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Abstract: Residential property values are influenced by a combination of physical, socio-economic
and neighbourhood factors. This study investigated the influence of public schools on residential
property prices. Relatively few existing models have taken the spatial heterogeneity of different
submarkets into account. To fill this gap, three types of valuation models were applied to sales data
from both non-strata and strata properties, and how the proximity and quality of public schools have
influenced the prices of different residential property types was examined. The findings demonstrate
that an increase of one unit in the normalised NAPLAN score of primary and high schools will lead to
a 3.9% and 1.4%, 2.7% and 2.8% rise in housing prices for non-strata and strata properties, respectively.
It is also indicated that the application of geographically weighted regression (GWR) can better
capture the varying effects of schools across space. Moreover, properties located in the catchment
of high-scoring schools in northern Greater Sydney are consistently the most influenced by school
quality, regardless of the property type. These findings contribute to a comprehensive understanding
of the relationships between public schools and the various submarkets of Greater Sydney. This is
valuable for the decision-making processes of home buyers, developers and policymakers.

Keywords: automatic valuation model; housing price; public schools; geographically weighted
regression; Greater Sydney

1. Introduction

The total value of Australian real estate, recently estimated as A$10 trillion (Figure 1),
has experienced significant growth over the past few decades [1]. Housing prices in Sydney,
one of the most expensive cities in Australia, are influenced by several factors including
population growth, interest rates and supply limits relative to strong demand from both
local and international buyers. Various theoretical and methodological perspectives on
property valuation have been explored by researchers in recent decades [2,3]. The Inter-
national Association of Assessing Officers (IAAO) defines the automatic valuation model
(AVM) as a mathematically based computer software program used to estimate market
values. Such models are typically based on the analysis of location, market conditions and
real estate characteristics. Hedonic price models (HPM), initially proposed by Rosen [4]
based on the fundamentals of Lancaster’s consumer theory [5], are commonly used in
property valuation due to their reliability in estimating value, when assuming market
equilibrium and perfect competition [6,7].

Appropriate explanatory variables and calibration methodologies are crucial to the
success of hedonic price models. Researchers have investigated various hedonic variables
at different spatial scales. From a broad perspective, economic and social conditions are
the primary driving factors. Among many spatial variables, the proximity of a property
to schools, and their quality, are important determinants, especially when the schools
have outstanding reputations [8,9]. Black [10] investigated the relationship between public
school quality and house prices using hedonic linear regression. The study found that
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parents in Massachusetts, United States were willing to pay approximately 2.1% more for
houses near schools with test scores 5% higher than the mean. Kane, et al. [11] found that
housing prices are influenced by both school quality and neighbourhood characteristics
within school zones. Sah, et al. [12] explored the effects of proximity to schools as a control
variable in the relationship between school quality and housing prices. However, with a
deeper understanding of AVMs, researchers have observed that the relationship between
school quality and housing prices cannot be fully captured without taking spatial effect
into consideration [13].
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Figure 1. Mean housing prices of residential properties in Greater Sydney, 2011–2020 (Data source:
Australian Property Monitors).

Fack and Grenet [14] proposed a matching framework to address fixed effects on
property prices. This required that the comparison group for a transaction be in the
immediate vicinity and transacted during the same school year. The outcomes of their
modelling experiments demonstrated that a one-standard-deviation increase in public
school performance led to a 1.4% to 2.6% rise in house prices. To control the influence
of unobservable factors in Shanghai, China, Feng and Lu [15] used fixed-effects (FE) and
random effects (RE) models. It was revealed that the presence of an additional Experimental
Model Senior High School (the best quality school) per square kilometre led to a significant
17.1% increase in housing prices. Over the past decade, the difference-in-difference (DID)
approach has been commonly used for capturing the impacts of school quality, including in
Victoria, Australia [16]; Hangzhou, China [13]; and Seoul, South Korea [17]. This approach
can capture variations in market response by comparing treatment and controlled areas,
mitigating exogenous influences and thus yielding reliable models [18]. All of these studies
found that variations in school quality influenced housing prices.

