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Abstract: The Ultra-Wideband (UWB) indoor positioning method is widely used in areas where no
satellite signals are available. However, during the measurement process of UWB, the collected data
contain random errors. To alleviate the effect of random errors on positioning accuracy, an improved
adaptive sparrow search algorithm (IASSA) based on the sparrow search algorithm (SSA) is proposed
in this paper by introducing three strategies, namely, the two-step weighted least squares algorithm,
adaptive adjustment of search boundary, and producer–scrounger quantity adaptive adjustment.
The simulation and field test results indicate that the IASSA algorithm achieves significantly higher
localization accuracy than previous methods. Meanwhile, the IASSA algorithm requires fewer
iterations, which overcomes the problem of the long computation time of the swarm intelligence
optimization algorithm. Therefore, the IASSA algorithm has advantages in indoor positioning
accuracy and robustness performance.

Keywords: indoor positioning; Ultra-Wideband; time difference of arrival; sparrow search algorithm;
two-step weighted least squares

1. Introduction

With the rapid development of the mobile Internet, large-scale Internet of Things (IoT)
has been constructed, and the application of location-based service (LBS) technology is
increasingly extensive [1,2]. The positioning technologies represented by Beidou (BDS) and
GPS satellite navigation systems can meet the requirements for location services in outdoor
scenarios, but in indoor scenarios, GNSS signals are blocked by buildings and cannot
provide navigation and positioning services. Therefore, a variety of indoor positioning
technologies, such as radio frequency identification (RFID) [3], Wi-Fi [4], Bluetooth [5],
and Ultra-Wideband (UWB) [6] have emerged. Zhou proposed a localization approach for
the social IoT by combining the fuzzy rough set theory and the ridge regression extreme
learning machine (RRELM) [1]. Tao proposed a novel RFID-based mobile robot localization
method combining readability and phase difference [3]. Nguyen leveraged the UWB
ranging data between the robots to improve system’s odometry [7]. Among them, UWB
technology has attracted much attention from researchers around the world owing to its
unique advantages in positioning [8].

UWB positioning technology can be evaluated in four aspects, including received
signal strength (RSS), angle of arrival (AOA), time of arrival (TOA), and time difference
of arrival (TDOA) [9]. The positioning accuracy based on RSS and AOA measurement
methods is easily affected by environmental factors. The advantage of TDOA over TOA is
that it does not require clock synchronization between receivers and tags, so it is easier to
implement and has been widely used in the indoor position service field [10].

According to the prior statistics of the measurement error, the unknown tag position
can be obtained through the maximum likelihood (ML) function. However, for a given local-
ization problem, the corresponding ML objective function is a highly nonlinear non-convex
function [11], which motivates the development of more effective optimization methods.
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Semi-definite relaxation (SDR) is an effective localization method, and it has received
great attention in solving various localization problems because of the reliability and robust-
ness of its computational results [12,13]. However, it fails to provide high global optimal
solution estimation accuracy under significant measurement noise [14]. The constrained
weighted least squares (CWLS) algorithm provides another approach for solving the local-
ization problem [15]. The fundamental of the algorithm is to reduce the estimation error
by explicitly using constraints between tag positions and auxiliary variables. During the
calculation process, the CWLS algorithm will generate a non-convex indefinite quadratic
constraint quadratic problem (QCQP), but it can use implicit convexity to convert the
problem into convex programming [16]. To further improve the positioning accuracy, Qu
proposed an iterative constrained weighted least squares (ICWLS) algorithm [17]. This algo-
rithm transforms the non-convex CWLS algorithm expression into a new convex expression
through a new equation transformation. Although the simulation experiments confirm
the effectiveness of the algorithm, it suffers from localization divergence in a loud noise
environment. Therefore, finding a high-precision global optimal solution for the objective
function in the positioning equation has become an issue of practical significance [12].

A variety of swarm intelligent optimization algorithms has been adopted to solve
complicated optimization problems, such as the Grey Wolf Optimizer (GWO) [18], the
Cuckoo optimization algorithm (COA) [19], and the Sparrow Search Algorithm (SSA) [20].
The swarm intelligent optimization algorithm mainly relies on two parts: global exploration
and local exploitation [21]. Compared with other swarm intelligent optimization algorithms,
the sparrow search algorithm (SSA) has better performance in terms of search accuracy,
convergence speed, and stability [22], but it suffers from premature convergence such as
most intelligent optimization algorithms [23]. Some adaptive improvement strategies are
introduced into SSA to increase the global search capability, such as nonlinear inertial
weight [24], adaptive distribution [25], and adaptive control step [26]. However, the above
improvements are mainly aimed at the producers who occupy a minority of the population
and are responsible for guiding the direction of the population. They do not make full use
of the scroungers who account for majority of the population.

To achieve high-precision positioning in the indoor environment, based on the above
considerations, this paper proposes an improved adaptive sparrow search algorithm
(IASSA). The contribution of this paper can be summarized as follows:

1. The algorithm solves the distribution problem of the initial population. Compared
with the traditional intelligent optimization algorithm. This algorithm generates the
initial population position based on the positioning results and error distribution
characteristics of the TSWLS algorithm, which accelerates the speed of searching for
the optimal solution.

2. The algorithm solves the problem of balancing the local exploitation ability and
the global exploration ability by producer–scrounger quantity adaptive adjustment
strategy, and the effectiveness of the proposed method is verified by the experiment
of low signal-to-noise ratio (SNR) scenario.

3. The algorithm incorporates an adaptive adjustment strategy based on observation
information noise, which will adaptively update the algorithm parameters with the
changes in practical application scenarios.

The rest of this paper is organized as follows. Section 2 explains the TDOA mea-
surement model, Section 3 describes the TSWLS model, Section 4 introduces the IASSA
model in detail, Section 5 presents the scenarios and observations of the simulation and
real experiments, and finally, Sections 6 and 7 describe the discussion and conclusions of
this paper.

