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Abstract: Achieving seamless integration between virtual objects and real scenes has always been
an important issue in augmented reality (AR) research. To achieve this, it is necessary to provide
virtual objects with real-time and accurate lighting conditions from a real scene. Therefore, the
purpose of this study is to realize lighting consistency rendering for real-time AR systems in outdoor
environments, aiming to enhance the user’s sense of immersion. In this paper, we propose a lighting
consistency technique for real-time AR systems in outdoor environments based on multi-source
geographical information (MGI). Specifically, we introduce MGI into the study of lighting consistency
and construct a comprehensive database to store and manage the acquired MGI data. Based on this,
we proposed a sky radiance model driven using the MGI. Finally, we utilized the sky radiance model
along with light sensor data to render the virtual objects in outdoor scenes. The experimental results
show that the shadow angular error is reduced to 5.2◦, and the system frame rate is increased to 94.26.
This means that our method achieves a high level of realism in the fusion of virtual objects and real
scenes while ensuring a high frame rate in the system. With this technology, users can conveniently
and extensively realize the lighting consistency rendering of real-time AR systems in outdoor scenes
using mobile devices.

Keywords: GIS; multi-source geo-information; augmented reality; light consistency; real-time

1. Introduction

Augmented reality (AR) refers to a technology that enhances users’ perception and
understanding of the real world and virtual information by integrating virtual information
with real scenes [1]. Achieving realistic integration of virtual objects into real scenes is
a popular research field in AR. To achieve this goal, it is necessary to ensure that AR
systems have good geometric consistency, temporal consistency (real-time performance),
and lighting consistency [2]. Geometric consistency refers to the accurate spatial properties
of virtual objects in real scenes, such as their precise position and occlusion relationship.
Temporal consistency refers to the synchronization between virtual objects and real scenes,
enabling users to interact in real-time. Lighting consistency refers to the similarity in
lighting between the rendered scene of virtual objects and the real scene so that virtual
objects have realistic lighting effects such as brightness, reflection, and shadows similar to
those in the real world. Currently, with the development of marker-based 3D registration
algorithms [3,4] and 3D registration algorithms combined with SLAM (simultaneous local-
ization and mapping) [5–7], the problem of geometric consistency has been well solved.
The continuous improvement in computer hardware and mobile device processing power
also provides possibilities for solving the temporal consistency problem of AR systems.
However, estimating the lighting parameters of real scenes remains challenging due to the
complexity of the lighting environment [8]. Therefore, further research is needed to address
the lighting consistency problem of AR systems.

ISPRS Int. J. Geo-Inf. 2023, 12, 324. https://doi.org/10.3390/ijgi12080324 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12080324
https://doi.org/10.3390/ijgi12080324
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi12080324
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12080324?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2023, 12, 324 2 of 20

Augmented reality (AR) is widely used in outdoor environments, such as virtual
Olympics, traffic simulation, and AR navigation [9]. In these applications, identifying
how to estimate lighting conditions in the outdoor environment to achieve good lighting
consistency is a crucial issue for improving user immersion. Currently, mainstream research
methods for this problem can be divided into three categories: methods based on marker
information [10–12], methods based on auxiliary equipment [13–16], and methods based
on image analysis [17–20]. Methods based on marker information and methods based on
auxiliary equipment require special devices that collect prior information, such as light
probes [10] or fisheye cameras [13], making them difficult to implement on mobile devices.
Methods based on image analysis are less restricted by application scenarios but may not
accurately estimate lighting conditions in low-information outdoor environments [17–19].
Moreover, these methods have high computational costs and cannot meet the real-time
requirements of AR interaction scenes [17–20]. Therefore, in this work, we aim to develop a
lighting consistency technique for real-time AR systems in outdoor environments without
requiring additional devices or visual information. Furthermore, the technology should be
widely applicable to general mobile devices.

Multi-source geographic information data can describe outdoor scenes from different
perspectives [21]. Utilizing different geographic environmental information enables a more
accurate estimation of lighting parameters of outdoor scenes. Moreover, multi-source
geographic information data can be acquired in real-time, providing a basis for meeting the
real-time requirements of AR systems. Therefore, we introduce multi-source geographic
information into the study of lighting consistency and propose a lighting consistency
technique for outdoor real-time AR systems based on multi-source geographic information.

In this paper, the multi-source geographic information in different outdoor scenes
is used to obtain the lighting parameters of the scenes, which can realize the consistent
lighting rendering of the real-time AR system in outdoor scenes without the need to prepare
markers and acquire scene images. Specifically, this paper accurately estimates the position
of the sun using geographical location information such as latitude, longitude, altitude, and
time obtained from mobile sensors. At the same time, temperature, air pressure, relative
humidity, and other geographical environment data are used to calculate the atmospheric
turbidity in the user’s location. The above results are combined with surface reflectance
data from remote sensing to generate a high dynamic range (HDR) sky radiance model for
the scene. Then, image-based lighting (IBL) technology is used to generate the ambient light
in the scene. Finally, we adjust the solar illumination parameter using the light sensor in a
mobile phone to achieve realistic virtual–real integration rendering. This method achieves
consistency in lighting in AR systems while meeting real-time requirements. And it can be
conveniently implemented on mobile terminals such as mobile phones and tablets.

