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Abstract: The frequency and severity of extremes, including extreme precipitation events, extreme
evapotranspiration and extreme water storage deficit events, are changing. Thus, the necessity for
developing a framework that estimates non-stationary conditions is urgent. The aim of this paper is
to develop a framework using the geeSEBAL platform, Generalised Extreme Value (GEV) models and
spatiotemporal analysis techniques that incorporate the physical system in terms of cause and effect.
Firstly, the geeSEBAL platform has enabled the estimation of actual evapotranspiration (ETa) with an
unprecedented level of spatial-temporal resolution. Following this, the Non-stationary Extreme Value
Analysis (NEVA) approach employs the Bayesian method using a Differential Evolution Markov
Chain technique to calculate the frequency and magnitude of extreme values across the parameter
space. Station and global climate datasets have been used to analyse the spatial and temporal variation
of rainfall, reference evapotranspiration (ETo), ETa and water storage (WS) variables in the Lockyer
Valley located in Southeast Queensland (SEQ), Australia. Frequency analysis of rainfall, ETa, and
water storage deficit for 14 stations were performed using a GEV distribution under stationary and
non-stationary assumptions. Comparing the ETa, ETo and ERA5 rainfall with station data showed
reasonable agreement as follows: Pearson correlation of 0.59–0.75 for ETa, RMSE of 45.23–58.56 mm
for ETa, Pearson correlation of 0.96–0.97 for ETo, RMSE of 73.13–87.73 mm for ETo and Pearson
correlation of 0.87–0.92 for rainfall and RMSE of 37.53–57.10 mm for rainfall. The lower and upper
uncertainty bounds between stationary and non-stationary conditions for rainfall station data of
Gatton varied from 550.98 mm (stationary) to 624.97 mm (non-stationary), and for ERA5 rainfall
datasets, 441.30 mm (stationary) to 450.77 mm (non-stationary). The results demonstrate that global
climate datasets underestimate the difference between stationary and non-stationary conditions by
9.47 mm compared to results of 73.99 mm derived from station data. Similarly, the results demonstrate
less variation between stationary and non-stationary conditions in water storage, followed by a
sharp variation in rainfall and moderate variation in evapotranspiration. The findings of this study
indicate that neglecting the non-stationary condition in some hydrometeorological variables can
lead to underestimating their amounts. This framework can be applied to any geographical area for
estimating extreme conditions, providing valuable insights for infrastructure planning and design,
risk assessment and disaster management.

Keywords: climate extremes; Google Earth Engine; geeSEBAL; non-stationary; GEV distribution

1. Introduction

Stationarity is an assumption that was historically made to simplify the already com-
plex statistics required. The terms of the return period and return level give vital informa-
tion for designing, decision-making and estimating the implications of climatic occurrences
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under the assumption of a stationary climate. This was generally a safe assumption as our
data records were shorter in the past; therefore, not much change occurred over that short
period of time. Furthermore, researchers of the past did not have the same computational
power that we now have, so they relied on simplifying assumptions to make the math
manageable. In particular, the availability of longer data records and the changing climate
introduce risks in persistently assuming stationarity. For a long time, infrastructure design
approaches have depended on stationary return levels which presume that the frequency
of extremes does not fluctuate over time [1]. The frequency of extremes, on the other
hand, has been shifting and is expected to continue to change in the future [2], and studies
have shown that hydrological records in some regions demonstrate non-stationarity in
the form of growing or decreasing patterns as well as their combination. Hydrological
parameters are considered stationary over time, but the stationary condition may no longer
be applicable as climatic and human effects create non-stationary behaviour [3].

The difficulty of incorporating spatial information within extreme value analysis ap-
proaches has been one focus of current studies on framework development given that many
extreme occurrences involve spatial processes [4,5]. As a result, non-stationary climatic and
hydrologic extremes require models that can account for them [6,7]. Southeast Queensland
(SEQ) is one of Australia’s most flood-prone zones [8] and the Intergovernmental Panel on
Climate Change (IPCC) has recognised it as one of the “hotspots” for climate change [2].
According to Mpelasoka et al. [9], the soil-moisture-based drought frequency in SEQ catch-
ments is expected to rise by 80 percent by 2070. In a major catchment in eastern Australia,
Zhang, Wang [10] projected that during the next 80 years, real ET will rise significantly
while water storage will decline.

This study aims to investigate non-stationary scenarios of rainfall (Rain), actual evapo-
transpiration (ETa) and water storage (WS) variables obtained through the global climate
datasets and ground-based measurements across various stations in the Lockyer Valley in
SEQ. To achieve this goal, a geeSEBAL algorithm and NEVA model were employed in both
stationary and non-stationary conditions. GeeSEBAL was used to automatically estimate
ET, allowing for validation against ET station data. Considering that geeSEBAL does not
depend on any ground-level measurements as input data, it is expected that this tool will
be beneficial for the examination of water balances for worldwide application, as well as
for water resource management in areas with limited data [11]. They also mentioned that
the purpose of geeSEBAL is to enhance the comprehension of the effects of land cover
alterations on ET during the past few decades. The recent version of geeSEBAL utilises
Landsat imagery and reanalysis data to calculate the time series of ETa, demonstrating
encouraging outcomes for regional-scale investigations conducted in areas with limited
data availability [11].