2. TDOA Measurement Model

The experiment is conducted in a two-dimensional scene, and the same principle is
applied to extend to a three-dimensional scene. Assuming that there are M (M > 3) receivers
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distributed in a two-dimensional plane, let the time for the receiver to receive the signal
transmitted by the tag be:

ti = t0
i + ni, i = 1, 2, · · · , M (1)

where t0
i is the true value of the arrival time of the signal, ni is the additional noise. The

noise obeys a zero-mean stationary Gaussian random process, and the standard deviation
is σr. With receiver 1 as the reference, the TDOA measurement value is the difference in
the arrival time of the tag to two different receivers [27] is shown in Figure 1, and the
expression is

ti,1 = ti − t1 = t0
i,1 + ni,1 , i = 2, 3, · · · , M (2)

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 3 of 19 
 

 

2. TDOA Measurement Model 
The experiment is conducted in a two-dimensional scene, and the same principle is 

applied to extend to a three-dimensional scene. Assuming that there are M (M > 3) receiv-
ers distributed in a two-dimensional plane, let the time for the receiver to receive the sig-
nal transmitted by the tag be: 

0 ,  1, 2, ,i i it t n i M= + = L  (1) 

where 0
it  is the true value of the arrival time of the signal, in  is the additional noise. The 

noise obeys a zero-mean stationary Gaussian random process, and the standard deviation 
is rσ . With receiver 1 as the reference, the TDOA measurement value is the difference in 
the arrival time of the tag to two different receivers [27] is shown in Figure 1, and the 
expression is 

0
,1 1 ,1 ,1  ,  2,3, ,i i i it t t t n i M= − = + = L  (2) 

 
Figure 1. The TDOA positioning principle. 

The receiver coordinates are known as ( , )i ix y , the tag coordinates are unknown and 
set to ( , )x y , and ir  is defined as the distance from the tag to receiver i 

2 2 2 2 2( ) ( ) 2 2i i i i i ir x x y y K x x y y x y= − + − = − − + +  (3) 

2 2
i i iK x y= +  (4) 

Assuming that the signal propagation speed is c , let r  be the TDOA observation 
vector, 2,1 3,1 ,1, , ,

T
Mr r r =  Lr , where 

,1 ,1 1  ,  2,3, ,i i ir ct r r i M= = − = L  (5) 

Essentially, the process of obtaining the tag coordinates based on the TDOA meas-
urement value is the process of solving the TDOA equation set to obtain the global optimal 
solution. 

3. Two-Step Weighted Least Squares Algorithm 
There are many algorithms for solving a given positioning equation, and the TSWLS 

algorithm is a non-recursive hyperbolic equation-solving method with high positioning 
accuracy and small computational complexity [28]. 

First, the two sides of Equation (5) are squared to obtain ( )22
,1 1i ir r r= + . Then, both 

sides of Equation (3) can be transformed into 
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The receiver coordinates are known as (xi, yi), the tag coordinates are unknown and
set to (x, y), and ri is defined as the distance from the tag to receiver i

r2
i = (xi − x)2 + (yi − y)2 = Ki − 2xix− 2yiy + x2 + y2 (3)

Ki = x2
i + y2

i (4)

Assuming that the signal propagation speed is c, let r be the TDOA observation vector,
r = [r2,1, r3,1, · · · , rM,1]

T , where

ri,1 = cti,1 = ri − r1 , i = 2, 3, · · · , M (5)

Essentially, the process of obtaining the tag coordinates based on the TDOA mea-
surement value is the process of solving the TDOA equation set to obtain the global
optimal solution.

3. Two-Step Weighted Least Squares Algorithm

There are many algorithms for solving a given positioning equation, and the TSWLS
algorithm is a non-recursive hyperbolic equation-solving method with high positioning
accuracy and small computational complexity [28].
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First, the two sides of Equation (5) are squared to obtain r2
i = (ri,1 + r1)

2. Then, both
sides of Equation (3) can be transformed into

r2
i,1 + 2ri,1r1 + r2

1 = Ki − 2xix− 2yiy + x2 + y2 (6)

When i = 1, Equation (4) becomes K1 = x2
1 + y2

1 , and by subtracting Equation (4) from
Equation (6), we have

r2
i,1 + 2ri,1r1 = −2xi,1x− 2yi,1y + Ki − K1 (7)

where xi,1 = xi − x1, yi,1 = yi − y1.
Take 6 receivers as an example, the TDOA equation set is

r2
2,1 + 2r2,1r1 = −2x2,1x− 2y2,1y + K2 − K1

r2
3,1 + 2r3,1r1 = −2x3,1x− 2y3,1y + K3 − K1

· · ·
r2

6,1 + 2r6,1r1 = −2x6,1x− 2y6,1y + K6 − K1

(8)

The matrix form of Equation (8) is

1
2


r2

2,1 − K2 + K1
r2

3,1 − K3 + K1
· · ·

r2
6,1 − K6 + K1

 = −


x2,1 y2,1 r2,1
x3,1 y3,1 r3,1
· · · · · · · · ·
x6,1 y6,1 r6,1


 x

y
r1

 (9)

Let za =
[
zT

p , r1

]T
be the unknown vector, where zp = [x, y]T . Denote the noise-free

value of {∗} as {∗}0. In the presence of noise in the TDOA measurement value, the error
vector ψ obtained from Equation (9) is

ψ = h−Gaz0
a (10)

where h = 1
2


r2

2,1 − K2 + K1
r2

3,1 − K3 + K1
· · ·

r2
6,1 − K6 + K1

, Ga = −


x2,1 y2,1 r2,1
x3,1 y3,1 r3,1
· · · · · · · · ·
x6,1 y6,1 r6,1

.

Using the weighted least squares (WLS) algorithm, the first WLS estimate of za is

za = (GT
a W−1Ga)

−1
(GT

a W−1h) (11)

In this formula, the weighting matrix is

W = BQ’B (12)

where B is a diagonal matrix with a similar form to diag
{

r0
2, r0

3, · · · , r0
6
}

, Q’ = σ2
r


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

.

After the second WLS is used, we have

za
’ =

(
G’

a
TW’−1

G’
a

)−1
G’

a
TW’−1

h’ (13)

W’ = 4B’
(

G0T
a W−1G0

a

)−1
B’ (14)
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where h’

(za,1 − x1)
2

(za,2 − y1)
2

z2
a,3

, G’
a =

1 0
0 1
1 1

, and B’ is a diagonal matrix with a similar form to

diag
{

x0 − x1, y0 − y1, r0
1
}

. The final position coordinate of the tag is

zp =
√

za’ +

[
x1
y1

]
or zp = −

√
za’ +

[
x1
y1

]
(15)

4. Improved Adaptive Sparrow Search Algorithm

The general localization algorithm has certain defects. Taking the TSWLS algorithm
as an example, this algorithm can only estimate the best position of the tag with a high
SNR [29]. To overcome the above defects, the IASSA algorithm is proposed in this paper.