The contributions of this work can be summarized in three aspects:
Firstly, we introduce multi-source geographic information data and establish a sky

radiation model driven using multiple geographic information, which extends previous
research methods for addressing the problem of lighting consistency in augmented reality.

Secondly, we propose a new technique for achieving lighting consistency in outdoor
real-time AR systems, which does not rely on additional devices and visual information.
This method can accurately estimate the sky model and illumination parameters under
different lighting conditions in outdoor scenes and meet the real-time requirements of
AR systems.

Finally, this paper presents an augmented reality system that achieves good light-
ing consistency and real-time performance simultaneously, which can be conveniently
implemented on mobile devices.

The organization of this paper is as follows. Section 2 reviews related work. Our meth-
ods are presented in Section 3. Section 4 describes the experimental setup and discusses
the experimental results. A discussion is offered in Section 5.
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2. Related Work
2.1. AR Lighting Estimation Technology

Estimating lighting in augmented reality is an important way to achieve lighting
consistency in augmented reality systems. Feng Yan [10] used two photometric spheres
as markers to detect brightness changes in the surface of the spheres and thus obtained
lighting information from the real environment. Panagopoulos et al. [11] combined 3D
information on markers with 2D information on shadows to obtain a series of labels for
identifying shadows, and they ultimately estimated the position, shape, and brightness
of the light source. Jiddi et al. [22] used specular highlights as auxiliary information.
They captured multiple images of scenes containing objects with specular reflections and
extracted the positions of specular highlights from the image sequence. After calculating the
relationship between the positions of specular highlights in 3D space and the camera’s line
of sight, they determined the direction of the light source. This method provides accurate
light source localization but requires the presence of specular reflection phenomena in
the scene. Similarly, Liu et al. [12] used marker and shadow information in images to
directly generate virtual object shadows using deep learning without the need for lighting
estimation. These marker-based lighting estimation techniques [10–12] require markers
with known geometry or material to be present in a scene. Using the shadow and surface
image of markers, the lighting information in a real scene can be inferred to achieve lighting
consistency in augmented reality. However, this method relies on the presence of markers
in an image with known prior information. In addition, when a scene changes, the original
information becomes invalid, so this method cannot be applied to real-time dynamic scenes.

In order to obtain lighting information from a scene without the need for markers or
prior information, techniques have been developed that use auxiliary devices for lighting
estimation [13–16]. Yoo et al. [13] and Pardel et al. [14] used fisheye lenses and stereo
cameras, respectively, to capture HDR panoramic images as environment maps, thereby
obtaining lighting information from the scene for real-time rendering. Gruber et al. [15]
reconstructed a scene model using a depth camera and estimated the lighting of the model
using spherical harmonic functions, enabling the generation of soft shadows for virtual
objects. Pratul et al. [23] proposed a lighting estimation algorithm that utilizes multi-angle
images to generate a panoramic environment map. This algorithm uses paired images
from dual cameras as input and uses a CNN to predict the scene beyond the camera view,
thus generating an environment map. However, this method requires input in the form
of paired images, making it unsuitable for many practical applications. While auxiliary
device-based techniques can achieve lighting consistency in augmented reality and attain a
certain level of real-time performance, they require specialized equipment for information
collection and thus cannot be considered a universal solution for mobile devices.

Techniques that use image analysis for lighting estimation do not require additional
specialized equipment and only analyze images captured with the main camera to obtain
lighting information from the scene. Karsch et al. [17] estimated a rough geometric model
for a scene using images, asked users to annotate the geometry objects and light sources
they wanted to interact with, and then rendered virtual objects with lighting consistency
accordingly. Lalonde et al. [18] proposed a method that utilizes three clues in the image:
sky, vertical surfaces, and ground, to estimate the position and visibility of the sun. Hold-
Geoffroy et al. [20] proposed a method that uses deep learning to recover lighting after
training a convolutional neural network (CNN) on panoramic images taken outdoors. As
a result, a simple HDR map of the sky environment can be directly obtained from low
dynamic range (LDR) images captured with the camera as the lighting information of
the scene. Zhang et al. [24] proposed an end-to-end network model that incorporates the
brightness channel of the sky region as the fourth input channel to estimate the lighting
parameters of the scene. Wang et al. [25] utilized a three-dimensional spherical Gaussian
representation to model the surface radiance of an entire scene, including both visible
surfaces and surfaces outside the field of view. Subsequently, they used standard 3D
rendering techniques to render the illumination at any spatial position and viewing angle.
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However, image-based techniques have high requirements for image quality and need
sufficient clues in the image to perform accurate lighting estimation. Furthermore, these
techniques are mostly non-real-time methods, requiring a lot of computation time, and
are mainly used for photo composition. Therefore, it is difficult to meet the real-time
requirements of AR systems.

As shown in Table 1, most augmented reality lighting estimation techniques can be
classified into three categories: marker-based, auxiliary device-based, and image analysis-
based. Although these methods have made significant progress in achieving lighting
consistency in augmented reality, identifying an accurate and real-time lighting consistency
technique remains an important issue in AR visualization. Most of the techniques devel-
oped to overcome these issues often require additional devices to collect prior information.
These techniques also have difficulties realizing real-time performance in AR systems.

Table 1. AR lighting estimation technology.

Lighting Estimation Technology Advantage Limitation

Based on marker information Able to accurately estimate lighting
information.

