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Abstract: The spatial accessibility of urban parks is an important indicator of the livability level
of cities. In this paper, we propose a comprehensive multimodal two-step floating catchment area
(CM2SFCA) method which integrates supply capacity, the selection probability of individuals, and
variable catchment sizes into the traditional multimodel 2SFCA method. This method is used to
measure park accessibility in Wuhan, China. The results show that the spatial distribution of park
accessibility under the proposed method is variant. High accessibility areas are clustered near the
Third Ring Road with strong supply capacity parks, and low accessibility areas are distributed
in the western and southern regions. Compared with the single-model accessibility (bicycling,
driving, and public transit) method, we found that the multimodal spatial accessibility, combining
the characteristics of three single transportations, can provide a more realistic evaluation. We also
explore the spatial relationship between park accessibility and population density by bivariate local
Moran’s I statistic and find that the Low Ai-High Pi area is located in the center of the study area, and
the Low Ai-Low Pi area is located at the edge of the study area, with a relatively discrete distribution
of parks and weak supply capacity. These findings may provide some insights for urban planners to
formulate effective policies and strategies to ease the spatial inequity of urban parks.

Keywords: spatial accessibility; urban park; multiple transportation modes; 2SFCA; variable catchment
size

1. Introduction

The urban park connects people and nature in urbanized cities [1–3]. It is an ideal place
for people to relax and engage in sports activities [4–8]. Generally, the spatial distribution
of urban parks is not uniform due to high urbanization rates and tight use of urban
land [9–12]. Therefore, studying the spatial accessibility of parks is important for improving
public health and urban livability. The early accessibility models focused mainly on
a single-transportation mode that assumed people always reach services in the same
way [13,14]. However, in real life, people usually use different transportation modes to
reach services. Therefore, the accessibility measurement model with multitransportation
mode can reflect service accessibility more realistically. In recent years, some scholars
have proposed new accessibility models that integrate multiple transportation modes
into traditional accessibility methods [15–19]. However, these methods rarely consider
both spatial and nonspatial aspects, such as the attraction coefficient of services, variable
catchment areas, and the selection probability for individuals.

This paper proposes a comprehensive multimodal 2SFCA (CM2SFCA) method to
measure park accessibility based on three transportation modes (bicycling, driving, and
public transit). This method considers the different transportation modes and integrates
the park attraction coefficient, distance decay, and individual selection probability into
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the traditional multimodal 2SFCA method. From the perspective of spatial equity, the
proposed CM2SFCA is applied to measure park accessibility in Wuhan, China, and the
results can reveal the spatial distribution characteristics of park accessibility and identify
the areas of insufficient park services.

The remainder of this paper is organized as follows. Section 2 reviews the literature on
park accessibility measurements and the improvements of the two-step floating catchment
area (2SFCA) method. Section 3 describes the proposed CM2SFCA method in detail.
Section 4 introduces the study area and data sources, analyzes the park accessibility under
the multimodal method, and compares the results under single models. Finally, Section 5
presents the conclusions and discussions.

2. Related Works

Previous studies have pointed out that the factors affecting the spatial accessibility of
urban parks include the following three aspects: supply, demand, and their connections [13].
Supply refers to the quantity and acreage of parks. Demand refers to the size and compo-
sition of the population. Their connection means the travel impedance between service
sites and the demand location, represented as distance, road conditions, and transportation
modes [20,21].

Many existing approaches have been proposed to measure the spatial accessibility of
urban parks, which can be divided into the following four categories [22]: (1) the container
approach, which only focuses on the parks within a specific geographical unit. However,
the travel range of residents is not limited by specific boundaries in the actual scenario,
and people can usually enter parks of neighboring units. (2) The coverage approach, which
is not limited by geographical units and measures the demand-to-supply ratio by buffer
analysis [23], network analysis [24], kernel density estimation [25], and so on. However,
these methods do not consider the distance threshold and distance decay between the
service site and the demand location. (3) The proximity approach, which improves the
boundary limitation and predefined distance that evaluates the spatial accessibility by
calculating the travel impedance from the demand location to the nearest service. However,
it only considers the connection between supply and demand, without considering the
supply attractiveness and the demand condition. (4) The gravity model, which defines the
travel impedance function of time or distance to measure spatial accessibility. However, it
is challenging to select a suitable fitting distance decay function. Therefore, improved from
the gravity model, the 2SFCA method was proposed [26], which has been widely used to
measure the spatial accessibility of urban public services, such as medical services [27–29],
parks [13,30], fire services [31–33], and so on.