4.1. Sparrow Search Algorithm

When the sparrow population is in foraging behavior, according to the food each
individual possesses, sparrows can be divided into two parts: producers and scroungers.
The one with more food is the producer, which provides foraging areas for the scroungers
and leads the scroungers to hunt elsewhere when the predator appears and threatens the
safety of the population. The producer’s location is updated as follows:

xt+1
i,j =

{
xt

i,j · exp
(

−i
α·itermax

)
, R2 < ST

xt
i,j + Q · L, R2 ≥ ST

(16)

where xt
i,j represents the value of the j-th dimension of the i-th sparrow at iteration t,

j = 1, 2, · · · , d; itermax is the maximum number of iterations; α ∈ (0, 1] is the uniform
random number; Q is the random number obeying the standard normal distribution;
L represents a 1× d matrix with each element being 1; ST(ST ∈ [0.5, 1]) and R2(R2 ∈ [0, 1])
are the warning threshold and the warning value, respectively.

Scroungers follow the producers to access food. However, some scroungers may spy
on producers and thus compete with them for food to increase their reserves. The scrounger
position is updated as follows:

xt+1
i,j =

 Q · exp
(

xt
worst−xt

i,j
i2

)
, i > N

2

xt+1
p +

∣∣∣xt
i,j − xt+1

p

∣∣∣ · A+ · L, i ≤ N
2

(17)

where xworst and xp are the worst and best positions of the population, respectively;

A+ = AT(AAT)−1, and A is a 1 × d matrix (row vector) in which each element is
randomly assigned 1 or −1; N indicates the population size.

To ensure safety, the sparrow population also has anti-predation behaviors correspond-
ing to the reconnaissance and early warning mechanism in the SSA algorithm, i.e., some
sparrows in the population will provide early warnings for reconnaissance. The sparrows
in marginal positions will move toward the center of the population space when they
perceive danger, while better-positioned sparrows will move randomly to approach their
peers. The location of the early-warning sparrows is updated as follows:

xt+1
i,j =


xt

best + Q ·
∣∣∣xt

i,j − xt
best

∣∣∣, fi > fg

xt
i,j + K ·

( ∣∣∣xt
i,j−xt

worst

∣∣∣
( fi− fw)+ε

)
, fi = fg

(18)

where xt
best is the current global optimal position; K is a uniform random number in [−1, 1];

fi, fg, and fw represent the fitness value of the present sparrow, the global best and worst
fitness values, respectively; ε is the minimum constant to avoid division by a zero error.
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4.2. Improved Adaptive Sparrow Search Algorithm

The SSA algorithm divides the search population into producers, scroungers, and
early warnings. According to foraging and anti-predatory behaviors, the sparrows are
divided so that the search for the global optimal solution has high speed and precision.
However, the SSA algorithm still has some problems in practical applications, such as the
imbalance in exploration and exploitation capabilities [30]. Therefore, this paper makes the
following improvements to the SSA algorithm.

4.2.1. The Search Center Determined by the TSWLS Algorithm

The distribution of the initial population significantly affects the speed of the algorithm.
The initial position of most intelligent optimization algorithms is randomly generated, but
it is not the best solution for the TDOA positioning problem. In this paper, the initial
solution of tag coordinates is calculated by the TSWLS algorithm with low computational
complexity, and then a limited initial population distribution range is provided for the
IASSA algorithm around the initial solution to obtain an improved initial population. The
position of individuals is denoted as X = [x1, x2]. The upper bound and low bound of
the distribution space are u = [u1, u2] and l = [l1, l2], respectively. The position of the
individual in the randomly generated initial population is

X = rand(1, 2)× (u− l) + l (19)

u = zp + ∆X (20)

l = zp − ∆X (21)

where ∆X is the length of the distribution area; rand(1, 2) represents a two-dimensional
random variable in which the elements are random numbers between [0,1]. Since the
initial solution is located near the global optimal solution, the IASSA algorithm can reduce
unnecessary global explorations and achieve rapid convergence without affecting the
population diversity.

4.2.2. Search Boundary Adaptive Adjustment Strategy

The size of ∆X can affect the distribution of the initial population: If it is too large,
most individuals will be far away from the optimal value, which will slow down the solving
process; if it is too small, the initial population may not contain the real coordinates due to
the presence of errors in the TSWLS algorithm results. Therefore, it is crucial to determine
the optimal value of ∆X.

With the gradual increase in the standard deviation of distance noise σr, the positioning
accuracy of the TSWLS algorithm decreases. Let η be the Euclidean distance between the
result of the TSWLS algorithm and the real coordinates. To further analyze the change in η
with the value of σr, the value of σr is set within 0.1–1.0 m for simulation experiments. A
total of 1000 positioning experiments are conducted per 0.1 m. The algorithm parameters
are based on the experimental design in Section 5. The distribution of the value of η is
presented in Figure 2.

As shown in Figure 2, in the case of the experimental scene being determined, with
the increase in the value of σr, the distribution of the η value becomes wider and wider.
The colored points represent the maximum value of the error per 1000 experiments, and
the fitting function of the colored points is

f (x) = 6.60408 + 1.55457x + 0.01226x2 (22)
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The correlation coefficient of the fitting function is 0.95048, which is close to 1, indicat-
ing a good fitting effect. Therefore, by substituting the standard deviation of the distance
noise into the fitting function, half of the side length of the sparrow distribution area can be
obtained, which meets the distribution requirements of the initial population.

4.2.3. Producer–Scrounger Quantity Adaptive Adjustment Strategy

In the SSA algorithm, the ratio of the number of producers and scroungers remains
unchanged. As a result, there is only a small number of producers in the early stage of the
iteration, and the whole area cannot be fully searched. In the later stage of the iteration, the
number of producers is relatively large. At this time, there is no need for more producers
to perform global exploration, but the number of scroungers needs to be increased to
perform accurate local exploitation. Since the sparrow search algorithm ignores the balance
between the local exploitation ability and the global exploration ability, this paper proposes
a producer–scrounger quantity adaptive adjustment strategy. Specifically, in the early
iteration of this strategy, the producer accounts for the majority of the population. As
the iteration continues, the number of producers decreases adaptively, and the number of
scroungers increases adaptively, thus gradually promoting global exploration to transform
into local accurate exploitation, which improves the convergence accuracy and speed. The
formula for adjusting the number of producers and scroungers is:

R = b
(

tan
(
− πt

4 · itermax
+

π

4

)
− k · α

)
(23)

pNum = R · N (24)

sNum = (1− R) · N (25)

where pNum and sNum are the number of producers and scroungers, respectively; b is the
proportional coefficient used to control the ratio between the producers and the scroungers;
k is the disturbance deviation factor, which perturbs the nonlinear decreasing value of
R. From the analysis of Equation (23), as the iteration continues, the value of R shows a
nonlinear downward trend. The number of scroungers increases, and the local exploitation
ability is improved, which can meet the need for an accurate search in the later iteration.
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5. Experiment Analysis
5.1. Experimental Design