Markers or objects need to be set up in
advance in the scene.

Based on auxiliary equipment
No markers or prior information are needed

to be prepared in advance. Lighting
information can be estimated in real-time.

Specialized equipment is required to collect
information, which makes it difficult to use

on mobile devices.

Based on image analysis
Lighting estimation can be achieved solely

using images without the need for additional
specialized equipment.

High image quality is required, and a large
amount of computation is needed, which

makes it difficult to meet the real-time
requirements of AR systems.

2.2. Multi-Source Geographic Information Data

Multi-source geospatial information refers to geographic information obtained from
multiple data sources, including but not limited to satellite remote sensing, ground observa-
tion, aerial photography, and map production [26]. Geographic information data contains
a variety of information that describes spatial features. By fully mining multi-source
geospatial information data, we can more accurately describe the lighting information of
a scene.

Barreira et al. [27] used GPS data to infer the sun’s position to estimate the lighting
parameters of a scene. Preetham et al. [28] and Hosek et al. [29] established a sky radiance
model based on atmospheric turbidity and surface reflectivity information to describe the
lighting information of outdoor scenes. Hold-Geoffroy et al. [20] used convolutional neural
networks to construct a sky radiance model, as proposed by Hosek et al. [29], to estimate
the lighting of a scene.

Therefore, we can use multi-source geospatial information data to describe a sky
radiance model for lighting parameter estimation of outdoor scenes, thereby achieving
lighting consistency in AR systems.

3. Methods
3.1. Overview

To better integrate virtual objects into real-world scenes and achieve a higher level of
realism, this research primarily focuses on the influence of lighting and shadows. However,
it is important to acknowledge that other factors such as the surface texture of virtual
objects and indirect lighting in the scene also play significant roles in the overall realism of
the virtual–real fusion.

In this study, our goal is to achieve real-time consistent lighting rendering for aug-
mented reality systems in outdoor scenes using mobile devices without requiring additional
equipment or visual information. To achieve this goal, as shown in Figure 1, this study
is divided into three parts: integration of multi-source geographic information based on
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multi-modal data, generation of a sky radiance model driven using multi-source geographic
information, and fusion of real outdoor scenes with virtual 3D objects.
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The AR system in this study is divided into two parts: the client side and the server
side. As shown in Figure 1, on the client side, we overlay and analyze the latitude and
longitude data obtained from mobile sensors with administrative division data and surface
reflectance data from the server side, using the results of the overlay analysis to obtain
meteorological data for integrating multi-source geographic information. On the server
side, we calculate the parameters of the sky radiance model using a multi-source geographic
information database and generate the final sky radiance model. Finally, on the client side,
we use the sky radiance model and light sensor information to render the outdoor scene’s
lighting, allowing virtual 3D objects to realistically fuse into real scenes.

3.2. Integration of Multi-Source Geographic Information Based on Multi-Modal Data

To accurately describe the lighting information of the target outdoor scene, it is neces-
sary to integrate multi-source geographic information data obtained from the scene. The
key operations for integrating multi-source geographic information data are the acquisition,
processing, storage, and transmission of multi-modal data from different sensors.

To achieve multi-modal data-based integration of multi-source geographic information,
the system is divided into the client side and server side. The client side is responsible
for data acquisition and final rendering. On the server side, a multi-source geographic
information database is established for data acquisition, processing, and storage. Complex
calculations are also performed on the server side to improve the system’s FPS (frames per
second) and ensure the real-time performance of the client side in the AR system.
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Considering the practical needs and application scenarios when using multi-source
geographic information data to generate a sky radiance model, the geographic information
data integrated into this study includes GPS data, administrative division data, surface
reflectance data, and meteorological data.

• GPS data

The GPS (Global Positioning System) is a satellite navigation system developed by
the U.S. Department of Defense that provides three-dimensional positioning, velocity, and
time information globally. The Global Positioning System consists of three parts: the space
segment composed of satellites, the ground control segment, and user receivers. GPS data
include information such as satellite position, velocity, and time [30].

• Administrative division data

Administrative division data refer to the division of administrative areas such as
provinces, cities, and counties in a country or region, including information such as the
names, codes, and boundaries of these administrative regions. In this study, we used
GADM (Database of Global Administrative Areas) data as administrative division data.
GADM is a high-precision global administrative area database that contains administrative
boundary data on multiple levels, such as national borders, provincial borders, city borders,
and district borders, for all countries and regions worldwide.

• Surface reflectance data

Surface reflectance, also known as spectral reflectance, refers to the ratio of the reflected
flux of an object in a certain wavelength band to the incident flux of that band. It is used to
describe the selective reflection of electromagnetic waves at different wavelengths from the
surface of objects.

ρ(λ) =
ER(λ)

EI(λ)
(1)

where ρ(λ) is the reflectance of the corresponding wavelength, ER(λ) is the reflected energy
of the corresponding wavelength, and EI(λ) is the incident energy of the corresponding
wavelength.

In this study, the USGS Landsat 8 Level 2, Collection 2, Tier 12 dataset available
on the Google Earth Engine platform was used. This dataset is updated every seven
days, undergoes atmospheric correction, and is produced by the Landsat 8 OLI/TIRS
sensor. The dataset includes five visible and near-infrared (VNIR) bands, two shortwave
infrared (SWIR) bands, and one thermal infrared (TIR) band, which can meet the needs for
estimating lighting information.