In past decades, the original 2SFCA method has been extended to address its limita-
tions in spatial accessibility measurement, including distance decay problems [34], fixed
catchment problems [35], supply and demand improvement [13,22], and multiple trans-
portation modes [30]. The original 2SFCA method is a dichotomous approach that does
not consider the distance decay and the selection probability for individuals. To solve
the problem of the dichotomous measure, some scholars have integrated different dis-
tance impedance functions into the initial 2SFCA method, such as the kernel density (KD)
function [36] and the Gaussian function [34]. These modified 2SFCA methods set a fixed
catchment size for all supply services and population demands. However, the supply
capacity of services is different at different levels or in different areas (such as urban and
rural areas). Thus, the catchment sizes for different levels of services or different regions are
likely to vary. Some scholars have addressed the issue of fixed catchment sizes by adjusting
the population and service catchment sizes [37]. For example, ref. [35] proposed a variable
two-step floating catchment area (V2SFCA) to dynamically determine the demand and
supply catchment sizes by incrementally increasing the catchment until a base population
and a demand-to-supply ratio are met, which is a practical approach to determine the ap-
propriate catchment sizes. Ref. [38] set the park attractiveness as a function of size and the
number of amenities, and determined the park catchment size based on their attractiveness.
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However, it is difficult to quantitatively determine the supply and demand ratio between
population and urban parks. Also, determining the optimal attractiveness function is much
more complex than using the area of the park.

Meanwhile, the competition between different forms of urban parks may affect the
visits of individuals, who often tend to enter high-quality parks within an acceptable time
threshold [14,39]. Therefore, the accessibility models that do not consider the selection
probability of individuals will lead to overestimation for some areas. Ref. [40] proposed
the three-step floating catchment area (3SFCA) method to deal with this limitation by
assigning a travel time-based competition weight for each pair of demand–supply sites.
However, this weight does not consider the supply-side effects of people’s selection. To
moderate the overestimating or underestimating of population demand, ref. [41] integrated
the Huff model with the FCA method to articulate population selection on services, and the
Huff model-based selection probability of individuals is reflected by the impacts of both
distance impedance and service-site capacity. In assessing urban parks, it is also necessary
to consider the impact of park heterogeneity on individual needs.

Furthermore, the original 2SFCA method only measures accessibility by a single mode
of transportation. However, in real-life scenarios, the travel transportation modes may
vary depending on personal preferences, travel impedance (distance or time), and other
factors. Therefore, some scholars have recently integrated multiple transportation modes
into the original 2SFCA method. For example, ref. [17] first proposed the multimodal
2SFCA method by dividing the population into car-mode and bus-mode transportation
subgroups. However, this method does not generate different accessibility values for each
subgroup population, and the travel time is not obtained from the real network from the
estimated travel speed. Then, [15] improved Mao and Nekorchuk’s method by estimating
the travel time based on the existing bus network. Based on these two studies, ref. [42]
further improved the multimodal 2SFCA method by estimating travel time via online map
APIs, which can improve the estimation of travel time by public transit or car, and has
been successfully applied to other fields of accessibility measurement [43,44]. Furthermore,
ref. [45] integrated different transportation modes (walking, public transport, and car
modes) and attractiveness coefficients of services into a Gaussian-based 2SFCA model.
However, the travel time calculation is based on estimated travel speed rather than actual
road network conditions. At the same time, the existing improved multimodal 2SFCA
methods do not consider the competition among the heterogeneous forms of parks and the
probability of peoples’ selection, and most transportation modes only include car mode
and public transit mode, without considering walking or cycling.

In general, although the above improvements have enhanced the reliability and
flexibility of the original 2SFCA method to measure park accessibility, they only focus on
the arbitrary two or three improvements, and few studies comprehensively consider the
above issues in combination. For example, in the improvement of various transportation
modes, parks’ attractiveness and competitive effects are not considered, while in the
improvement of supply and demand, the difference in park accessibility under different
transportation modes is not studied. Therefore, the CM2SFCA method is proposed in this
paper to measure park accessibility that simultaneously considers distance decay, variable
catchment size, supply and population improvement, and multiple transportation modes.

3. Methodology
3.1. Traditional Multimodal 2SFCA Method

The multimodal 2SFCA method was first proposed by [17] and then improved
by [15,42–44] and other scholars [45,46]. In Tao’s methods, the multimodal 2SFCA method
mainly includes two steps: first, the subgroup population locations within the threshold
distance (dm) under different transport modes are searched separately. Then, the subgroup
population is weighted using a Gaussian function, the sum of the population of each group
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after weighting is regarded as the potential demand of supply, and the supply-to-demand
ratio can be calculated as:

Rj =
Sj

∑M
m=1 ∑kε{dkj,m≤dm}Wkj,mPkαm

(1)

where Sj is the supply capacity of the service at j. M is the total number of transportation
modes. dkj,m is the travel cost from population location k to park location j when using
transportation mode m. dm is the threshold distance under mode m. Pk is the total popula-
tion at the location k, which is within the catchment (i.e., dkj,m ≤ dm) from supply location j,
αm is the proportion of people traveling via transport mode m; thus, Pkαm is the subgroup
population reaching the service j under transport mode m at location k. Wkj,m is the travel
impedance under transport mode m, which is represented as follows:

Wkj,m =

{
(e−

1
2 (

dkj,m
dm

)2
− e−

1
2 )/(1− e−

1
2 ) , dkj,m ≤ dm

0, dkj,m > dm
(2)

Second, under the transport mode m, all parks (l) within the threshold distance (dm)
from population location i are searched, and the supply-to-demand ratio Rl is weighted
and summed to calculate the spatial accessibility by:

Ai,m = ∑
lε{dil,m≤dm}

Wil,m × Rl (3)

where Ai,m is the park accessibility score for the population subgroup that travels by mode
m at location i, l represents all parks within the threshold distance dm, dil,m is the travel cost
from population location i to park location l via transport mode m.

3.2. Comprehensive Multimodal 2SFCA Method

The proposed CM2SFCA method improves the traditional multimodal 2SFCA method
by integrating the park attraction coefficient, variable catchment sizes, and individual
selection probability. The flowchart is shown in Figure 1, which includes four main parts:
(1) the park supply capacity, variable catchment size of each park, and travel impedance
between population and park services are calculated separately in the first parts, among
which the supply capacity is affected by the attractiveness and the acreage of each park; the
variable catchment size is affected by park acreage; the travel impedance is affected by the
on-road travel time and the maximum tolerance times for visiting the park under bicycling,
driving, and public transportation (i.e., limited travel time). (2) Based on the park supply
capacity, variable catchment size, and the travel impedance between population and park
services obtained in step (1), the selection probability for each population demand point i
to reach the park j can be calculated by the Huff model under three different trip modes.
(3) Based on the park supply capacity, the selection probability, the travel impedance,
as well as the number of people traveling under a certain mode of transportation (i.e.,
subgroup population), the supply-to-demand ratio of each park and the park accessibility
under different trip modes can be calculated. (4) Finally, the combined park accessibility
under multiple transportation modes can be measured based on the proportion of the
traveling population under bicycling, driving, and public transportation.
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Park quality is a key indicator for evaluating the supply of parks [47]; most studies
have used park area as the only parameter in the traditional 2SFCA models [34,48,49].
However, a park with a considerable area can only partially represent the service capacity.
Therefore, in addition to the acreage, this paper also considers the user ratings of urban
parks from Amap [50], Meituan [51], and Dianping [52], which are the commonly used
tourism strategy apps for people in China. A higher user rating score means that the park
is more attractive. This improvement can also provide the basis for calculating the demand
probabilities. In this way, we can better reveal the heterogeneity supply of parks by both
considering the acreage and the average score, and the total supply capacity Sj can be
calculated as follows:

Sj = SA
j ×

q1 + q2 + q3

3
(4)

where SA
j is the acreage of park j. q1, q2, and q3 represents the score on Amap, Meituan,

and Dianping, respectively. The maximum score for each platform is 5.0. If the platform
lacks score data for a particular park, the default score is 1.0. Furthermore, in this paper, we
take the park entrance as the destination, because, in reality, people enter the park from the
park entrance, and we calculate the shortest travel time between the population location
and all entrances of the park as the final one in order to obtain more accurate results.

According to China’s Park Classification Standards (GB/T51346-2019), parks can be
classified into two categories: Category II includes comprehensive parks (≥10 ha) and
community parks (1~10 ha); Category II includes street parks (0.2~1 ha) and small parks
(0.04~0.2 ha). The classification standards dictate that the catchment size, representing the
area surrounding a park and its user base, varies according to the park’s area. Larger parks
with greater areas generally have larger catchment sizes, while smaller ones have relatively
smaller ones [38]. The variable catchment size of parks with different areas is determined
by Equation (5), which follows China’s Park Classification Standards (GB/T51346-2019).
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d′0(km) =



0.5, 1.0 ha ≤ SA
j < 5.0 ha

1, 5.0 ha ≤ SA
j < 10.0 ha

2, 10.0 ha ≤ SA
j < 20.0 ha

3, 20.0 ha ≤ SA
j < 50.0 ha

10, 50.0 ha ≤ SA
j

(5)

where SA
j is the area of park j. In this way, the variable catchment area (d′0) is related to the

size of the park.
Additionally, it is widely acknowledged that the supply capacity of urban parks will

affect the selection probability of individuals because people may be more likely to access
parks with high supply capacity [41,53]. Therefore, the Huff model is integrated into the
traditional multimodal 2SFCA to enhance the calculation of population demand, which
considers both the travel impedance and supply capacity of each park:

Probij =
SjWij

∑kε{tkj≤t0} SkWkj
(6)

where Probij is the Huff model-based selection probability of demand population i visiting
park j; Sj is the supply capacity of park j in Equation (4); the Gaussian function (Wij) is the
travel impedance coefficient in Equation (2); tkj is the travel time from location i to park j,
and t0 is the travel time threshold corresponding to the variable park distance threshold in
Equation (5).