This section analyzes the performance of the IASSA algorithm with MATLAB 2019b
on a personal computer equipped with Intel(R) Core(TM) i7-6700 CPU 3.40GHz and 8GB
main memory. The scenarios and simulation parameters are defined below: eight receivers
are deployed in a 20 m × 20 m area with coordinates of (0,0), (0,10), (0,20), (10,20), (20,20),
(20,10), (20,0), and (10,0), respectively. A total of 1000 experimental sites are randomly
placed in the localization scene. The iterations maximum number itermax of the swarm
intelligence optimization algorithm is 20, and the number of sparrows in the population is
20. The root mean square error (RMSE) is adopted to evaluate the positioning accuracy [31],
and it is defined as

RMSE =

√
1
m

m

∑
i=1

(
(xi − x̂i)

2 + (yi − ŷi)
2
)

(26)

where m is the number of experimental sites, (xi, yi) and (x̂i, ŷi) are the estimated position
and real position of the i-th experimental site, respectively.

Similar to the RMSE, the Cramer–Rao lower bound (CRLB) can be used to evaluate the
performance of the localization algorithm. Therefore, the CRLB is added to the algorithm
comparison. The CRLB specifies the lower limit of standard deviation that can be achieved
by the unbiased estimator, which represents the best estimation accuracy in theory. The
calculation formula of the CRLB is as follows:

CRLB =

√
trace

[
(GTQ−1G)

−1
]

(27)

G =


x̂−x2

r2
− x̂−x1

r1

ŷ−y2
r2
− ŷ−y1

r1
x̂−x3

r3
− x̂−x1

r1

ŷ−y3
r3
− ŷ−y1

r1
· · · · · ·

x̂−xM
rM
− x̂−x1

r1

ŷ−yM
rM
− ŷ−y1

r1

 (28)

where ri is the distance from the tag to receiver i, and the trace(·) function is used to find
the trace of the matrix.

5.2. Simulation Experiment Analysis
5.2.1. The Effectiveness Experiment of Each Improvement Strategy

The addition of the TSWLS algorithm provides the search center for the population,
and the search boundary adaptive adjustment strategy can adaptively adjust the search
range according to the standard deviation of the distance noise σr. The combination of
these two strategies allows the population to search directly in the most promising region,
thus reducing unnecessary search processes. When the search range is large, the producer–
scrounger adaptive adjustment strategy can improve the search speed of the population.
To illustrate the positive impact of the improved strategy on the population search process
and localization accuracy, the following experiments are conducted.

The tags are positioned by eight receivers. The position of the tags is set at [10,10],
and the fitness value is calculated for each point in the experimental scene. The opposite
number of fitness values is taken, as shown in Figure 3. It can be seen that the area with
a large negative fitness value, i.e., the area with a small fitness value, is near the real
coordinate of the tag. Meanwhile, the search range limited by the search boundary adaptive
adjustment strategy, the localization result of the TSWLS algorithm, and the minimum
fitness value point searched by the population of the SSA algorithm with enough iterations
are marked in the contour plot of the opposite of fitness values, as shown in Figure 4. It can
be observed that the search results of the SSA algorithm are closer to the true coordinates
than those of the TSWLS algorithm. Therefore, the search area of the SSA algorithm can be
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constrained by the localization results of the TSWLS algorithm and the search boundary
adaptive adjustment strategy. Based on this, the SSA algorithm can improve localization
accuracy by deep exploitation.
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However, when the standard deviation of distance noise σr is large, the localization
error of the TSWLS algorithm increases. At this time, the search boundary adaptive
adjustment strategy cannot constrain the search range effectively. To address this issue,
this paper adds the producer–scrounger adaptive adjustment strategy to improve the
search ability of the population when the search range is large. For the convenience of
the experimental presentation, the producer–scrounger adaptive adjustment strategy is
referred to as strategy III. The distance noise standard deviation is set to 1 m. As the number
of iterations increases, the optimal fitness value decreases until it becomes stable, and the
fitness values are presented in Table 1.
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Table 1. The changes in the fitness values as the number of iterations increases.

Algorithm
The Number of Iterations/n 5 10 15 20 30 50

IASSA algorithm without strategy III/m2 8.18 6.77 3.89 2.83 2.03 2.02
IASSA algorithm/m2 6.24 2.04 2.03 2.02 2.02 2.02

To demonstrate the impact of a series of improvements in this paper on the algorithm
results, the proposed algorithm is compared with the unimproved algorithm (i.e., the
SSA algorithm) and the partially improved algorithm. The tags are localized by eight
receivers with the distance noise standard deviation set to 1 m. Meanwhile, 100 points
are randomly selected as the real coordinates of the tags for localization. The RMSE and
standard deviation STD of the algorithm results are presented in Figure 5. It can be seen
that compared to the SSA algorithm and the IASSA algorithm without strategy III, the
RMSE of the IASSA algorithm is reduced by 9.85% and 4.72%, and the STD is reduced by
53.43% and 26.20%, respectively.
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Therefore, the TSWLS algorithm and the search boundary adaptive adjustment strategy
are applied to determine the search area of the population, and the producer–scrounger adap-
tive adjustment strategy is adopted to increase the optimization-seeking ability of the algorithm,
which helps to improve the localization accuracy and stability of the IASSA algorithm.

5.2.2. The Effectiveness Experiment of the IASSA Algorithm

The simulation experiments based on Qu [17] indicate that the localization accuracy
of the ICWLS algorithm is better than that of the TSWLS algorithm and the SDR algorithm.
Therefore, to analyze the performance of the IASSA algorithm, this section compares the
IASSA algorithm with the ICWLS, TSWLS, GWO, and SSA algorithms.

The tag is located by using eight receivers, and the number of sparrows in the popula-
tion is 20. Considering the distance measuring accuracy of the actual indoor positioning
system, the value of σr is set within 0.1–1.0 m. The positioning accuracy under different
distance noises is demonstrated in Figure 6.
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As the value of σr increases, the localization accuracy decreases, and the RMSE of each
algorithm increases. Compared with other algorithms, the IASSA algorithm can obtain
a smaller RMSE under different noise standard deviations, which is closer to the CRLB.
Therefore, the IASSA algorithm achieves higher localization accuracy.

