projection 
and the effects of the proposed method on distortion reduction are shown in the next 
section. 

Since the effect of distortion increases with distance from the pseudoequator, the 
most unfavorable regions are located near the edges of the partitions. In the case of the 
proposed graticule rotation, the distortion is greatest in the region of northwestern Eu-
rope (Ireland and Great Britain), Alaska, the Indonesian archipelago, and New Zealand. 

  
(a) (b) 

Figure 7. Two complementary partitions P0 (a) and P1 (b) of DOEC projection obtained for opti-
mally rotated graticule system (φr = 125°, θr = 50°, and ρr = −15°) to minimize landmass distortions 
and continental ruptures. 

Optimizing the projections by rotating the graticule system leads to more complex 
data preparation that requires additional transformations. In addition, maps using this 
rotated graticule system may present a challenge to users accustomed to traditional 
north-oriented maps that adhere to long-standing cartographic conventions. While it is 
possible to selectively use map sections by applying an additional rotation that aligns the 
area of interest to the north, it is important to emphasize that the main goal of the pro-
posed projection is to efficiently organize geospatial data to minimize distortion and fa-
cilitate three-dimensional visualization. 

4. Experimental Results and Discussion 
DOEC projection offers several key advantages over circumscribed polyhedra, the 

typical choice in DGGSs. First, it reduces the number of partitions to only two. This 
property proves beneficial for out-of-core terrain rendering algorithms, such as Ellipsoi-
dal Clipmaps [5]. Minimizing the number of partitions displayed simultaneously reduces 

Figure 6. Rasterized world map without Antarctica in LatLon WGS 84 (EPSG:4326) projection used
to test land mass distortion.



ISPRS Int. J. Geo-Inf. 2023, 12, 289 10 of 16

Considering the rotation angles, denoted as ϕr for the vertical axis (longitudinal
rotation), θr for the horizontal axis (latitudinal rotation), and ρr for counterclockwise
rotation about the axis perpendicular to the previous two, the minimum distortion of the
landmass at one degree resolution was obtained as ϕr = 131◦, θr = 49◦, and ρr = −20◦. To
further reduce the clipping of the continental plates, the following corrected rotation angles
are proposed: ϕr = 125◦, θr = 50◦, and ρr = −15◦. Figure 7 illustrates the layout of the
partitions based on the proposed rotation angles. The advantages of DOEC projection and
the effects of the proposed method on distortion reduction are shown in the next section.
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Figure 7. Two complementary partitions P0 (a) and P1 (b) of DOEC projection obtained for optimally
rotated graticule system (ϕr = 125◦, θr = 50◦, and ρr = −15◦) to minimize landmass distortions and
continental ruptures.

Since the effect of distortion increases with distance from the pseudoequator, the most
unfavorable regions are located near the edges of the partitions. In the case of the proposed
graticule rotation, the distortion is greatest in the region of northwestern Europe (Ireland
and Great Britain), Alaska, the Indonesian archipelago, and New Zealand.

Optimizing the projections by rotating the graticule system leads to more complex
data preparation that requires additional transformations. In addition, maps using this
rotated graticule system may present a challenge to users accustomed to traditional north-
oriented maps that adhere to long-standing cartographic conventions. While it is possible
to selectively use map sections by applying an additional rotation that aligns the area
of interest to the north, it is important to emphasize that the main goal of the proposed
projection is to efficiently organize geospatial data to minimize distortion and facilitate
three-dimensional visualization.

4. Experimental Results and Discussion

DOEC projection offers several key advantages over circumscribed polyhedra, the
typical choice in DGGSs. First, it reduces the number of partitions to only two. This
property proves beneficial for out-of-core terrain rendering algorithms, such as Ellipsoidal
Clipmaps [5]. Minimizing the number of partitions displayed simultaneously reduces
memory consumption since each partition requires corresponding structures for visual-
ization. These structures typically include terrain elevations and high-resolution aerial
imagery at multiple levels of detail. For out-of-core algorithms, the constant updating of
these structures with geospatial data places a burden on the central processor and requires
access to network resources or slow secondary media to retrieve the data, so the number of
partitions directly affects system performance.

In addition, partition connections require special treatment in three-dimensional visu-
alization, which includes additional testing of conditions, clipping, and fitting. Therefore,
minimizing the occurrence of partition connections improves overall performance. Moving
the partition boundaries above the water surface further facilitates seamless joining. Con-
sequently, the proposed DOEC projection incorporates a rotated graticule system to not
only reduce distortion but also minimize clipping of the continental plates by the partition
boundaries. In visualizations, the water surface is usually represented dynamically by
generating details using procedural techniques. This means that the details are created
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algorithmically instead of relying on real geospatial data. Therefore, discontinuities or
irregularities at the edges of the partitions overlying the waters do not affect the generation
of the visual scene. However, if it is necessary to analyze ocean basins specifically, it would
be better to use a different oblique aspect of the projection and superimpose the boundaries
of the partitions over the continents.