• Meteorological data

Meteorological data refer to data on various physical quantities used to describe an
atmospheric environment, such as temperature, humidity, wind speed, wind direction, air
pressure, precipitation, etc. These data are collected using sensors at meteorological stations
and can be used in fields such as weather forecasting, climate research, and environmental
monitoring.

Considering the need to generate a sky radiance model, this study selected tempera-
ture, air pressure, and humidity data as the meteorological data that needs to be integrated.

All the multi-source geographic information data used in this study are shown in
Table 2.

After obtaining the required multi-source geographic information data, these data are
injected into the server side of the multi-source geographic information database. When
users run the AR system on the client side, real-time data acquisition and updates based
on a time threshold are conducted according to the GPS information from the client. This
provides real-time data support for the system to estimate the lighting information of the
scene where the client is located.
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Table 2. Multi-source geographic information data.

Data Name Data Type Data Source

GPS data Text Mobile device

Administrative division data Vector GADM (Database of Global Administrative Areas)

Surface reflectance data Raster Google Earth Engine

Meteorological data Text China National Meteorological Center

3.3. Generation of a Sky Radiance Model Driven Using Multi-Source Geographic Information

To provide lighting for virtual 3D objects and better integrate them with a real scene,
a sky radiance model of the scene is required. To address this issue, this study improves
Hosek et al.’s sky radiance model [29] and proposes a new sky radiance model driven
using multi-source geographic information.

3.3.1. Reconstruction of the Sun’s Position

To establish a sky radiance model driven using multi-source geographic information,
an accurate reconstruction of the sun’s position is necessary. The attributes that describe
the position of the sun include the solar zenith angle and the solar azimuth angle. The
solar zenith angle refers to the angle between the incident light direction and the zenith
direction, which is the complementary angle of the altitude angle. The solar azimuth angle
is generally measured clockwise from the north direction of the target object to the direction
of the incident sunlight. As shown in Figure 2, θ represents the solar zenith angle and Φ
represents the solar azimuth angle.
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The SPA algorithm [31] is utilized in this study to reconstruct the position of the sun
using latitude, longitude, elevation, time, air pressure, and temperature information from
the multi-source geographic information database. The current date and time are used to
calculate the Julian day (JD) with the following equation:

JD = INT(365.25 ∗ (TY + 4716)) + INT(3.6001 ∗ (TM + 1)) + TD + TB − 1524.5,

TB =

{
0, JD < 2299160

2− INT(TY/100) + INT(TY/400), JD > 2299160
(2)

where TY is the year, TM is the month, and TD is the day of the month with decimal time.
To calculate the JD, you should first set TB = 0. If the calculated JD is less than

2,299,160, then the result is correct. However, if the calculated JD is greater than 2,299,160
when TB = 0, then you should update TB to (2− INT

(
TY
100

)
+ INT

(
TY
400

)
). After updating

TB, you can recompute the JD to obtain the correct result.
Once the JD is obtained, the geocentric latitude β, earth radius vector R, true obliquity

of the ecliptic ε, apparent sun longitude λ, and apparent sidereal time at Greenwich V can
be determined after combining the Julian day with latitude information and performing a
table lookup using the SPA algorithm [31].



ISPRS Int. J. Geo-Inf. 2023, 12, 324 8 of 20

The observer local hour angle H, geocentric sun declination δ, and equatorial horizontal
parallax of the sun ξ are calculated using

H = V + σ− Arctan 2
(

sin λ ∗ cos ε− tan β ∗ sin ε

cos λ

)
(3)

δ = Arcsin (sin β ∗ cos ε + cos β ∗ sin ε ∗ sin λ) (4)

ξ =
8.794

3600 ∗ R
(5)

where σ is the observer geographical longitude.
After that, the terms x and y can be calculated using the following equations:

x = cos (Arctan (0.99664719 ∗ tan ϕ)) +
E

6378140
∗ cos ϕ (6)

y = 0.9964719 ∗ sin (Arctan (0.99664719 ∗ tan ϕ)) +
E

6378140
∗ sin ϕ (7)

where E is the observer elevation (in meters) and ϕ is the observer geographical latitude.
After obtaining x and y, the parallax in the sun right ascension ∆α is given by

∆α = Arctan 2
(

−x ∗ sin ξ ∗ sin H
cos δ− x ∗ sin ξ ∗ cos H

)
(8)

Once the sun right ascension ∆α is calculated, the topocentric local hour angle H′, the
topocentric sun declination δ′, and the topocentric elevation angle without atmospheric
refraction correction e0 can be obtained using the following equations:

H′ = H − ∆α (9)

δ′ = Arctan 2
(
(sin δ− y ∗ sin ξ) ∗ cos ∆α

cos δ− x ∗ sin ξ ∗ cos H

)
(10)

e0 = Arcsin
(
sin ϕ ∗ sin δ′ + cos ϕ ∗ cos δ′ ∗ cos H′

)
(11)

Finally, the solar zenith angle θ and solar azimuth angle Φ can be calculated using air
pressure and temperature data from the multi-source geographic information database and
applying the following equation:

θ = 90−Arcsin
(
sin ϕ ∗ sin δ′ + cos ϕ ∗ cos δ′ ∗ cos H′

)
− P

1010
∗ 283

273 + T
∗ 1.02

60 ∗ tan (eo +
10.3

eo+5.11 )
(12)

Φ = Arctan 2(
sin H′

cos H′ ∗ sin ϕ− tan δ′ ∗ cos ϕ
) + 180 (13)

where P is the local pressure and T is the local temperature.