Stability is also one of the factors to consider in evaluating the solution effect of
the algorithm. Meanwhile, in a group of errors observed with the same precision, the
probability of error with an absolute value of less than two standard deviations is 95.5%.
The CRLB specifies the lower limit of standard deviation that can be achieved by the
unbiased estimator. Therefore, to analyze the stability of the algorithm, the value of twice
the CRLB is taken as the bound. If the resulting error of the algorithm is greater than
this bound, the calculated result is marked as bad. Then, the number of bad results for
each algorithm in the range of 0.1~1.0 m for the standard deviation of distance noise is
calculated and shown in Figure 7. It can be observed that the TSWLS algorithm obtains the
maximum number of bad results (481), and the GWO algorithm is the second (341). The
number of bad results of the IASSA algorithm is far smaller than that of the TSWLS and
GWO algorithms and is smaller than that of the ICWLS and SSA algorithms. Therefore, the
IASSA algorithm is superior to other algorithms in terms of computational stability.
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When the value of σr is set to 0.5 m, 5–8 receivers are set to participate in the localization
for the experiment. The localization accuracy of each algorithm for different numbers of
receivers is calculated and shown in Table 2. It can be seen that the RMSE of different
algorithms and the CRLB decrease as the number of receivers increases. Meanwhile,
compared to other algorithms, the IASSA algorithm achieves a smaller RMSE, which is
closer to the CRLB.

Table 2. The comparison of localization accuracy under different numbers of receivers.

Receivers
Algorithm

TSWLS/cm ICWLS/cm GWO/cm SSA/cm IASSA/cm CRLB/cm

8 47.6 41.1 44.1 42.6 38.7 37.9
7 54.9 46.6 51.3 48.8 44.4 42.9
6 62.5 52.4 59.6 57.5 49.0 46.7
5 82.1 58.1 68.7 67.5 54.2 51.1

Then, the value of σr is set to 10 cm. To analyze the solution speed, the RMSE con-
vergence of GWO, SSA, and IASSA algorithms are compared. Since the TSWLS algorithm
does not involve iterations and the solution speed of the ICWLS algorithm is almost not
affected by the number of iterations, these two algorithms are not taken for comparison.
The relationship between the number of iterations and the RMSE for each algorithm is
presented in Figure 8.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 7. The number of bad results for different algorithms. 

Table 2. The comparison of localization accuracy under different numbers of receivers. 

Algorithm 
Receivers 

TSWLS/cm ICWLS/cm GWO/cm 
SSA/c

m 
IASSA/c

m 
CRLB/c

m 
8 47.6 41.1 44.1 42.6 38.7 37.9 
7 54.9 46.6 51.3 48.8 44.4 42.9 
6 62.5 52.4 59.6 57.5 49.0 46.7 
5 82.1 58.1 68.7 67.5 54.2 51.1 

Then, the value of rσ  is set to 10 cm. To analyze the solution speed, the RMSE con-
vergence of GWO, SSA, and IASSA algorithms are compared. Since the TSWLS algorithm 
does not involve iterations and the solution speed of the ICWLS algorithm is almost not 
affected by the number of iterations, these two algorithms are not taken for comparison. 
The relationship between the number of iterations and the RMSE for each algorithm is 
presented in Figure 8. 

 
Figure 8. The RMSE convergence of the GWO, SSA, and IASSA algorithms. 

As shown in Figure 8, as the iteration number increases, the RMSE of each algorithm 
decreases and then gradually becomes stable. In Figure 8, the IASSA algorithm converges 
at the 8-th iteration, the SSA algorithm converges at the 23rd iteration, and the GWO al-
gorithm converges at nearly the 43rd iteration. The efficiency of the IASSA algorithm is 3 

Figure 8. The RMSE convergence of the GWO, SSA, and IASSA algorithms.

As shown in Figure 8, as the iteration number increases, the RMSE of each algorithm
decreases and then gradually becomes stable. In Figure 8, the IASSA algorithm converges
at the 8-th iteration, the SSA algorithm converges at the 23rd iteration, and the GWO
algorithm converges at nearly the 43rd iteration. The efficiency of the IASSA algorithm is
3 fold that of SSA and 5 fold that of GWO. Meanwhile, the IASSA algorithm can calculate
the localization result with a smaller RMSE. Therefore, the IASSA algorithm can obtain
a more accurate tag position through fewer iterations, which overcomes the defect of the
intelligent optimization algorithm requiring more iterations.

To achieve the same positioning accuracy, the GWO algorithm needs to consume
more iterations and the SSA algorithm ranks second. The IASSA algorithm requires a
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minimum number of iterations. To analyze the influence of the number of iterations on
the time consumed when solving for the coordinates, the global optimal solution that each
algorithm can obtain is taken as the standard, and then the average time consumed in
solving the coordinates for each algorithm is calculated. The results are listed in Table 3.
Compared to the GWO and SSA algorithms, the computation time of the IASSA algorithm
is reduced by 74.2% and 65.2%, respectively. Although IASSA has a slightly larger average
computation time than TSWLS and ICWLS, the IASSA algorithm overcomes the defect of
the long consumption time of the swarm intelligence optimization algorithm.

Table 3. The average time consumption of different algorithms.

Algorithm Average Time/s

TSWLS 1.17 × 10−4

ICWLS 4.63 × 10−4

GWO 3.32 × 10−2

SSA 2.47 × 10−2

IASSA 8.58 × 10−3

5.3. Field Experimental Analysis

To further verify the reliability of the IASSA algorithm, the DWM 1000 UWB posi-
tioning module was selected for the field experiment. The experimental site was located
in the lobby of the first floor of the laboratory building, surrounded by classrooms and a
corridor. The thick transparent glass directly above the hall has an attenuation effect on
the GNSS signal, thus enabling the experimental environment to meet indoor positioning
conditions. In this experiment, the experimental range was 9 m × 9 m. To obtain the tag
coordinates, seven modules were selected, six of which were used as receivers to locate the
tag. Meanwhile, a measuring device called the total station was used to measure receivers’
position beforehand. Before the start of the experiment, the total station was fixed at a
position and a local coordinate system was established with the position of the total station
as the origin. The positions of both receivers and the tag were in this coordinate system.
Therefore, the coordinates of receivers and the tag can be obtained in real time. At the same
time, since the accuracy of the total station is in millimeter level, the coordinates that got
from the total station can be regarded as the real coordinates. In terms of the experimental
scenarios and receiver locations, the experimental conditions are consistent with most of
the scenarios, such as office building, shopping mall, airport, and other areas.