In addition to the effects of exogenous factors, it has been shown that the distribution
and characteristics of house prices, just like other geographical phenomena, are always
spatially diverse across submarkets [19,20]. Geographically weighted regression (GWR),
which was first introduced by Brunsdon, et al. [21], has been used as a non-stationary
technique. Wen, et al. [22] utilised GWR to analyse the relationship between educational
facilities, their proximity and quality and housing prices. Using data from 380 counties in
Poland in 2018, it is shown by the modelling results of Cellmer, et al. [23] that the impact of
the analysed price determinants is spatially differentiated. Furthermore, Wang, et al. [24]
proposed a regionally geographically weighted regression (RGWR) method that incor-
porates zoning discrimination and optimised spatial weights to improve the accuracy
of geographically weighted regression (GWR) estimation and conducted an analysis of
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residential sale prices in Wuhan City. These studies have demonstrated that GWR can
effectively model both global and local spatial relationships [25]. Nevertheless, there is still
limited research examining the effects of public-school proximity and quality on the prices
of various residential properties.

This paper addresses the existing research gap by investigating the spatial heterogene-
ity effect of public schools on housing prices. To achieve this, three alternative valuation
models (AVMs) are employed: a conventional hedonic price model, a spatial lag model
and a GWR-based hedonic price model. The research focuses on two distinct types of
residential properties, namely strata and non-strata within Greater Sydney. Specifically,
strata properties are flats, units, apartments and condominiums with strata titles, whereas
non-strata properties refer to houses, semi-detached or terraces with Torrens title (also
known as ‘Freehold’) in Australia [26]. This paper is organised as follows: Section 2 outlines
the general framework and key regression methods. Section 3 presents a comprehensive
case study that investigates the impact of public schools on property prices in Greater
Sydney, Australia. Section 4 analyses and compares the modelling outputs and discusses
the accuracy and effectiveness of regression options. Finally, Section 5 provides conclusions
and limitations of the proposed study, as well as ideas for further research.

2. Materials and Methods
2.1. General Workflow

The research adopted the following workflow (Figure 2). Initial datasets were ex-
tracted from specific databases by selecting the study areas and temporal range. These
datasets included proprietary sales records (Australian Property Monitors—APM) and
other variables (from public and open databases) relating to structure, locational and neigh-
bourhood. Instances with missing values or outliers, which could potentially distort the
modelling process, were removed. The cleaned datasets were then used for model fitting
using the different regression methods.
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2.2. Regression Methods

The hedonic price model (HPM) is a classic method in the field of housing market
research. Ordinary least square regression (OLS) has been widely applied to estimate
housing prices using specific housing characteristics as independent variables [27]. There
are three groups of variables in a typical OLS model: structural (S), location (L) and
neighbourhood (N) [28]. Therefore, the general form of the OLS model [29] is:

Log(Price) = α + ∑
i

βiSi + ∑
j

β jLj +∑
k

βk Nk + ε (1)

where the housing price is expressed in logged form, α is a constant term, βi refers to the
coefficient for the ith variable Xi and ε is the residual error term. Additionally, the number
of structural, location and neighbourhood variables are i, j and k, respectively.

The performance of OLS-based AVMs has been shown to be limited by failure to reflect
the spatial dependence of housing prices on the value of neighbouring properties [30]. To
accommodate this factor, spatial regression models, specifically spatial lag regression (SLR)
and geographically weighted regression (GWR) models have been proposed. Amending
Equation (1), the spatial lag model is formulated as:

Log(Price) = α + ρWy + ∑
i

βiSi + ∑
j

β jLj +∑
k

βk Nk + ε (2)

where ρ is an autoregressive parameter that measures the degree of spatial correlation,
W is a spatial weights matrix representing the relationship between spatial units and y is
a vector of observations on the random variable [31,32]. SLR improves model accuracy
relative to OLS and reduces spatial bias [33].