Three means of transportation modes, i.e., bike, driving, and public transit, are con-
sidered in this study. We let a denote bicycle mode, b denote driving mode, and c denote
public transportation mode. Based on the previous studies, the maximum tolerance times
for visiting the park under these three transportation modes are 18 min (bicycle), 15 min
(driving), and 20 min (public transit) [54,55], respectively. After weighing the Huff model-
based selection probability (Probij) and travel impedance (Wij), the supply-to-demand ratio
Rj can be calculated with Equation (7). The accessibility of each subgroup population by
different transport modes can be calculated with Equations (8)–(10):

Rj =
Sj

∑m=a,b,c ∑kε{tkj,m≤tj} Probkj,mWkj,mPkαm
(7)

Ai,a = ∑
jε{tij,a≤ta}

Probij,aWij,aRj (8)

Ai,b = ∑
jε{tij,b≤tb}

Probij,bWij,bRj (9)

Ai,c = ∑
jε{tij,c≤tc}

Probij,cWij,cRj (10)

where Ai,a, Ai,b, and Ai,c represent the bicycle-mode accessibility, driving-mode accessibility,
and transit-mode accessibility at population location i, respectively. Probij,a, Probij,b, and
Probij,c are the selection probability of the demand population i visiting the park j via
bicycle, driving, and public transit mode. tij,a, tij,b, and tij,c are the travel time from park
j to population i via bicycle, driving, and public transit mode, respectively. ta, tb, and tc
are the maximum tolerance times to access parks under bicycle, driving, and public transit
mode. Pk and αm are explained in Equation (1). tj is the travel time threshold of park j,
which corresponds to the distance threshold of parks in Equation (5).



ISPRS Int. J. Geo-Inf. 2023, 12, 357 7 of 18

Finally, the combined spatial accessibility at each population location i can be calcu-
lated as the weighted average of Ai,a, Ai,b, and Ai,c as follows:

Ai =
Piαa Ai,a + Piαb Ai,b + Piαc Ai,c

Piαa + Piαb + Piαc
(11)

where Ai is the overall accessibility at population location i, which combined three trip
modes and other variables, as with Equations (8)–(10). From the residential trip survey
released by the Wuhan government in 2020 [56], we can find that the proportions of cycling,
driving (including private car and taxi), and public transit mode (including bus and subway)
in Wuhan are about 57.6%, 20.8%, and 21.3%, respecitvely. After standardization to the
sum of 100%, αa = 0.577, αb = 0.209, and αc = 0.214.

3.3. Spatial Pattern Analysis of Park Accessibility

Optimized Hot Spot Analysis in ArcGIS 10.4 is used to explore the spatial pattern of
park spatial accessibility. This software can create a map of statistically significant hot and
cold spots using the Getis–Ord Gi* statistic and can evaluate the characteristics of the input
feature class to produce optimal results.

The output results include Z-score, p-values, and significance level. Z-scores can
indicate the degree of clustering. Positive Z-scores represent hot spots, indicating areas
with high attribute values surrounded by high values. Negative Z-scores represent cold
spots, indicating areas with low attribute values surrounded by low values. The p-values
associated with each Z-score determine the statistical significance of the clustering. Lower
p-values indicate stronger evidence for significant clustering. The significance level can be
set to control the threshold for determining statistically significant hot and cold spots. The
default significance level is set at 0.05. Spatial autocorrelation indices, such as Moran’s I,
can provide insights into the overall spatial patterns and validate if clustering identified by
hot spot analysis is statistically significant.

4. Experiment and Analysis
4.1. Study Area and Data
4.1.1. Study Area

Wuhan is the capital city of Hubei Province and the core city of the Yangtze River
Economic Belt [57]. As one of the earliest cities to rapidly urbanize in modern China, Wuhan
is a typical area for urban park construction in large cities, making it suitable for analyzing the
spatial accessibility of urban parks. In this paper, we select the inner city of Wuhan, China, as
the study area, which is bordered by the Third Ring Road, has an estimated population of
6.13 million, and is divided into 93 subdistricts and ten administrative districts.

4.1.2. Data Sources and Processing

The population demand location for park accessibility measurement is the center point
of the 200 m × 200 m grid demarcated by ArcGIS in the study area, which is sourced from
the remote sensing data of Worldpop [58] with a resolution of 200 m in 2020. Waters and
the uninhabited areas are removed, and we finally obtain 13,359 demand points. As shown
in Figure 2a, the spatial distribution of the population is mainly concentrated in the core of
the study area.
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Wuhan, China.