In the static experiment, 100 points were selected as the coordinates of the tag within
the test range. The experimental site and point distribution are shown in Figure 9.
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During the experiment, the tag was moved sequentially to the test points. Then,
100 sets of TDOA data were obtained, which were solved by each algorithm to obtain the
coordinate values. The RMSE of the algorithm results is presented in Figure 10.
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The standard deviation of distance noise of the selected UWB sensor is 10 cm. However,
in the positioning process of the UWB system, there are multiple system error sources,
such as the multipath effect and antenna hardware. Therefore, the positioning error of the
measured data will exceed the simulation result error under the same value of σr. As shown
in Figure 10, compared with other algorithms, the RMSE of the IASSA algorithm decreased
by 16.3%, 8.0%, 22.3%, and 11.9%, respectively. Therefore, the IASSA algorithm can achieve
good positioning accuracy in practical applications, which confirms the applicability and
robustness of the IASSA algorithm.

During the dynamic test, the tag keeps a uniform linear motion from (1,1) to (8,8) in the
site. In this process, the UWB device continuously locates the tag, and the positioning times
are set to 36. Then, the coordinate results are obtained by solving the distance difference
information through each algorithm. Meanwhile, the Kalman filter (KF) can exploit the
dynamic information of the tag, reduce the influence of noise, and obtain a better estimate
of the target position. Therefore, based on the positioning results of each algorithm, this
paper added the KF algorithm to optimize the coordinates of tags. The positioning results
are illustrated in Figure 11. The position error of the smoothed trajectory is represented in
the form of the bar graph in the figure.

It can be seen from Figure 11 that the positioning results of each algorithm are dis-
tributed near the real trajectory, and there is a direct error with the real coordinates. The
KF algorithm makes the localization result smoother and the trajectory closer to the real
trajectory. The cumulative distribution functions (CDFs) of these two sets of positioning
errors are shown in Figure 12. The data sets that have not been smoothed by KF has a larger
error range. Before and after smoothing, the CDF of IASSA algorithm increases the fastest,
which indicates that the error distribution of IASSA algorithm is relatively dense and the
distribution center is smaller than that of other algorithms.
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Additionally, it can be seen from Table 4 that before smoothing by the KF algorithm, 
the IASSA algorithm reduces the positioning error by 24.0%, 15.3%, 20.7%, and 19.0%, 
respectively compared with other algorithms. The KF algorithm makes the localization 
result closer to the real coordinates. After smoothing, the IASSA algorithm still achieves a 
smaller RMSE than other algorithms. 
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Figure 11. The trajectory tracking results of the five algorithms. (a) The trajectory tracking results of
the TSWLS algorithm. (b) The trajectory tracking results of the ICWLS algorithm. (c) The trajectory
tracking results of the GWO algorithm. (d) The trajectory tracking results of the SSA algorithm.
(e) The trajectory tracking results of the IASSA algorithm.
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Additionally, it can be seen from Table 4 that before smoothing by the KF algorithm,
the IASSA algorithm reduces the positioning error by 24.0%, 15.3%, 20.7%, and 19.0%,
respectively compared with other algorithms. The KF algorithm makes the localization
result closer to the real coordinates. After smoothing, the IASSA algorithm still achieves a
smaller RMSE than other algorithms.
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Table 4. The comparison of RMSE of each algorithm for the original and smoothed paths.

Path
Algorithm

TSWLS ICWLS GWO SSA IASSA

Original path/cm 14.6 13.1 14.0 13.7 11.1
smoothed path/cm 7.9 6.7 7.1 7.1 4.7

6. Discussion

In indoor environments, UWB technology is an effective way to achieve target local-
ization. However, random errors reduce the positioning accuracy and stability of UWB
systems. In order to achieve high accuracy localization in the large-scale measurement noise
environment, an IASSA algorithm is proposed in this paper. In the simulation and field
experiments, this algorithm can quickly find the optimal value point with less iterations,
overcoming long search time problem of the swarm intelligence optimization algorithm.

In order to verify the effectiveness of the IASSA algorithm, the analysis is carried out
from several aspects. Firstly, the algorithm proposed in this paper is based on the SSA
algorithm, so the effectiveness of the improvement measures is tested, and it is verified that
the improvement measures have a positive effect on the improvement of the positioning
accuracy. Secondly, the experimental analysis of IASSA algorithm is carried out in terms of
localization accuracy, stability, number of iterations and computation time. Compared with
other algorithms, the RMSE of the algorithm proposed in this paper is closer to that of the
CRLB, so the IASSA algorithm can achieve higher localization accuracy. Compared with
the SSA and GWO algorithms, the IASSA algorithm can search for the optimal value point
with fewer iterations, which results in less computation time and faster computation speed.
Lastly, the IASSA algorithm achieves better localization results in the condition that the
field experimental data are influenced by other systematic errors or multipath errors. In the
static experiment, the RMSE of the IASSA algorithm is 16.3%, 8.0%, 22.3%, and 11.9% lower
than TSWLS, ICWLS, GWO, SSA algorithms, respectively. In the dynamic experiment,
compared to other algorithms, the RMSE of the IASSA algorithm is the smallest, and the
resultant trajectory of IASSA algorithm is the closest to the real trajectory.

The fitness minimum point searched by the SSA algorithm is closer to the true coordi-
nates than that obtained by the TSWLS algorithm, and this is because the TSWLS algorithm
is more influenced by the distance noise. However, the TSWLS algorithm can be used to
determine the center of the population search range owing to its low computational burden
and fast solution speed. Since the solution result of TSWLS algorithm is closer to the final
optimal result, the algorithm can reduce the unnecessary global search and achieve fast
convergence without affecting the population diversity. Then, with the increase in the
value of σr, the search boundary also increases adaptively. The search boundary adaptive
adjustment strategy is adopted to restrict the search range of the IASSA algorithm. The
adaptive adjustment strategy based on observation information noise adaptively updates
the algorithm parameters with the changes in practical application scenarios. So the IASSA
algorithm can quickly find the minimum fitness point through a limited number of iter-
ations in different situations. Finally, the addition of the producer–scrounger adaptive
adjustment strategy allows the IASSA algorithm to speed up the search for the optimal
value, as shown in Table 1.