3.3.2. Atmospheric Turbidity Calculation

To quantitatively describe atmospheric turbidity, Linke proposed the Linke turbidity
factor [32]. The Linke turbidity factor can easily define the appearance of the sky without
considering too many meteorological factors. Therefore, it can be used in sky radiance
models to describe atmospheric turbidity.

The Linke turbidity factor TL is the ratio of the total optical thickness of the atmosphere
δatmosphere to the optical thickness of a clean dry atmosphere (CDA) δcda.

TL =
δatmosphere

δcda
(14)
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The total optical thickness of the atmosphere is composed of the effect of CDA, water
vapor, and aerosols.

δatmosphere = δcda + δw + δa (15)

where δw is the optical thickness of water vapor and δa is the optical thickness of aerosols.
The equation for calculating atmospheric turbidity can be obtained using

Equations (14) and (15), as follows:

TL = 1 +
δw + δa

δcda
(16)

Therefore, once the optical thickness of CDA, water vapor, and aerosols is obtained,
the atmospheric turbidity TL can be calculated.

Kasten [33] used optical air mass ma to estimate the optical thickness of CDA, and the
equation is as follows:

δcda =
(

6.6296 + 1.7513ma − 0.1202m2
a + 0.0065m3

a − 0.00013m4
a)
−1 (17)

The absolute air mass ma is given by Kasten’s formula [34]

ma =
P

1013.25(cos θ + 0.15(93.885− θ)−1.253)
(18)

where P is the actual pressure in mbar and θ is the zenith angle.
The optical thickness of water vapor is related to the amount of precipitable water w

in the atmosphere. Molineaux [35] proposed an equation to calculate the optical thickness
of water vapor based on w and ma.

δw = 0.112−m−0.55
a w0.34 (19)

The amount of precipitable water can be calculated using Behar’s equation [36].

w = 0.085exp (2.2572 + 0.05454 Tdew) (20)

where Tdew is the dew point temperature.
When the temperature T is between 0 ◦C and 60 ◦C and the relative humidity RH

is between 0% and 100%, the dew point temperature Tdew can be calculated using the
Magnus–Tetens approximation formula, as follows:

Tdew =
237.7η

17.27− η
(21)

η =
17.27T

237.7 + T
+ ln (

RH
100

) (22)

The last term, the optical thickness of aerosols, depends on the aerosol transparency
coefficient k and optical air mass ma.

δa = −(
ln (kma)

ma
) (23)

The aerosol transparency coefficient is given by

k = 0.9535− 0.0026w + 7.6927× 10−4(90− θ) (24)

Once the optical thicknesses of CDA, water vapor, and aerosols are calculated, the
atmospheric turbidity TL for the current scene can be determined using Equation (16).
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3.3.3. Surface Albedo Estimation

Surface albedo can significantly affect the brightness of the entire sky [29]. Therefore,
in order to obtain an accurate sky radiance model for a given scene, it is necessary to obtain
the surface albedo at the location of the scene.

Surface albedo refers to the ratio of reflected radiative flux to incident radiative flux on
the surface under solar radiance, reflecting the surface’s ability to absorb solar radiance.

α = M/E (25)

where α represents surface reflectance, M represents reflected radiative flux, and E repre-
sents incident radiative flux.

The difference between surface albedo and surface reflectance is that reflectance refers
to reflection in a certain direction of a specific band, while albedo is the integral of reflectance
over all directions. Reflectance is a function of the wavelength, with different wavelengths
having different reflectance. Albedo applies to all wavelengths. Reflectance is used to
represent the ratio of reflected energy at a certain wavelength to incident energy. Albedo is
used to represent the ratio of reflected energy across the entire spectrum to incident energy.

In this study, the surface albedo was calculated using the inversion model for Landsat
data established by Liang [37].

α = 0.356B2 + 0.130B4 + 0.373B5 + 0.085B6 + 0.072B7 − 0.0018 (26)

where B2, B4, B5, B6, and B7 refer to Band SR_B2, Band SR_B4, Band SR_B5, Band SR_B6,
and Band SR_B7, respectively, obtained from the USGS Landsat 8 dataset in GEE.

Figure 3 shows surface albedo estimation using the Beijing area as an example. By
performing band calculations on the GEE surface reflectance dataset, the surface albedo
data are obtained and then used to generate the sky radiance model.
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Figure 3. USGS Landsat 8 surface reflectance dataset and surface albedo in Beijing, 2022. (a) USGS
Landsat 8 Level 2, Collection 2, Tier 12 Dataset and (b) surface albedo.