The AOI (area of interest) of urban parks was extracted through Amap [50]. This study
focuses on parks with an area of more than 1 ha because small parks are frequently short of
amenities such as playgrounds, walking/cycling paths, hiking trails, and outdoor fitness
equipment. As shown in Table 1, there are 85 parks with a total area of 3219.6 ha in the
inner city of Wuhan as of 2023, including 12 parks with an area of more than 50 ha, 18 parks
between 20–50 ha, 15 parks between 10–20 ha, 14 parks between 5–10 ha, and 26 parks
between 1–5 ha. The catchment size of parks with different areas is determined based on
China’s Park Classification Standards (GB/T51346-2019) in Section 3.2.

Table 1. Quantity, scale, and catchment area of parks in the inner city of Wuhan.

Size/ha Number
(Proportion/%)

Area/ha
(Proportion/%) Catchment Area/km

1.0~5.0 26 (30.6) 63.2 (2.0) 0.5
5.0~10.0 14 (16.5) 91.2 (2.8) 1
10.0~20.0 15 (17.6) 220.9 (6.9) 2
20.0~50.0 18 (21.2) 603.7 (18.7) 3
≥50.0 12 (14.1) 2240.6 (69.6) 10

Additionally, the commonly known “edge effect” may affect the accessibility along
the border [30]; that is, people within the border may visit the parks outside of the study
area and vice versa. Therefore, this study expands the range of urban parks by 2 km as a
buffer from the Third Ring Road and obtains the outer parks (see Figure 2b), including ten
parks and 3200 grids of the population surrounding the study area. The destination for the
accessibility measurement is the entrances of each park, and a total of 181 destinations are
obtained in this paper.

Travel impedance (i.e., travel distance and travel time) will restrict people’s accessi-
bility to urban parks, mainly depending on the actual road network conditions and travel
transportation modes [42]. The modeled road network can obtain the travel distance,
and the travel time is commonly measured by the assumed driving speed, which ignores
the impact of the temporal impedance of the transportation system. Many studies use
online maps to generate a more accurate travel time which takes into account the current
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transport network and real-time traffic conditions [59–61]. The Amap API [62], one of the
biggest online maps in China, has been broadly adopted in measuring the accessibility
of public services such as urban fire services [31,63], health care [42,60], urban parks [18],
and so on. It calculates real-time travel time and distance by analyzing data sources like
GPS, traffic patterns, and user reports, allowing informed decisions based on up-to-date
information. To handle missing data, Amap employs historical analysis and predictive
modeling, estimating travel time based on past traffic patterns and existing data. While
unexpected incidents may temporarily affect reliability, they are infrequent and can be
disregarded. This study takes the center of population grids as the origin and the entrance
point of urban parks as the destination. The path planning function provided by Amap API
is used to extract the travel time and distance under three transportation modes (cycling,
public transit, and driving). If a park has several entrances, the shortest travel time was
used as the final result from residential areas to the urban park. The average travel time
and distance starting at 9 am on four working days (from 27 March to 30 March 2023), were
used as the final result to eliminate the uncertainty of travel impedance under different
traffic conditions.

4.2. Multimodel Park Accessibility Analysis

Figure 3a shows the spatial distribution of park accessibility using the CM2SFCA
method. Quartile classification is used to sort the accessibility scores, except for zero values,
in ascending order. An area with a value of 0 indicates that the travel time exceeded the
limits of all transportation modes, indicating very low accessibility (i.e., 18 min for cycling,
20 min for public transit, and 15 min for driving) and requiring special attention. The
sorted scores are divided into quartiles, where the first 25% are classified as low levels,
the next 25% to 50% as medium levels, the 50% to 75% as high levels, and the last 25%
as very high levels [64]. About 21.1% of the population is in the low type, 40.4% is in the
medium type, and only 38.5% is in the high or very high type. As shown in Figure 3a, the
spatial accessibility pattern of the CM2SFCA method shows apparent spatial heterogeneity.
High accessibility areas are mainly distributed near the Third Ring Road, with parks of
strong supply capacity, such as those south of Moshuihu Lake, northwest of Qingshan,
and southeast of East Lake. Parks with low accessibility are distributed in the western and
southern regions.
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Optimized Hot Spot Analysis in ArcGIS was used to analyze the spatial patterns of
parks. Hot spots are spatial units with high accessibility surrounded by neighbors with
high accessibility value, and cold spots are those with low accessibility surrounded by
neighbors with low accessibility value. As shown in Figure 3b, the neighborhoods of
South Lake and Han River, as well as the central part of Jiang’an district, are the cold spots
clustered in low accessibility which need to be given special attention. The distribution of
hot spots is similar to the spatial distribution of high accessibility in Figure 3a. They are
clustered near the parks with strong supply capacity at the boundary of the study area. It
is worth mentioning that the accessibility value near Shahu Lake is very high, but this area
is not identified as a hot spot unit. This is due to the scattered distribution and smaller size
of areas with high park accessibility in that region compared to other hot spot areas. In
addition, other areas do not show any significant spatial clustering pattern.