Another advantage of DOEC projection is its ability to achieve a favorable balance
between areal and angular distortions. Table 1 shows the distortion values for common pro-
jections considering a perfect sphere and without rotations of the projection planes. These
values were derived from more than 67 million measurement points evenly distributed
over the surface of the partitions.

Table 1. The comparison of angular (ω), areal (σ), and aspect (α) distortions for the following
projections: Quadrilateralized Spherical Cube (QSC), revised Hierarchical Equal-Area isoLatitude Pix-
elization (rHEALPix), Adjusted Spherical Cube (ASC), Continuous Cube Mapping (CCM), Cartesian
Spherical Cube (CSC), and Dual Orthogonal Equidistant Cylindrical (DOEC). rHEALPix projection
parameters are presented independently for equatorial (rHEALPixE) and polar (rHEALPixP) regions.
In addition to the minimum (min), maximum (max), and average (ave) values of the distortion
parameters, the geometric mean of the αave and σave values (GMασ) is also displayed.

Projection Angular Distortion Areal Distortion Aspect Distortion
GMασωmin[◦] ωmax[◦] ωave[◦] σmin σmax σave αmin αmax αave

QSC 0.0 25.081 16.129 1.0 1.0 1.0 1.0 1.555 1.331 1.154
rHEALPixE 0.0 24.107 7.964 1.0 1.0 1.0 1.0 1.528 1.155 1.075
rHEALPixP 13.807 49.250 31.320 1.0 1.0 1.0 1.273 2.429 1.770 1.330
ASC 0.0 31.084 11.572 1.0 1.414 1.187 1.0 1.732 1.234 1.210
CCM 0.0 31.084 9.078 1.0 2.083 1.344 1.0 1.732 1.179 1.259
CSC 0.0 31.087 11.489 1.0 1.333 1.104 1.0 1.732 1.235 1.168
DOEC 0.0 19.759 5.864 1.0 1.414 1.113 1.0 1.414 1.113 1.113

DOEC is compared to other projections that also use square cells and can be treated
as hexahedral projections. These include Quadrilateralized Spherical Cube (QSC), rotated
Hierarchical Equal-Area isoLatitude Pixelization (rHEALPix), Adjusted Spherical Cube
(ASC), Continuous Cube Mapping (CCM), and Cartesian Spherical Cube (CSC).

Further, rHEALPix is a hybrid projection that combines Lambert cylindrical equal-area
projection for the equatorial region with interrupted Collignon projection for the polar
regions. To distinguish between these two regions, they are referred to as rHEALPixE and
rHEALPixP, respectively, in Table 1. Both the QSC and rHEALPixP projections are equal-
area projections but have significant angular distortions and even discontinuities along
the diagonals of the partitions. This is due to the fact that their partitions consist of four
triangular surfaces. The other three projections, on the other hand, offer a more balanced
compromise between surface distortion, angular distortion, and ease of implementation.

Figure 8 provides a visual comparison of the projections listed in Table 1, offering
insights into the distortion effects. Although rHEALPixP projection is primarily designed
for the polar regions, it is applied to a portion of the equatorial region (Figure 8f) to
demonstrate the distortion effects on similar shapes compared to the other projections. To
quantify the combined effect of aspect and areal distortions, Table 1 contains the geometric
mean of the average values of aspect and areal distortions calculated using Equation (13).

GMασ =
√

αave · σave (13)

Table 1 shows that DOEC projection has the lowest values for maximum and average
angular distortion, maximum and average aspect distortion, and relatively low average area
distortion. Consequently, it achieves the second lowest GMασ value, just after rHEALPixE.
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Another measure of projection quality based on Tissot’s indicatrix is the grid over-
sampling factor (GOF) [18]. It estimates the local oversampling of the data that occurs
when projecting general satellite imagery onto a regular grid. The GOF is defined by
Equation (14), where a and b are the semi-axes of the indicatrix and bmin is the global
minimum value for the minor semi-axis across the entire partition.

GOF =
a · b
b2

min
(14)

In DOEC projection, bmin is equal to 1, so GOF reduces to a·b. Moreover, when applied
to a perfect sphere, DOEC has a constant value for b over the entire partition and is equal to
1, so the value for GOF reduces only to the value of a. Since aspect distortion is calculated as
a/b and b is equal to 1, the values for DOEC and aspect distortion are identical. Taking this
into account and based on Table 1, the GOF for DOEC is 1.113, which means that 11.3% more
data samples than the theoretical minimum must be stored. For an equidistant cylindrical
projection with a single partition (plate carree), the GOF is 1.81, while it decreases to 1.36
when the latitude is restricted to the range [−56◦, 72◦], as shown in [18].