Nevertheless, the accuracy of SLR is still limited as its regression coefficients cannot
fully reflect uneven distributions of geographical features and the spatial characteristics
of study area sub-regions. GWR models address this by taking the explicit locations of
samples into consideration [21,34]:

Log(Price) = β0(ui, vi) + ∑
i

βk(ui, vi)Si + ∑
j

β j(ui, vi)Lj +∑
k

βk(ui, vi)Nk + ε (3)

where ui and vi are the spatial coordinates of sample i, and the remaining parameters are
the same as in Equation (1).

2.3. Study Region

Greater Sydney (GSYD) is the largest metropolitan area in Australia, covering a total
area of 12,368 km2. According to the latest population census [35], Greater Sydney com-
prises 2,076,284 private dwellings. The influx of overseas immigrants in recent decades [36]
identified as a significant factor influencing the real estate market, driving up housing
prices [37]. Median housing prices have risen continuously in parallel with population
growth. However, recent studies have revealed the complex and diverse nature of housing
prices in GSYD [38]. As Figure 3 illustrates, the GSYD real estate market exhibits distinct
regional variations, with inner Sydney emerging as the most active area for housing trans-
actions. Given its expansive area, large population, spatial heterogeneity and consistently
high demand for residential properties, GSYD is an ideal test area for the analysis.

The Australian Bureau of Statistics (ABS) aggregates census and other data at several
scales. Based on the labour force, Statistical Area Level 4 (SA4) units have populations over
100,000 and may include as many as 500,000 people in metropolitan areas. There are 15 SA4s
in Greater Sydney, with different housing transaction densities. To avoid the unreliable
results arising from insufficient samples, SA4s with relatively low housing transaction
densities (less than 5 transactions/km2) were excluded from further analysis (Table 1).
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Table 1. Housing transaction densities of all SA4s, Greater Sydney region.

SA4 Name
Transaction

Count
(Year 2019)

Area (km2)
Transaction Density
(Transactions/km2)

Mean Housing Price
(Year 2019, A$)

Note
Non-Strata

Subset Strata Subset

Eastern Suburbs 4144 57.73 71.78 2,885,858.75 1,211,549.64

Inner West 4396 64.55 68.10 1,806,521.73 809,119.17

City and Inner South 4437 66.10 67.13 1,544,313.77 975,172.73

Inner South West 7389 163.93 45.07 1,053,518.12 582,984.94

Ryde 3021 69.34 43.57 1,634,280.55 700,624.71

Parramatta 6020 162.84 36.97 928,815.93 549,606.95

North Sydney and
Hornsby 7345 275.1 26.70 2,212,010.76 976,915.99

Blacktown 5506 240.88 22.86 733,549.33 418,392.71

Northern Beaches 4462 254.21 17.55 1,957,974.37 1,002,368.82

Sutherland 3884 295.85 13.13 1,167,946.45 693,319.62

South West 4579 540.28 8.48 773,194.36 412,981.55

Central Coast 7238 1681.01 4.31 658,773.75 480,703.61

Excluded

Outer South West 4462 1277.24 3.49 655,916.57 429,996.68

Outer West and Blue
Mountains 5759 3968.13 1.45 666,902.18 389,165.66

Baulkham Hills and
Hawkesbury 3306 3251.5 1.02 1,244,046.74 734,168.11
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2.4. Data Processing and Variable Selection

Values of residential properties are mainly influenced by three groups of variables,
which represent their structural (S), locational (L) and neighbourhood and environmental
characteristics (N) [39,40]. Based on data availability and preliminary experiments (out-
lier removal and correlation testing), candidate variables were selected for the case study.
As shown in Table 2, the housing prices and corresponding structural characteristics of
residential properties are derived from the Australian Property Monitors (APM) in the
proposed case study. Additionally, the locational (L) and neighbourhood (N) characteristics
are obtained from various public and open datasets. Specifically, the logged distance to the
nearest points of interest (POIs) or features of interest (FOIs) is obtained from Geoscience
Australia. Furthermore, the accessibility and NAPLAN results of public schools are sepa-
rately downloaded from the NSW Department of Education and the Australian Curriculum,
Assessment and Reporting Authority (ACARA). Finally, the remaining neighbourhood
characteristics are calculated using census data from the Australian Bureau of Statistics as
the reference.