3.3.4. Sky Radiance Model Generation

In order to obtain a sky radiance model for a scene and provide real-world lighting
to virtual objects, the sun azimuth, atmospheric turbidity, and surface reflectance data ob-
tained using multi-source geospatial information should be incorporated into the following
equation. Then, a sky radiance model driven using multi-source geospatial information
can be generated.
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F(θV , γ) = (1 + Ae
B

cos θV+0.01 ) · (C + DeEγ + Fcos 2γ + G · 1+cos 2γ

(1+H2−2H·cos γ)
3
2
+ I · cos

1
2 θV) (27)

where θV is the angle between the viewing ray and zenith and γ is the angle between the
viewing ray and the solar point. The parameters A through I in the equation are used to
adjust the brightness distribution, and their calculation equations are as follows:

vλ
p = mλ

TL,α,p,1 · (1− z)5 + mλ
TL,α,p,2 · 5z(1− z)4 + mλ

TL,α,p,3 · 10z2(1− z)3+

mλ
TL,α,p,4 · 10z3(1− z)2 + mλ

TL,α,p,5 · 5z4(1− z)1 + mλ
TL,α,p,6 · z5

z = 3
√

90−θ
90

(28)

where p ∈ {1, . . . , 9}, and the results correspond to parameters A through I in Equation (27),
respectively, where A = vλ

1 , B = vλ
2 , C = vλ

3 , D = vλ
4 , E = vλ

5 , F = vλ
6 , G = vλ

7 , H = vλ
8 ,

I = vλ
19. λ is the wavelength of light. After combining the atmospheric turbidity TL and

surface reflectance α of the scene, the values mλ
TL,α,p,{1,...,6} in table Mλ can be calculated

using Hosek’s method [29].
Once a sky radiance model driven using multi-source geospatial information is ob-

tained, we can estimate the real-world lighting information of the scene. Figure 4 shows
sky radiance models under different levels of atmospheric turbidity and surface reflectance.
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Figure 4. Examples of sky radiance models under different conditions. (a–e) Clear sky radiance
model driven using multi-source geographic information data with a surface albedo of 0.1 and
atmospheric turbidity ranging from 2 to 4. (f–j) Clear sky radiance model driven using multi-source
geographic information data with a surface albedo of 0.9 and atmospheric turbidity ranging from 2
to 4. (k–o) Overcast sky radiance model driven using multi-source geographic information data with
a surface albedo of 0.1 and atmospheric turbidity ranging from 2 to 4.
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3.4. Fusion of Real Outdoor Scenes with Virtual 3D Objects

In order to integrate virtual 3D models more realistically with real-world scenes,
it is necessary to provide the virtual 3D model with lighting information from the real-
world environment. In outdoor scenes, the sun is the most important light source in the
environment. Due to atmospheric refraction and scattering, the entire sky emits light,
providing indirect daylight illumination for the scene. Therefore, daylighting ES can be
divided into direct sunlight illumination EDS and indirect sunlight illumination EIS [27], as
shown in the following equation:

ES = EDS + EIS (29)

The sky radiance model driven using multi-source geographic information data in
Section 3.3 can obtain indirect sunlight information EIS of the scene using the image-based
lighting (IBL) method, which provides indirect illumination for virtual objects. To ensure
the real-time performance of the augmented reality system, the model is updated every
20 s or when the change in scene light intensity exceeds 30,000 lux, as the change in indirect
sunlight illumination is relatively small.

In order to obtain direct sunlight information EDS, it is necessary to determine both the
direction and intensity of the direct sunlight represented by the sun. This can be achieved
by calculating accurate sun direction information, i.e., the light source position information
of direct sunlight, using a combination of Equations (12) and (13), based on GPS information
obtained from the client side and the scene multi-source geographic information data on
the server side. Then, the intensity of the direct sunlight is obtained by measuring the
sunlight intensity data of the scene using the light sensor in a mobile device.

As the light intensity data collected using the light sensor includes both direct and
indirect sunlight, it is necessary to establish a relationship between the two types of sunlight.
Barreira et al. [27] established a model for the relationship between direct and indirect
sunlight intensity under different weather conditions, as shown in Figure 5a–c. However,
this illumination model cannot accurately distinguish weather conditions when the scene
is under shadows from buildings or clouds. Therefore, we propose an improved model
for the relationship between direct and indirect sunlight intensity based on adaptive light
intensity, as follows:

EDS =


0.85ES,25000 < ES

0.5ES,2000 < ES < 25000

0,0 < ES < 2000

, EIS =


0.15ES,25000 < ES

0.5ES,2000 < ES < 25000

ES,0 < ES < 2000

(30)

where ES refers to the overall light intensity of the scene measured in lux using the light
sensor. Direct sunlight has a brightness of around 110,000 lux, and the light sensor’s upper
limit used in our study is set at 90,000 lux. Due to the marginal effect, changes in light
intensity have minimal impact on the rendering realism of virtual objects when the light
intensity approaches the limit. Therefore, we set the upper limit of the sensor at 90,000 lux
as the model limit. The three cases correspond to different light intensity thresholds for
weather conditions according to Bird [38], so the model can estimate the illumination under
different weather conditions.

As shown in Figure 5d, this method is based on brightness-based scene division and
combines the relationship between direct and indirect sunlight intensity under different
weather conditions. By adjusting the total light intensity of the scene under different
conditions, the model obtains the light source intensity information of direct sunlight.

After obtaining the direct sunlight illumination EDS and indirect sunlight illumination
EIS of the scene, the values are inputted into the augmented reality system for real-time
rendering of outdoor scenes based on multi-source geographic information data to achieve
lighting consistency.
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model for an overcast sky. (d) Light intensity model based on light intensity division.