4.3. Comparison with Single-Model Accessibility

The statistical results of four scenarios—multimode transportation, bicycle mode,
driving mode, and public transit mode—were compared to explore the differences in park
accessibility under multimodal and single-mode scnarios. As shown in Table 2, based
on the value from Q1 to Q3, we can find that driving accessibility is the highest, while
public transit accessibility is the lowest. Furthermore, the percentage of the underserved
population (0.3%) is the lowest under driving, followed by multimodal (0.9%), and cycling
(2.2%), but the highest under public transit (15.5%). This is because public transportation
usually has a fixed travel route and cannot reach the destination directly. In contrast, the
driving route is flexible, and drivers can choose the route with the lowest travel cost. At
the same time, there are transfers during public transportation, which take up a portion of
the travel time. Therefore, in some areas, the travel time exceeds the travel threshold of
public transit (20 min) but is within the travel threshold of driving (15 min).

Table 2. Statistics of park accessibility under multimodal and single-mode scenarios.

Transportation Mode Q1 Q2 Q3 Mean Standard Deviation Underserved Population

Multimodal 7.98 16.76 35.56 36.17 63.74 5553 (0.9%)

Single-modal
Bicycling 5.65 14.69 38.19 32.23 57.60 137,188 (2.2%)
Driving 10.79 18.48 33.91 36.13 42.28 19,671 (0.3%)

Public transit 0 7.24 25.92 38.14 166.60 950,379 (15.5%)

Note: Q1, Q2 and Q3 are the lower quartile, the median, and the upper quartile.

Meanwhile, the average and standard deviation of park accessibility by public transit
is the highest, while the average accessibility under cycling is the lowest, and the standard
deviation under driving is the lowest. This is because driving speed is higher than cycling
speed, so people who drive to the park may travel farther than those who bike, resulting
in higher accessibility averages. Also, the subway is faster than driving and is unaffected
by traffic congestion. As a result, it takes less time to reach the park via the subway than
driving for those who live near the subway. Therefore, in those areas, the accessibility value
is higher, resulting in the highest standard deviation in this trip mode.

By comparing the spatial distribution of park accessibility under three single models
and the multimodel, we find that the cycling accessibility distribution (Figure 4a) is similar
to the multimodel accessibility distribution (Figure 3a) with a blocky structure. High
accessibility areas are mainly distributed around the parks with strong supply capacity, and
the accessibility value gradually decreases from the park center outward. The result shows
that cycling accessibility can be significantly affected by travel distance. The inaccessible
areas are concentrated in the north of Jiang’an District, the west of Hanyang District, and the
west and southeast of Hongshan District. Compared with cycling accessibility, the spatial
accessibility distribution of public transit is discontinuous and varies greatly. Because the
public transit routes (such as bus and subway) are permanently fixed and distributed in
strips along the road, the distribution of high accessibility has changed from blocks to
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strips, such as in the area near the Yangtze River in Qingshan District. In addition, although
public transportation travels much faster than bicycles, the spatial accessibility of public
transit in some areas (Figure 4c) is lower than that of cycling, such as in the west of Qiaokou
District, due to the parking at each station, waiting, and transferring when using public
transportation. Finally, the spatial accessibility distribution of driving (Figure 4b) is more
balanced than that of multimodal, bicycle, and public transportation, with the smallest
areas of low and very low levels.
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In general, the multimodal spatial accessibility combines the characteristics of three
single transportations (bicycling, driving, and public transit) and is more in line with the
actual travel situation. In the choice of transportation modes to access urban parks, public
transportation can be preferred if the area is located near the metro, and vice versa for
travel by driving.

4.4. Comparison with Other Methods

To explore the sensitivity of the variable catchment sizes and the selection probability
for individuals, a comparison between the CM2SFCA model and two other models (the
Huff model-based 2SFCA method [41] and the variable two-step floating catchment area
(V2SFCA) method) is conducted in this paper [35]. The maximum acceptable time for
residents to arrive at the nearest park is 30 min [13]. Thus, in the Huff model-based 2SFCA
method, a fixed catchment size of 30 min is utilized for each park. As for the V2SFCA
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method, it considers the various catchment sized but does not consider the selection
probability for individuals.

As shown in Table 3, based on the value from Q1 to Q3, we can find that the spatial
accessibility of the Huff model-based 2SFCA method and the V2SFCA method are both
lower than those of the CM2SFCA method; in addition, the percentage of underserved
population is much lower than that of the CM2SFCA method. This indicates that using
a fixed catchment size or not considering the selection probability of individuals would
underestimate the overall park accessibility.

Table 3. Statistics of park accessibility under Huff model-based 2SFCA and V2SFCA methods.