Table 2 provides insight into the effects of graticule system rotation on average dis-
tortions for some characteristic values. The values listed in the table were obtained by
averaging over 6.7 million measurement points belonging to the landmass. The location
of the landmass was determined by reprojecting a rasterized world vector map [43] using
the appropriate rotation of the graticule system. Applying the rotations ϕr = 125◦, θr = 50◦,
and ρr = −15◦ (hereafter abbreviated as R(125◦, 50◦, −15◦)) reduces the average angular
distortion of the landmass by 1.9 times and the average areal distortion by about 6%. The
experiments were performed with different rotational steps, from 90◦ to 1◦, with smaller
steps in ranges of values where larger steps provided good results and where minima could
be expected.

The rotation R(131◦, 49◦, −20◦) yields the lowest average value of angular distortion
but causes the partition boundary to intersect the southern part of the African continent
(Figure 9), resulting in a reduction in average angular distortion of less than 1%. Considering
the optimization of the disruptions in the continental plates, the rotation R(125◦, 50◦, −15◦)
proves to be a superior solution. It effectively reduces the ruptures in the continental plates
while providing a notable improvement in the average distortions.
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Table 2. The comparison of the averaged angular (ωave), areal (σave), and aspect (αave) distortions for
the normal aspect of the projection (R(0◦, 0◦, 0◦)), the proposed optimal oblique aspect (R(125◦, 50◦,
−15◦)), and the oblique aspect with the minimum landmass distortion (R(131◦, 49◦, −20◦)).

R(ϕr, θr, ρr) ωave[◦] σave αave

R(0◦, 0◦, 0◦) 6.721 1.130 1.130
R(125◦, 50◦, −15◦) 3.557 1.067 1.067
R(131◦, 49◦, −20◦) 3.523 1.067 1.066
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The optimal oblique aspect of the projection reduces the GOF to 1.067, which is
still higher than the GOF for the Equi7 grid based on equidistant cylindrical projections,
where it is 1.03 for Africa and Asia [18]. However, considering that the DOEC partitions
cover a much larger area than the Equi7 partitions and are not centered with respect to
the continental plates for which the distortion is calculated, the obtained result can be
considered comparable.

Table 3 presents a comparison of the distortion parameters for different auxiliary
latitudes applied to the entire surface of partition P0 without rotating the graticule system.
The results show that applying conformal latitude to map an ellipsoid onto a sphere yields
identical values for angular and aspect distortion as for an ideal sphere (see first and second
rows in Table 3), indicating that this mapping does not result in any additional angular
distortion. The application of the authalic latitude also shows no additional areal distortion.
The average angular distortion deviation when using the geocentric latitude is about
0.0026%, while the average areal distortion using approximate authalic latitude is less than
0.00018%. These results indicate that the use of approximated auxiliary latitudes does not
introduce significant additional distortion. It is worth noting that the use of approximated
authalic latitude even reduces the average angular distortion in this particular case. Its
simplicity and favorable performance make it the optimal choice for mapping the ellipsoid
onto the sphere.

Table 3. Comparison of the effects of applying different auxiliary latitudes on the distortion of the
P0 partition.

Latitude
Angular Distortion Areal Distortion Aspect Distortion

ωmax[◦] ωave[◦] σmax σave αmax αave

Sphere 19.758564 5.864603 1.414214 1.113448 1.414214 1.113448
Conformal 19.758564 5.864603 1.418974 1.114840 1.414214 1.113448
Geocentric 19.758882 5.864757 1.418971 1.114838 1.414222 1.113451
Authalic 19.695547 5.774060 1.414214 1.113448 1.412636 1.111693
Approx. authalic 19.695632 5.774065 1.414209 1.113446 1.412638 1.111693

All the previously presented results indicate that the proposed mapping of Earth’s
geospatial data can be effectively used to mitigate distortions and organize the data into
only two partitions.
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5. Conclusions

Dual Orthogonal Equidistant Cylindrical (DOEC) projection offers several advan-
tages over other projections in terms of reducing memory consumption and improving
overall performance for world-scale geospatial data visualization, minimizing partition
interconnections, and achieving a favorable balance between areal and angular distortions.
Compared to other projections, such as Quadrilateralized Spherical Cube (QSC), rotated
Hierarchical Equal-Area isoLatitude Pixelization (rHEALPix), Adjusted Spherical Cube
(ASC), Continuous Cube Mapping (CCM), and Cartesian Spherical Cube (CSC), DOEC
projection has lower values for maximum and average angular distortion, maximum and
average aspect distortion, and relatively low average area distortion. It also incorporates a
rotated graticule system to minimize landmass distortion and continental plate disruption.
The optimal oblique aspect of the projection reduces the average angular landmass dis-
tortion to about 3.6◦, the average area distortion to about 1.07, and the grid oversampling
to about 6.7% while optimizing continental plate disruptions. Furthermore, by applying
the approximated authalic latitude, DOEC projection preserves the areal distortion while
additionally reducing the average angular distortion and is considered the best candidate
for mapping an ellipsoid onto a sphere. Overall, DOEC projection provides improved
performance and distortion characteristics, making it a valuable choice for mapping global
geospatial data.
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