4. Results

To validate the proposed lighting consistency technique for the real-time AR system in
outdoor scenes based on multi-source geographic information data, we collected data from
multiple outdoor scenes using smartphones at the Aerospace Information Research Institute
of the Chinese Academy of Sciences. In the experiment, we compared our technology
with several state-of-the-art AR lighting consistency techniques [20,27] and ARCore. We
examined the performance of these techniques in terms of the realism of virtual–real fusion
and the system frame rate.

4.1. Experiments Setup

The prototype device used in this study consists of a server and a client. The server
uses Tencent’s cloud server, equipped with a 2.6 GHz single-core CPU and 1GB memory,
running the Lighthouse lightweight database server. The client uses an Android mobile
phone, specifically the Huawei P20 Pro, which is equipped with a Kirin 970 processor,
as well as various sensors including a camera, light sensor, and GPS receiver to meet
the experimental requirements. This device represents the sensor configuration of most
mobile devices on the market, thus ensuring the algorithm’s portability across different
mobile devices.

To capture HDR lighting information from real-world scenes, we used an Insta
360 ONE X2 panoramic camera in our study. In the same scene, we adjusted the cam-
era’s shutter and ISO parameters based on Table 3 to obtain multiple panoramic photos
under different exposure conditions. These photos were combined to generate an HDR
panoramic photo of the scene, which allowed us to obtain the actual HDR lighting informa-
tion of the real-world environment. This method takes advantage of the strengths of using
a panoramic camera to quickly acquire HDR lighting information from real-world scenes.



ISPRS Int. J. Geo-Inf. 2023, 12, 324 14 of 20

Table 3. Panoramic camera shooting parameters.

ISO Shutter ISO Shutter ISO Shutter ISO Shutter ISO Shutter

100

1/8000

100

1/3200

100

1/1250

100

1/500

100

1/200

1/6400 1/2500 1/1000 1/400 1/160

1/5000 1/2000 1/800 1/320 1/120

1/4000 1/1600 1/640 1/240 1/100

During the development of our AR system, we used the ARFoundation toolkit in Unity,
which unifies the ARCore and ARKit development toolkits. The resulting application can be
easily deployed to mobile platforms after development completion. This toolkit is capable
of satisfying the fundamental requirements of an AR system, facilitating both theoretical
research on light consistency techniques and custom development for AR applications.

4.2. Evaluation Method and Metric

Similar to the experimental setup in Hold-Geoffroy [20], we utilized the actual HDR
lighting conditions from the ground captured in the scene to light the virtual model, using
this result as the ground truth (GT) value for the experiment. Then, we compared the
realism of the GT value with the predicted results and recorded the system’s runtime speed
to evaluate the performance of the light consistency techniques in the real-time AR system.

In this study, RMSE (root mean square error), AE (angular error), and SAE (shadow
angular error) were used as quantitative evaluation metrics for assessing the effectiveness
of virtual–real fusion in AR. These metrics have been widely applied for evaluating light
consistency techniques in AR [18,20,39,40]. RMSE is the root mean square error, which
measures the overall difference between predicted values and ground truth values by
computing the square root of the average of squared differences. It is one of the indicators
used to assess image quality. AE refers to the linear RGB angular error, as shown in Figure 6.
It measures the accuracy of the predicted results by calculating the angle between the GT
and predicted results in the RGB space formed by connecting them to the origin. In this
study, when computing RMSE and AE, only shadow positions were considered to prevent
alignment errors caused by image capture. SAE measures the angular error between the
real and predicted shadows of virtual objects, which can be used to evaluate the accuracy
of the light source position and generated shadows.
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To assess the real-time performance of the light consistency technique in our AR
system, we used Unity’s performance analysis tools to monitor the system. By recording
the real-time frame rate performance during the operation of the AR system, we evaluated
the real-time performance of the light consistency technique in the AR system.

4.3. Experimental Process and Results

In order to achieve a realistic fusion of virtual objects with real scenes, it is necessary
to use the lighting information of the actual scene to illuminate the virtual objects. In
this study, twenty panoramic photos of the scene at different exposures were obtained
according to Table 3. These photos were aligned and stitched using the merge-to-HDR tool
in Photoshop, resulting in a panoramic HDR with the real lighting texture of the scene. The
real lighting of the scene was then used to illuminate the virtual objects with Blender’s
image-based lighting (IBL) technique, producing accurate shadows and highlights for
the virtual objects in the real scene. This result was used as the ground truth (GT) for
subsequent experimental comparisons, as shown in Figure 7. To facilitate accurate image
capture, the camera was mounted on an adjustable tripod, allowing for repeated and
precise captures.
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To validate our method, we conducted experiments in 20 different scenes and captured
panoramic HDR image datasets of the scenes. In each scene, we collected and computed
multi-source geographical information data on the scene and used it as input for the model
to generate lighting for virtual objects in the AR system within that particular scene.