Table 2. The definition and source of selected variables.

Variable Type Variable Name Definition Data Source

Dependent Log_Price The natural logarithm of housing price

Australian Property
Monitors (APM)Independent-Structural (S)

Bedroom Number of bedrooms

Bathroom Number of bathrooms

Parking Number of carparks

Landsize
(For non-strata subset only) Land size

HasStudy
(For strata subset only) Has study room

Independent-Locational (L)

L_CityCen Log of distance to the nearest city centre

Geoscience Australia

L_CoastLine Log of distance to nearest coastline

L_RailSta Log of distance to the nearest railway
station

Near_Mainroad Within 100 m of main roads
(Yes = 1, no = 0)

L_Pri_Sch Log of distance to the public primary
school of the school catchment NSW Department of

Education
L_High_Sch Log of distance to the public high school

of the school catchment

Independent-Neighbourhood
(N)

Professional_per Percentage of professional workers

Australian Bureau of
Statistics (ABS)

Overseas_per Percentage of residents born overseas

FamIncome_w The median family income per week

Age65Plus_per Percentage of residents over 65 years old

Prim_Ndom

Normalised National Assessment
Program–Literacy and Numeracy

(NAPLAN) results of year 2018 for
primary school catchments

Australian
Curriculum,

Assessment and
Reporting Authority

(ACARA)High_Ndom

Normalised National Assessment
Program–Literacy and Numeracy

(NAPLAN) results of year 2018 for public
high school catchments

Non-strata property: houses, semi-detached or terraces with Torrens title (also known as ‘Freehold’). Strata
property: units and apartments with strata titles.
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Figure 4 depicts the seven key steps involved in the data processing procedure. Initially,
sales data for the second and third quarters of the year 2019 were isolated in order to reduce
the impact of seasonality on data sampling [41]. The sales data comprised price, location
and structural details (the variables Bedroom, Bathroom, Parking, Landsize and HasStudy
in Table 3). Following this, incomplete records and price outliers, specifically the lowest
10% and highest 10%, were removed. The records were then sorted by SA4 using the
ABS boundaries within GSYD. Subsequently, the primary and high school catchments
within each SA4 were identified using school catchment boundaries for all New South
Wales (NSW). All results from the Normalised National Assessment Program–Literacy
and Numeracy (NAPLAN) were reclassified. Specifically, NAPLAN is administered to
Australian students in years 3, 5, 7 and 9. Scores for Reading, Writing, Spelling, Grammar
and Numeracy were divided into five groups (Well above, Above, Close to, Below, Well
below) and subsequently numbered as 5 (Well above) to 1 (Well below). These numbers
were then associated with the school catchments using the school name giving a normalised
NAPLAN score (the mean value of Reading, Writing, Spelling, Grammar and Numeracy
numbers) for each primary (Years 3 and 5) and high school (Years 7 and 9) catchment within
GSYD (Figure 5). Any catchment with a null result was excluded from further analysis.
The values of the locational (L) and neighbourhood (N) variables (Table 3) were estimated
as the Euclidean distance between each point of interest (POI) and the sale location. Finally,
a join operation was performed to connect sales records and school catchments based on
their spatial relationship. This enabled us to link the NAPLAN results to all sales records
within the corresponding boundaries.
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Table 3. Descriptive statistics of non-strata and strata subsets.