As mentioned above, owing to the addition of operations such as the TSWLS algo-
rithm, the IASSA algorithm has higher positioning accuracy and less computational load.
However, systematic errors in field experiments will still reduce positioning accuracy.
Although adding extra positioning technology (e.g., visual positioning technology) is an
effective approach for improving positioning accuracy, it will increase the cost. Therefore,
improving the positioning accuracy by optimizing the IASSA algorithm (e.g., reducing
the optimization steps or optimizing the optimization logic) is a future research direction.
Meanwhile, since the receiver’s position must be measured beforehand during the exper-
iment, the automatic acquisition of the receiver’s position will be considered in future
research, which will be of great help to the application of UWB technology.
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7. Conclusions

This paper proposes an improved adaptive sparrow search algorithm to solve the
localization problem through noisy TDOA measurements. Firstly, based on the particularity
of indoor positioning, the IASSA algorithm uses the results of the TSWLS algorithm
to provide a reasonable distribution center for the initial population. Then, the error
distribution characteristics of the results of the TSWLS algorithm are analyzed to determine
the distribution range of the initial population. Finally, the adaptive producer–scrounger
quantity adjustment strategy is introduced into the IASSA algorithm to speed up the IASSA
algorithm’s search for the best solution. Through simulation and field experiments, the
following conclusions are drawn:

1. In the experiment to investigate the effectiveness of each improvement strategy,
compared to the SSA algorithm and the IASSA algorithm without strategy III, the
RMSE of the IASSA algorithm is reduced by 9.85% and 4.72%, and the STD is reduced
by 53.43% and 26.20%, respectively. Therefore, the improvement strategies in this
paper can improve the localization accuracy and stability of the IASSA algorithm.

2. In the experiment to investigate the effectiveness of the IASSA algorithm, the po-
sitioning accuracy of tags gradually decreases with the increase in the value of σr.
Compared with the TSWLS, ICWLS, GWO, and SSA algorithms, the IASSA algorithm
can achieve a smaller RMSE, which is closer to the CRLB. Meanwhile, the IASSA
algorithm achieves higher positioning stability. Compared to the IASSA algorithm,
the occurrence of poor results of other algorithms increases by 91.6%, 6.8%, 35.9%,
and 12.4%, respectively.

3. The IASSA algorithm overcomes the defects of intelligent optimization algorithms
requiring too many iterations in practical applications. Compared to the GWO and
SSA algorithms, the number of iterations required by the IASSA algorithm to obtain
the global optimal solution is reduced by 65.2% and 81.4%, respectively. Meanwhile,
to achieve the same positioning accuracy, the average computation time of the IASSA
algorithm is reduced by 74.2% and 65.3%, respectively, compared to the GWO and
SSA algorithms, thus overcoming the problem of large time consumption of swarm
intelligence optimization algorithms.

4. In the field experiments, static and dynamic experiments were conducted. In the
static experiment, the RMSE of the IASSA algorithm is 16.3%, 8.0%, 22.3%, and 11.9%
lower than that of other algorithms, respectively. In the dynamic experiment, after
smoothing by the KF algorithm the RMSE of the IASSA algorithm is reduced by
40.5%, 29.9%, 33.8%, and 33.8%, respectively. Therefore, the IASSA algorithm also
has a smaller RMSE in the field experiment, showing its higher positioning accuracy
and robustness.

Author Contributions: Conceptualization, Jiaqi Dong and Zengzeng Lian; methodology, Jiaqi Dong;
software, Jiaqi Dong; validation, Jiaqi Dong, Zengzeng Lian and Zhe Yue; formal analysis, Zhe Yue;
investigation, Jiaqi Dong; resources, Jingcheng Xu; data curation, Zengzeng Lian; writing—original
draft preparation, Jiaqi Dong; writing—review and editing, Jingcheng Xu; visualization, Jiaqi Dong;
supervision, Zengzeng Lian; project administration, Zengzeng Lian; funding acquisition, Zengzeng
Lian. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Universities of Henan
Province, grant number NSFRF230405, the Doctoral Scientific Fund Project of Henan Polytechnic
University, grant number B2017-10, the Natural Science Foundation of Henan Province, grant number
202300410180, and the Henan Polytechnic University Funding Plan for Young Backbone Teachers,
grant number 2022XQG-08.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



ISPRS Int. J. Geo-Inf. 2023, 12, 334 18 of 19

Acknowledgments: Thanks to Z.L. for providing the lab environment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, M.; Li, Y.; Pu, Q.; Nie, W.; Wilford, A.; Jiang, Q. Connectivity-Based Localization Scheme for Social Internet of Things. IEEE

Trans. Comput. Soc. Syst. 2022, 9, 1671–1681. [CrossRef]
2. Zhao, Y.; Zou, J.; Guo, J.; Huang, G.; Cai, L. A Novel Ultra-Wideband Double Difference Indoor Positioning Method with

Additional Baseline Constraint. ISPRS Int. J. Geo-Inf. 2021, 10, 634. [CrossRef]
3. Tao, B.; Wu, H.; Gong, Z.; Yin, Z.; Ding, H. An RFID-Based Mobile Robot Localization Method Combining Phase Difference and

Readability. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1406–1416. [CrossRef]
4. Bi, J.; Zhao, M.; Yao, G.; Cao, H.; Feng, Y.; Jiang, H.; Chai, D. PSOSVRPos: WiFi indoor positioning using SVR optimized by PSO.

Expert Syst. Appl. 2023, 222, 119778. [CrossRef]
5. Yu, N.; Zhan, X.; Zhao, S.; Wu, Y.; Feng, R. A precise dead reckoning algorithm based on bluetooth and multiple sensors. IEEE

Internet Things J. 2018, 5, 336–351. [CrossRef]
6. Li, D.; Wang, X.; Chen, D.; Zhang, Q.; Yang, Y. A precise ultra-wideband ranging method using pre-corrected strategy and particle

swarm optimization algorithm. Measurement 2022, 194, 110966. [CrossRef]
7. Nguyen, T.H.; Nguyen, T.-M.; Xie, L. Range-Focused Fusion of Camera-IMU-UWB for Accurate and Drift-Reduced Localization.

IEEE Robot. Autom. Lett. 2021, 6, 1678–1685. [CrossRef]
8. Dong, J.; Lian, Z.; Xu, J.; Yue, Z. UWB Localization Based on Improved Robust Adaptive Cubature Kalman Filter. Sensors 2023,

23, 2669. [CrossRef]
9. Mazhar, F.; Khan, M.G.; Sällberg, B. Precise indoor positioning using UWB: A review of methods, algorithms and implementations.

Wirel. Pers. Commun. 2017, 97, 4467–4491. [CrossRef]
10. Wang, S.; Wang, S.; Liu, W.; Tian, Y. A study on the optimization nodes arrangement in UWB localization. Measurement 2020,

163, 108056. [CrossRef]
11. Wang, Y.; Ma, S.; Chen, C.L.P. TOA-based passive localization in quasi-synchronous networks. IEEE Commun. Lett. 2014, 18,

592–595. [CrossRef]
12. Chalise, B.K.; Zhang, Y.D.; Amin, M.G.; Himed, B. Target localization in a multi-static passive radar system through convex

optimization. Signal Process. 2014, 102, 207–215. [CrossRef]
13. Chan, F.K.; So, H.C.; Ma, W.K.; Lui, K.W.K. A flexible semi-definite programming approach for source localization problems.