During our experiments, we compared our method with several state-of-the-art tech-
niques [20,27] and ARCore for achieving AR lighting consistency in outdoor scenes, as
shown in Figure 8. We noticed that due to limited lighting and shadow information in
the image data, the Hold-Geoffroy and ARCore methods had larger errors in the shadow
shape. Our method made significant improvements in the shadow angle and shape when
compared to the image analysis methods of Hold-Geoffroy and ARCore, which can be
largely attributed to the calculation of the sun’s position parameters using multi-source
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geospatial information data. Furthermore, our improved lighting brightness estimation
resulted in shadow colors that were closer to the ground truth compared to Barreira’s
method.
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To quantitatively evaluate the real-time performance of augmented reality systems
using different methods, we monitored the system’s frame rate during the experiments.
Hold-Geoffroy’s method can only process images and cannot run in a real-time AR system.
The experimental results obtained using other methods are shown in Figure 9. We can see
that our method based on multi-source geospatial information does not require complex
image analysis work, leading to significantly improved frame rates compared with ARCore.
When the client frequently communicates with the server, it reduces the system’s frame rate.
Therefore, we used a time threshold update method with a resolution of 30 s, which led to
a significant improvement in the overall frame rate compared to Barreira’s method. Our
real-time augmented reality system lighting consistency technology based on multi-source
geospatial information can keep the system running at high frame rates, ensuring the
real-time performance of the AR system.

To quantitatively evaluate the effectiveness of our method, we used RMSE, AE, and
SAE as quantitative evaluation metrics to measure the fusion effect of virtual and real
objects in augmented reality. Table 4 shows the overall results of our method and several
state-of-the-art outdoor augmented reality lighting consistency techniques in terms of
RMSE, AE, SAE, and average frame rates.

From the above experimental results, we can clearly see that the real-time augmented
reality system lighting consistency technology based on multi-source geospatial information
from outdoor scenes achieves low RMSE and AE, indicating that this method can maintain
high realism of a virtual object’s shadow colors. At the same time, the achieved SAE
of 5.2 indicates that our technology can accurately reproduce the orientation and shape
of a virtual object’s shadows, significantly improving the realism of the fusion between
virtual objects and real scenes. As the method does not require extensive image analysis
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calculations, the system’s FPS has also been greatly improved, meeting the real-time
requirements of AR systems. Moreover, these accuracy and frame rate values align with
our claims and demonstrate the value of using multi-source geospatial information in
outdoor real-time AR systems.
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Table 4. A comparison of our method with state-of-the-art techniques for achieving augmented
reality lighting consistency in outdoor scenes. The evaluation metrics include the commonly used
RMSE, angular error, shadow angular error, and FPS.

Hold-Geoffroy et al. Barreira et al. ARCore Our Method

RMSE 11.1855 13.52 10.6263 10.6547
AE 0.5208 0.5826 0.4285 0.4927

SAE 23.8 7.3 20.3 5.2
FPS — 50.52 35.48 94.26

5. Discussion

The purpose of this paper is to achieve lighting consistency rendering for real-time AR
systems in outdoor scenes and optimize the visual quality of virtual object fusion with real
scenes. We propose a real-time augmented reality lighting consistency technology based on
multi-source geospatial information from outdoor scenes, which overcomes the limitations
of scene restrictions and low system frame rates caused by high device requirements,
strong image dependence, and a large computational workload in augmented reality
lighting consistency techniques. We introduce multi-source geospatial information data
and establish a sky lighting model driven using multiple geographic information data
elements. Then, we use the sky lighting model and light sensor data to perform lighting
rendering for virtual objects in outdoor scenes, enabling them to integrate realistically with
the scene. One advantage of our technology is that it can achieve real-time augmented
reality lighting consistency rendering without considering additional invasive devices
or visual information, ensuring the real-time performance of the system. This makes
the technology more easily applicable to a wide range of mobile devices. Experiments
conducted at the Aerospace Information Innovation Institute, Chinese Academy of Sciences,
demonstrate that our method can achieve high realism for the fusion between virtual objects
and real scenes while ensuring the system runs at a high frame rate. In terms of application
areas, this method is beneficial for developing AR systems with lighting consistency on
mobile devices and has broad prospects in the field of mobile augmented reality.

Compared to methods based on marker information [10–12,22], our approach does
not require acquiring prior scene information. Instead, we rely on the analysis of MPI data,
enabling us to quickly and accurately obtain outdoor scene lighting information. In contrast
to methods based on auxiliary equipment [13–16,23], our approach does not demand
extensive specialized sensors. By fully utilizing the sensors available in mobile devices,
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we can deploy the algorithm, thus reducing its operational cost. As opposed to methods
based on image analysis [17–20,24,25], our approach is independent of images. Instead,
we developed a sky radiance model driven using multi-source geographic information,
which significantly reduces computational overhead. As a result, we can achieve realistic
virtual–real fusion effects at high frame rates.

With the advent of MR devices like Meta Quest Pro and Apple Vision Pro, along with
the integration of more advanced and precise sensors in mobile devices, the possibility of
conveniently achieving accurate light estimation using auxiliary equipment has become a
reality. Light estimation based on auxiliary devices allows for the most precise retrieval of
lighting information from a scene. As sensor types, quantities, and accuracy improve, and
sensor sizes decrease, coupled with the continuous acceleration of algorithm speeds, light
estimation based on auxiliary devices is likely to become the final solution for the research
problem o future mobile devices.

However, there are still some limitations. For instance, it is difficult to combine
this method with augmented reality lighting consistency techniques for indoor scenes to
develop a universal technical solution. Additionally, the accuracy of brightness estimation
in our method depends on the quality of the sensors, which can cause errors in the final
results using different devices.
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