Method Q1 Q2 Q3 Mean Standard Deviation Underserved Population

Huff model-based
2SFCA 14.69 20.84 31.34 29.43 28.04 2572 (0.04%)

V2SFCA 6.70 16.39 31.98 32.35 57.78 5523 (0.09%)

Note: Q1, Q2, and Q3 are the lower quartile, the median, and the upper quartile.

Figure 5 shows the spatial distribution of park accessibility using the Huff model-
based 2SFCA (Figure 5a) and V2SFCA (Figure 5b) methods. By comparing the result
of Huff model-based 2SFCA (Figure 5a) and the CM2SFCA method (Figure 3a), we can
find that the accessibility of the eastern region of the study area in Figure 5a is higher
than that in Figure 3a. This is because the catchment size of all parks is set as 30 min in
the Huff model-based 2SFCA method, which overestimates the supply capacity of parks
with weak supply capacity and underestimates the supply capacity of parks with strong
supply capacity. As shown in Figure 5a, the supply capacity of the parks near Qingshan
District is not strong, while they are significantly overestimated in the Huff model-based
2SFCA method, resulting in the overestimation of spatial accessibility. At the same time,
as a large park with water bodies, the real supply capacity of Shahu Park is significantly
underestimated, resulting in the underestimation.
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By comparing Figures 3a and 5b, it can be observed that the park accessibility in the
northern riverside area of the Yangtze River (Figure 5b) is higher than that in Figure 3a.
This disparity can be attributed to the V2SFCA method’s omission of the probability factor
related to park selection based on their supply capabilities, which assumes that individuals
have an equal likelihood of reaching any parks within their catchment area, disregarding
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the variations in park supply capacity. Also, these areas are highly densely populated
(see Figure 1b), which leads to the dispersion of excessive population demand towards
nearby parks, resulting in a decrease in population demand for each park and an increase
in accessibility.

However, in real-world scenarios, parks with different supply capacities often have
varying catchment sizes, and people tend to prefer parks with closer travel distance and
stronger supply capacities. The proposed CM2SFCA model considers both the variable
catchment sizes and selection probability of individuals, allowing for a more comprehensive
capture of individual behavior and the capacity differences between parks. As a result,
it can moderate both the overestimations and underestimations of the traditional 2SFCA
method and provide more realistic spatial accessibility values.

4.5. Spatial Relationship between Park Accessibility and Population Density

It is necessary to explore the spatial relationship between park accessibility and popu-
lation density to improve the equity of urban park resource allocation. In this study, using
the bivariate local Moran’s I, five categories are obtained by Geoda software: High-High
cluster, High-Low cluster, Low-High cluster, Low-Low cluster, and not-significant cluster.
High-High cluster means High accessibility (Ai)-High population density (Pi), while Low-
Low cluster means Low Ai-Low Pi. High-Low cluster means High Ai-Low Pi—that the
supply outweighs the population demand, while Low-High cluster means Low Ai-High
Pi—that the population demand outweighs the supply. Finally, the non-significant type
indicates that the spatial relationship between park accessibility and population density
is insignificant.

Figure 6 shows the spatial distribution of the association between park accessibility
and population density, while Table 4 shows the statistical results. From Figure 6 and
Table 4, we can find: (1) only a tiny part of the population (1.6%) presents a distribution
pattern of High Ai-High Pi with average accessibility of 67.44, which is only distributed
near the Shahu Lake and Moshuihu Lake, as well as in the southern part of East Lake.
These areas are densely populated and close to the parks with strong capacity. Thus, they
show High Ai-High Pi characteristics. (2) The population percentage in areas with High
Ai-Low Pi is relevantly low, with an average population of 106,187 (1.7%) and an average
accessibility of 102.5. These areas are located near the Third Ring Road and close to the
strong supply capacity parks with relatively low population density. (3) The average
population of 2,890,060 (47.2%) is characterized by Low Ai-High Pi, and the average
accessibility is 14.2. These areas are located in the central area of the study area, where
the population is highly concentrated. (4) The average population in the Low Ai-Low Pi
area is 233,909 (3.8%), with average accessibility of 13.21, which is mainly located at the
edge of the study area, except for the High Ai and High Pi region. Compared with the
central region, these areas have relatively lower population density and more dispersed
distribution of parks, showing Low Ai-Low Pi characteristics due to long travel impedance
and the insufficient capacity of accessible parks.

Table 4. Statistics of the association between park accessibility (Ai) and the population (Pi).