Variable Non-Strata Subset
Count: 13,534

Strata Subset
Count: 8896

Min Max Mean Std Min Max Mean Std

Bedroom 1.00 7.00 3.60 0.87 1.00 5.00 1.92 0.59
Bathroom 1.00 4.00 1.87 0.71 1.00 2.00 1.40 0.49
Parking 0.00 11.00 1.92 1.00 0.00 4.00 1.08 0.49

Landsize 42.64 23,868.28 801.34 1178.12 - - - -
HasStudy - - - - 0.00 1.00 0.17 0.38
L_CityCen 6.10 10.34 9.12 0.59 4.29 10.32 8.83 0.81

L_CoastLine 4.54 10.77 9.47 0.98 3.47 10.58 8.83 1.22
L_Pri_Sch 2.38 8.41 6.25 0.59 3.16 7.61 6.08 0.62

L_High_Sch 2.84 9.18 6.87 0.65 1.71 9.10 6.61 0.73
L_RailSta 3.90 9.69 7.48 0.88 3.56 9.69 6.79 1.18

Near_Mainroad 0.00 1.00 0.38 0.48 0.00 1.00 0.63 0.48
Professional_per 0.00 50.12 19.82 8.03 0.00 61.29 26.12 9.48

Overseas_per 5.85 89.46 36.93 13.20 0.00 94.44 53.70 17.56
FamIncome_w 754.00 5250.00 2228.43 626.95 0.00 5250.00 2191.58 634.55
Age65Plus_per 0.00 93.53 12.63 7.24 0.00 87.12 8.86 7.48

Prim_Ndom 1.00 5.00 3.39 1.20 1.00 5.00 3.85 1.14
High_Ndom 1.00 5.00 3.02 1.21 1.00 5.00 3.43 1.06
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Figure 5. Locations and quality of public schools.

To understand the influence of variables in different submarkets, the entire dataset
was divided into two subsets (non-strata and strata). In the second and third quarters of
2019, there were 13,534 non-strata sales and 8896 strata sales within the included SA4s. The
descriptive statistics of the two subsets are in Table 3.

3. Results

Table 4 shows the results of the OLS and SLR models, with logarithm of the sales price
as the dependent variable, in each of the residential property groups. The adjusted R2
values of models 1 to 4 are 0.701, 0.608, 0.701 and 0.609, respectively. Thus, the non-strata
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models explain more than 70% of the variance in the natural logarithm of housing price,
while the strata models explain more than 60% of the variance. Each of the structural (S)
and neighbourhood (N) variables has a positive influence on housing prices. Among the
locational (L) variables, the logarithms of distance to the nearest city centres (L_CityCen),
to the coastline (L_CoastLine), to primary school (L_Pri_Sch) and to railway stations
(L_RailSta) indicate that proximity has a positive influence, regardless of property type.
However, residential properties located near high schools near main roads (Near_Mainroad)
have reduced prices.

Subsequently, GWR-based models were applied to examine the impact of public
schools while taking spatial heterogeneity into account. The GWR-based models were
developed using the mgwr 2.1.1 package [42] in Python 3.7. The pre-processed sales data
were imported and the optimal bandwidths and number of neighbours for each local
regression, were calculated. Using a bi-square kernel function, the optimal bandwidths
are determined as 374.0 and 254.0 for the non-strata and strata subsets. Afterwards,
model fitting is implemented with these calibrated bandwidths, and the modelling results
are recorded in Table 5. The adjusted R2 values were 0.855 for non-strata and 0.817
for strata prices, indicating that the GWR models better explained price variance than
either the OLS or SLR models. Moreover, the relatively lower values of RSS, AICc and
Moran’s I of residuals also demonstrated that there was less unexplained variation in the
results of models 5 and 6. The coefficients of the school-related variables are presented in
Figures 6 and 7 (non-strata and strata subsets, separately).

Table 4. The results of ordinary and spatial linear regression models.