Digit. Signal Process. 2013, 23, 601–609. [CrossRef]
14. Wang, G.; Li, Y.; Ansari, N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements.

IEEE Trans. Veh. Technol. 2013, 62, 853–862. [CrossRef]
15. Lin, L.; So, H.C.; Chan, F.K.; Chan, Y.T.; So, K.C. A new constrained weighted least squares algorithm for TDOA-based localization.

Signal Process. 2013, 93, 2872–2878. [CrossRef]
16. Qu, X.; Xie, L. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements.

Signal Process. 2016, 119, 142–152. [CrossRef]
17. Qu, X.; Xie, L.; Tan, W. Iterative constrained weighted least squares source localization using TDOA and FDOA measurements.

IEEE Trans. Signal Process. 2017, 65, 3990–4003. [CrossRef]
18. Guo, M.; Wang, J.; Zhu, L.; Guo, S.; Xie, W. An improved grey wolf optimizer based on tracking and seeking modes to solve

function optimization problems. IEEE Access 2020, 8, 69861–69893. [CrossRef]
19. Huang, X.; Xie, Z.; Huang, X. Fault location of distribution network base on improved cuckoo search algorithm. IEEE Access 2019,

8, 2272–2283. [CrossRef]
20. Thenmozhi, R.; Nasir, A.W.; Sonthi, V.K.; Avudaiappan, T.; Kadry, S.; Pin, K.; Nam, Y. An improved sparrow search algorithm for

node localization in WSN. Comput. Mater. Contin. 2020, 71, 2037–2051. [CrossRef]
21. Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; Gabel, T.; Kumar, A. Intelligent Bézier curve-based path planning model using

Chaotic Particle Swarm Optimization algorithm. Clust. Comput. 2019, 22, 4745–4766. [CrossRef]
22. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8,

22–34. [CrossRef]
23. Li, J.; Wu, Y. Improved sparrow search algorithm with the extreme learning machine and its application for prediction. Neural

Process Lett. 2022, 54, 4189–4209. [CrossRef]
24. Zhang, X.; Cheng, Z.; Zhang, M.; Zhu, X.; Zhang, X. Comfort Prediction of Office Chair Surface Material Based on the ISSA-LSSVM.

Sensors 2022, 22, 9822. [CrossRef] [PubMed]
25. Yang, X.; Liu, J.; Liu, Y.; Xu, P.; Yu, L.; Zhu, L.; Chen, H.; Deng, W. A Novel Adaptive Sparrow Search Algorithm Based on Chaotic

Mapping and T-Distribution Mutation. Appl. Sci. 2021, 11, 11192. [CrossRef]
26. Zhang, X.; Xiao, F.; Tong, X.; Yun, J.; Liu, Y.; Sun, Y.; Tao, B.; Kong, J.; Xu, M.; Chen, B. Time Optimal Trajectory Planning Based on

Improved Sparrow Search Algorithm. Front. Bioeng. Biotechnol. 2022, 10, 852408. [CrossRef]
27. Bocquet, M.; Loyez, C.; Benlarbi-Delai, A. Using enhanced-TDOA measurement for indoor positioning. IEEE Microw. Wirel.

Compon. Lett. 2005, 15, 612–614. [CrossRef]

https://doi.org/10.1109/TCSS.2022.3152172
https://doi.org/10.3390/ijgi10100634
https://doi.org/10.1109/TASE.2020.3006724
https://doi.org/10.1016/j.eswa.2023.119778
https://doi.org/10.1109/JIOT.2017.2784386
https://doi.org/10.1016/j.measurement.2022.110966
https://doi.org/10.1109/LRA.2021.3057838
https://doi.org/10.3390/s23052669
https://doi.org/10.1007/s11277-017-4734-x
https://doi.org/10.1016/j.measurement.2020.108056
https://doi.org/10.1109/LCOMM.2014.021214.132662
https://doi.org/10.1016/j.sigpro.2014.02.023
https://doi.org/10.1016/j.dsp.2012.10.003
https://doi.org/10.1109/TVT.2012.2225074
https://doi.org/10.1016/j.sigpro.2013.04.004
https://doi.org/10.1016/j.sigpro.2015.08.001
https://doi.org/10.1109/TSP.2017.2703667
https://doi.org/10.1109/ACCESS.2020.2984321
https://doi.org/10.1109/ACCESS.2019.2962276
https://doi.org/10.32604/cmc.2022.022203
https://doi.org/10.1007/s10586-018-2360-3
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1007/s11063-022-10804-x
https://doi.org/10.3390/s22249822
https://www.ncbi.nlm.nih.gov/pubmed/36560192
https://doi.org/10.3390/app112311192
https://doi.org/10.3389/fbioe.2022.852408
https://doi.org/10.1109/LMWC.2005.855392


ISPRS Int. J. Geo-Inf. 2023, 12, 334 19 of 19

28. Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915.
[CrossRef]

29. Huang, Y.; Benesty, J.; Elko, G.W.; Mersereati, R.M. Real-time passive source localization: A practical linear-correction least-squares
approach. IEEE Trans. Speech Audio Process. 2001, 9, 943–956. [CrossRef]

30. Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm. Int. J. Hydrog.
Energy 2021, 46, 9541–9552. [CrossRef]

31. Shi, Q.; Cui, X.; Zhao, S.; Lu, M. Sequential TOA-based moving target localization in multi-agent networks. IEEE Commun. Lett.
2020, 24, 1719–1723. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/78.301830
https://doi.org/10.1109/89.966097
https://doi.org/10.1016/j.ijhydene.2020.12.107
https://doi.org/10.1109/LCOMM.2020.2993894

	Introduction 
	TDOA Measurement Model 
	Two-Step Weighted Least Squares Algorithm 
	Improved Adaptive Sparrow Search Algorithm 
	Sparrow Search Algorithm 
	Improved Adaptive Sparrow Search Algorithm 
	The Search Center Determined by the TSWLS Algorithm 
	Search Boundary Adaptive Adjustment Strategy 
	Producer–Scrounger Quantity Adaptive Adjustment Strategy 


	Experiment Analysis 
	Experimental Design 
	Simulation Experiment Analysis 
	The Effectiveness Experiment of Each Improvement Strategy 
	The Effectiveness Experiment of the IASSA Algorithm 

	Field Experimental Analysis 

	Discussion 
	Conclusions 
	References