High Ai-High Pi High Ai-Low Pi Low Ai-High Pi Low Ai-Low Pi Not Significant

Population
(Proportion) 97,813 (1.6%) 106,187 (1.7%) 2,890,060 (47.2%) 233,909 (3.8%) 2,793,872 (45.6%)

Average
Accessibility 67.44 102.50 14.20 13.21 35.09
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In general, about half of the population in the inner city of Wuhan live in areas with
Low Ai-High Pi, which is a common problem faced by many other large cities. On the one
hand, it is difficult to build new parks in the central city due to the high level of urbanization,
high population density, and high-intensity land development. The supply capacity of
the existing parks is no longer sufficient to meet the current growing population demand.
On the other hand, most parks with strong supply capacity are located in suburban areas,
where the relevantly poor traffic conditions can lead to higher travel time costs and the
increased population density can further contribute to traffic congestion, thereby reducing
park accessibility. The following suggestions may be feasible to balance population demand
and park supply. (1) The urban planners can establish new parks in the suburbs (Low
Ai-Low Pi area in Figure 6) while improving the transportation network to shorten the
time cost. (2) In urban centers with high population density, some small open spaces can
be developed into micro parks, or the regions with large parks can be opened up, such
as universities and communities. By sharing these spaces with the public, the population
demand of the central city can be dispersed.

5. Conclusions and Discussion

In this study, we propose the CM2SFCA method to analyze the spatial characteris-
tics of urban park accessibility and compare the results of multimodel and single-mode
accessibility. The method considers the effect of supply capacity, the selection probability
of individuals, and variable catchment sizes based on multimodal transportation, which
has the following advantages in theory: firstly, the acreage and the rating of urban parks
are used as quality assessment components to improve supply parameters. Secondly,
according to policy regulations, variable service range thresholds are adopted for parks
that correspond to a larger service range. Thirdly, the competitive effect between parks and
selection probability for individuals can avoid the overestimation of accessibility. Finally,
the model can improve the studies that do not consider the impact of transportation modes
on accessibility. These improvements ensure that the accessibility evaluation method pro-
posed in this paper can provide a more realistic evaluation. Moreover, since urban parks
can be regarded as a public service, the proposed method also applies to studying other
services such as health care and food outlets.
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Additionally, we conducted a case study in the inner city of Wuhan, China, and the
main findings are summarized as follows: (1) the park accessibility in the study area shows
apparent spatial differentiation, where high accessibility areas are mainly clustered near
the Third Ring Road, with parks of strong supply capacity, such as the parks that are
south of Moshuihu Lake, northwest of Qingshan, and southeast of East Lake; those with
low accessibility are clustered in the neighborhoods of South Lake and Han River as well
as the central part of Jiang’an district. (2) Multimodal spatial accessibility combines the
characteristics of three single transportations (bicycling, driving, and public transit) and
can provide a more realistic evaluation. (3) By using bivariate local Moran’s I analysis, we
found the areas with Low Ai-High Pi and Low Ai-Low Pi that require special attention.
The former is located in the central area of the study area with high population density, and
the latter is located at the edge of the study area, except for the High Ai and High Pi region,
with a relatively discrete distribution of parks and weak supply capacity.

In practice, the empirical research in this paper may have policy significance for the
planning and management of urban parks. First, the 200 m × 200 m grid units are adopted
as the location of population demand, which can obtain a finer park accessibility than that
using the centroid of communities. Second, this study measures park accessibility under
multimodel and single-transportation modes (cycling, driving, and public transit) and
finds that the proportion of underserved populations is the highest under public transit.
However, public transportation can be preferred for areas near the subway because these
areas have the highest accessibility values. In underserved areas, people cannot access
parks within adequate travel time. Therefore, parks within acceptable travel times should
be built, and the transportation network should be improved to shorten travel costs. Third,
according to the bivariate local Moran’s I analysis, we found the areas with Low Ai-High
Pi and put forward suggestions to balance population demand and park supply.

However, there are still some limitations in this study. First, the use of e-mopeds as
a mode of transportation is common in many cities in China due to their flexibility and
cost advantages. However, this paper only considers the travel modes of cycling, driving,
and public transit for residents. In future research and planning, it is necessary to consider
the e-moped trip mode to explore park accessibility under more comprehensive multiple
transportation modes. Second, the financial cost is an essential factor that affects travel
mode choices. Hence, it is necessary for further exploration to develop a comprehensive
measurement method that considers both financial costs and travel costs (time and distance).
Third, for personalized and accurate travel planning, as well as specific transportation
scenarios (such as peak hours or special events), it is essential to distinguish different times
of day (peak and off-peak) or days of the week (weekdays and weekends) to capture the
variations in travel time. The spatiotemporal accessibility of parks in Wuhan could be
explored based on the CM2SFCA model in future work. Furthermore, as the urban park is
a public service, the proposed CM2SFCA method can be applied to other cities or services
such as health care and shopping stores.
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3. Onose, D.-A.; Ioja, C.; Niţă, M.-R.; Badiu, D.L.; Hossu, C.-A. Green Struggle—Environmental Conflicts Involving Urban Green

Areas in Bucharest City. In Making Green Cities: Concepts, Challenges and Practice; Breuste, J., Artmann, M., Ioja, C., Qureshi, S.,
Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 555–569.

4. Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived
communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [CrossRef]
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