Variable Model 1:
OLS-Non-Strata

Model 2:
OLS-Strata

Model 3:
SLR-Non-Strata

Model 4:
SLR-Strata

Constant 14.893 *** 13.531 *** 14.909 *** 13.513 ***

Independent-Structural
(S)

Bedroom 0.075 *** 0.159 *** 0.075 *** 0.160 ***
Bathroom 0.048 *** 0.122 *** 0.048 *** 0.121 ***
Parking 0.034 *** 0.043 *** 0.034 *** 0.044 ***

Landsize 0.000 *** − 0.000 *** −
HasStudy − 0.054 *** − 0.054 ***

Independent-Locational
(L)

L_CityCen −0.059 *** −0.036 *** −0.058 *** −0.036 ***
L_CoastLine −0.162 *** −0.100 *** −0.161 *** −0.099 ***

L_Pri_Sch −0.026 *** −0.010 *** −0.027 *** −0.010 ***
L_High_Sch 0.018 *** 0.014 *** 0.017 *** 0.014 ***

L_RailSta −0.026 *** −0.021 *** −0.027 *** −0.020 ***
Near_Mainroad −0.020 *** −0.012 ** −0.020 *** −0.010 **

Independent-
Neighbourhood

(N)

Professional_per 0.010 *** 0.007 *** 0.011 *** 0.006 ***
Overseas_per 0.004 *** 0.003 *** 0.004 *** 0.002 ***

FamIncome_w 0.000 *** 0.000 *** 0.000 *** 0.000 ***
Age65Plus_per 0.008 *** 0.006 *** 0.008 *** 0.006 ***

Prim_Ndom 0.039 *** 0.014 *** 0.039 *** 0.014 ***
High_Ndom 0.027 *** 0.029 *** 0.028 *** 0.029 ***

W_Log_Price −0.003 *** 0.003 ***

Modelling result
Observations 13,534 8896 13,534 8896

Adjusted R2/Spatial Pseudo R2 0.701 0.608 0.701 0.609
Residual sum of squares (RSS) 508.841 227.603 508.666 226.959

AICc −5958.807 −7328.704
Moran’s I of residuals 0.755 (p = 0) 0.707 (p = 0) 0.755 (p = 0) 0.702 (p = 0)

Significance levels: ** p < 0.01, *** p < 0.001.
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Table 5. The coefficients of GWR-based modelling results.

Variable Model 5:
GWR-GSYD-Non-Strata

Model 6:
GWR-GSYD-Strata

Mean Min Max Mean Min Max

Constant 17.313 −2034.722 1107.776 6.899 −1515.958 1493.882

Bedroom 0.078 −0.004 0.199 0.169 −0.003 0.332
Bathroom 0.055 −0.108 0.160 0.126 −0.016 0.328
Parking 0.027 −0.055 0.095 0.070 −0.019 0.177

Landsize 0.000 0.000 0.001 - - -
HasStudy - - - 0.038 −0.078 0.155

L_CityCen −0.146 −4.870 5.158 0.143 −3.653 11.883
L_CoastLine −0.323 −12.972 5.722 0.293 −6.883 27.178

L_Pri_Sch −0.003 −0.131 0.122 −0.006 −0.193 0.113
L_High_Sch 0.007 −0.121 0.138 0.012 −0.194 0.856

L_RailSta −0.011 −0.846 1.011 0.060 −1.305 4.372
Near_Mainroad −0.029 −0.160 0.190 −0.022 −0.135 0.071

Professional_per 0.001 −0.045 0.029 0.002 −0.021 0.019
Overseas_per 0.000 −0.014 0.013 0.000 −0.008 0.012

FamIncome_w 0.000 0.000 0.001 0.000 0.000 0.001
Age65Plus_per 0.002 0.010 0.024 0.003 −0.013 0.024

Prim_Ndom 0.002 −0.321 0.192 0.026 −90.803 42.177
High_Ndom 0.210 −364.997 693.184 0.264 −368.589 465.801

Observations 13,534 8896
Adjusted R2 0.855 0.817

Residual sum of squares (RSS) 222.708 94.991
AICc −14,300.532 −13,058.085

Moran’s I of residuals 0.593 (p = 0) 0.347 (p = 0)
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4. Discussion

The results of OLS and SLR models demonstrate a strong association between the prox-
imity and quality of public schools and housing prices in Greater Sydney. The modelling of
the non-strata subset showed that a one-point rise in the normalised NAPLAN score for
public primary schools resulted in a 3.9% increase in the natural logarithm of housing prices.
Similarly, for high schools, a one-point rise in normalised NAPLAN score leads to a 2.7%
(model 1) or 2.8% (model 3) increase in the natural logarithm of housing prices. However,
the relationship with proximity is more nuanced, as housing prices were found to be higher
near primary schools but lower near high schools. Specifically, a one-unit decrease in the
logged distance to a primary school results in a 2.6% (model 1) and 2.7% (model 3) increase
in the natural logarithm of housing prices. The strata subset (models 2 and 4) had similar
results, with coefficients of 1.4%, 2.9% and −1.0% for the ‘Prim_Ndom’, ‘High_Ndom’ and
‘L_Pri_Sch’ variables, respectively. These overall findings are consistent with previous case
studies, which found that proximity to and high quality of public schools have a positive
impact on the values of residential properties [43,44]. Nevertheless, in the case of Greater
Sydney, there is an exception with the negative influence of the proximity to high schools.

Similar to the findings of OLS and SLR models, GWR-based models have also con-
firmed that the quality of public schools significantly affects the housing prices of residential
properties, regardless of their type. In terms of non-strata subset, properties located within
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Greater Sydney can receive an increase in the natural algorithm of housing prices of up
to 19.2% for each additional normalised NAPLAN score for public primary schools and
27.4% for public high schools (Figure 7A,B), excluding extreme values as shown in Table 5.
The North Sydney and Hornsby, Inner South West, Blacktown and Inner West SA4 regions
exhibit a relatively high mean coefficient of the ‘Prim_Ndom’ variable (Table 6). Firstly, the
northern part of Greater Sydney is known for its superior public education resources, and
residents highly value the assessment results of public schools in their school catchments.
Similarly, some primary school catchments in the western part of Greater Sydney, such
as Ashfield and Burwood Public Schools, are also recognised for exceptional academic
performances. Therefore, higher mean coefficients of ‘Prim_Ndom’ is observed within the
afore-mentioned parts of Greater Sydney. Additionally, the SA4s of Sutherland, Northern
Beaches and Inner South West have shown higher mean coefficients of the ‘High_Ndom’
variable. It is also likely to be led by the availability of exceptional public high school
resources in these regions. Furthermore, with the increased age of students and the well-
developed public transportation system in Greater Sydney, the proximity to public high
schools is less critical than the proximity to public primary schools (Figure 6A,B). This
finding aligns with the conclusions from other researchers that the accessibility effect of
primary schools on housing price can be more significant [45] and also explains why there
are more samples (n = 7114) with negative coefficients of the variable ‘L_Pri_Sch’ than the
number of samples (n = 5543) with negative coefficients of the variable ‘L_High_Sch’.

Table 6. The mean value of quality-related coefficients in all SA4s.

SA4 Name
Non-Strata Subset (Model 5) Strata Subset (Model 6)

Variable
‘Prim_Ndom’

Variable
‘High_Ndom’

Variable
‘Prim_Ndom’

Variable
‘High_Ndom’

Blacktown 0.023 −0.004 0.018 0.006

City and Inner South 0.009 0.015 −0.019 0.032

Eastern Suburbs 0.000 −0.006 −0.013 0.163

Inner South West 0.024 0.315 0.014 0.082

Inner West 0.023 0.023 0.021 −0.017

North Sydney and Hornsby 0.034 0.001 0.121 0.071

Northern Beaches −0.089 0.510 0.035 2.654

Parramatta 0.017 0.012 0.024 −0.001

Ryde −0.020 0.020 −0.031 0.019

South West −0.023 0.043 0.028 0.007

Sutherland −0.011 1.059 0.017 −0.024

Regarding the strata subset, ‘Prim_Ndom’ with the highest mean coefficient value is
observed in North Sydney and Hornsby SA4s (Table 6). Nonetheless, there is a discernible
difference between models 5 and 6 as the overall mean coefficient of the ‘Prim_Ndom’
variable is noticeably larger in the strata subset (0.026) than in the non-strata subset (0.002)
(Table 5). This specific point of modelling result suggests that the quality of public primary
schools has a greater impact on housing prices in the majority of strata properties than
non-strata properties. On the other hand, the coefficient distribution for the ‘Prim_Ndom’
and ‘High_Ndom’ variables (Figure 7C,D) also indicates that the quality of public high
schools becomes even more significant than that of public primary schools in the SA4s of
City and Inner South and Eastern Suburbs. These modelling results have been compared
with the ABS 2016 Index of Relative Socio-Economic Disadvantage (IRSD), which indicates
the relative level of socio-economic disadvantage [46]. Residents living in SA4s with higher
IRSD scores (i.e., low disadvantage) are more inclined to choose private or elite primary
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schools in order to gain access to high-quality public high schools. Therefore, the quality of
a public primary school appears to produce less influence than that of a public high school.
This also illustrates the distribution of variables ‘L_Pri_Sch’ (Figure 6C) and ‘L_High_Sch’
(Figure 6D) by highlighting the influence of proximity to public high schools, relative to
public primary schools, on prices of strata properties in the inner-city, northern, and eastern
Greater Sydney regions.

5. Conclusions

This research examines the relationship between housing prices and various variables,
including proximity to and quality of public schools, through a case study in Greater
Sydney. Three hedonic price models, employing OLS, SLR and GWR regression, have been
tested to provide a systematic analysis of their impact. The influence of public primary
school quality is higher for non-strata properties than strata properties, but for public high
schools, the strata prices are more affected. Specifically, an increase of one unit in the
normalised NAPLAN score of public primary schools leads to a 3.9% rise in the natural
logarithm of housing prices for non-strata properties. For strata properties, there is a 1.4%
increase in the natural logarithm of housing prices with the same increase. Regarding the
NAPLAN-based high school quality, these rates decline to 2.7% for non-strata properties
but increase to 2.8% for strata properties. However, the coefficients generated from the
whole area model do not capture the impact of the unequally distributed educational
resources on various submarkets across the study region.

With the aid of GWR-based hedonic price models, the localised influence of the school-
related variables was explored. The GWR-based models have generated more accurate
results with less spatial autocorrelation than OLS or SLR in the prediction residuals, which
is in line with the prior findings [47]. Non-strata properties located in specific northern and
western regions of Greater Sydney are the most influenced by the quality of both public
primary and high schools. Moreover, accessibility to public primary schools appears more
important than accessibility to public high schools. Regarding the strata subset, public
primary school quality is still considered an important factor, especially for strata properties
in northern Greater Sydney. In contrast, the positive coefficient for public high school
quality is more widespread and includes the SA4s of City and Inner South and Eastern
Suburbs. The influence of proximity to public primary and high schools varies substantially
across the strata subset, with both high and low (negative) values of the coefficients
observed in almost every SA4. It, therefore, appears that accessibility is not as significant as
school quality in Greater Sydney. This accords with other studies in Melbourne [16] and
Brisbane [48], the second- and third-largest Australian metropolitan areas.

It is acknowledged that the NAPLAN assessment is not a direct measure of overall
school quality. Nevertheless, it is still widely accepted as an important indicator for
monitoring and evaluating the performance of schools at a national level and has been
utilised in other Australian-based AVMs [16,49]. Considering the distinctive characteristics
of public and private schools, investigating the impact of both types on housing prices is
equally important. Consequently, future research will focus on examining the influence
of both public and private schools on non-strata and strata property prices in different
sub-regions. Furthermore, future research will also explore the integration of AVMs with AI
and machine learning methods, which are anticipated to better identify complex patterns
of property valuation within sales data [50,51], and improve the accuracy of AVMs in a
further step.
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