Changes in water storage are expected to result in changes in precipitation and evapo-
transpiration patterns, subsequently affecting plant phenology [12,13]. Since the intensity
of extremes including extreme precipitation events, extreme evapotranspiration events and
extreme deficit of water storage depend on several factors, such as vegetation cover [14], rel-
ative humidity, evapotranspiration [15] and topography, identifying the drivers of extremes
helps us quantify, predict and project extremes [16]. Given the complexity of heat and
energy exchanges between the land and the atmosphere, quantifying ET is regarded as a dif-
ficult undertaking [17]. Our capacity to analyse the ET process has substantially increased
as a result of the advancement of various remote sensing technologies, particularly the cre-
ation and use of multiple surface energy balance (SEB) models [18]. Although, ET cannot be
measured directly from satellites [19], it can be calculated using Mapping Evapotranspira-
tion at High Resolution with Internalised Calibration (METRIC) [20] and the Surface Energy
Balance Algorithm for Land (SEBAL) [17,21]. The core mechanism of the SEBAL, which is
based on choosing endmembers that reflect the extremes of the hot (dry) and cold (wet) pix-
els, estimates the near-surface temperature gradient (dT) [17,20]. Previously, the process of
identifying hot and cold pixels was performed manually, but advancements in technology
have made it possible to automate this task. One such technique, known as Calibra-
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tion using Inverse Modelling at Extreme Conditions (CIMEC) [22], utilises the Normalised
Difference Vegetation Index (NDVI) and Ts percentiles to automatically determine endmem-
bers. In this study, a platform called geeSEBAL (https://github.com/et-brasil/geesebal
(accessed on 15 June 2023)) was used. It combines the capabilities of Google Earth Engine
(GEE) with the Surface Energy Balance Algorithm for Land (SEBAL) framework [11]. It is
an application or tool developed to leverage the GEE platform’s application programming
interface (API) and serves as a powerful tool for conducting various analyses related to
remote sensing and evapotranspiration estimation.

A Bayesian inference framework that supports both non-stationary and stationary
estimations was proposed by Cheng et al. [23]. As numerous natural phenomena happen
under a non-stationary context, the idea of non-stationarity has been shown to be quite
helpful in the field of hydroclimatology for analysing extremes. Their study findings sug-
gested that NEVA calculates extreme return levels and variables effectively. The persistence
of hydroclimatic extremes is destructive to the economy, natural ecosystems, agriculture,
infrastructures and human health [24–28]. Identifying design extremes at different recur-
rence intervals and durations can be accomplished by performing a frequency analysis of
extremes and looking at changes in the return period of the extremes using NEVA [1]. This
model allows us to incorporate shifting extremes in intensity and frequency analysis [23].

Generalised Extreme Value (GEV) distributions and the Log Pearson Type 3 (LP3) are
frequently utilised to conduct intensity analyses of hydroclimatic extremes. These statistical
distributions are widely used for studying the occurrence and magnitude of extreme
events in hydrology and climate research. Previous research used the GEV distribution to
create Temperature Duration Frequency (TDF) curves [28,29]. Additionally, the Australian
Rainfall and Runoff (ARR) guideline [30] has recommended the use of the GEV distribution
for calculating design floods and rainfalls.

The study aimed to achieve the following specific objectives: (1) To evaluate the actual
evapotranspiration derived from geeSEBAL by feeding two different climate datasets
(ground-based observations and global climate products); (2) to compare the spatiotemporal
distribution of the P and ETo derived from a global climate dataset with the results of the
same variables derived from ground-based observation and determine the model accuracy;
(3) to evaluate and map the spatiotemporal distribution of water storage derived from a
lump water balance for the last 32 years by considering two climate datasets and comparing
the results incorporating physical drivers in terms of cause and effect; (4) to analyse the
intensity and frequency of rainfall extreme events, evapotranspiration extremes and water
storage deficit extremes under both stationary and non-stationary conditions using the
GEV model for the estimation of different return levels.

In this study, we propose an integrated framework that combines geeSEBAL, NEVA-
GEV and spatial distribution analysis to evaluate the return levels of extremes, including
extreme rainfall events, extreme evapotranspiration events and extreme water storage
deficit. We believe that the physical disturbance within a catchment alters the underlying
process and results in temporal fluctuation in parameter values. As hydroclimatic variables
can significantly vary over time, space, and climate zones, it is necessary to employ accurate
data with higher spatial resolution for variability analysis [31]. So, we provided the geeSE-
BAL results by incorporating high quality datasets and considering the physical system
drivers and their relationship. The outcomes of the study could be useful in understanding
the spatial variation of rainfall, evapotranspiration and water storage by incorporating both
stationary and non-stationary assumptions, thereby assisting decision-makers in making
informed decisions for disaster preparedness, emergency response, health care services
and the selection of appropriate materials for infrastructure development.

2. Materials and Methods

Figure 1 shows the main methods and data sets used in this study. The steps in
this study are as follows: (a) deriving ETa from the geeSEBAL algorithm and WS from
a lump water balance, (b) accuracy assessment of P, ETo and ETa derived from station

https://github.com/et-brasil/geesebal
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and global climate datasets, (c) spatial analysis of extremes, including P, ETa and WS and
(d) investigating the extreme events analysis using the GEV model.
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Figure 1. Flowchart of geeSEBAL, GEE and GEV model to estimate extremes. (a) geeSEBAL algorithm,
(b) accuracy assessment of hydrometeorological variables from station and global climate data,
(c) spatial pattern of hydrometeorological variables from station and global climate data, (d) extreme
events analysis (Modified [11]).
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2.1. Study Region

The Lockyer Catchment is the case study area which is located in SEQ as illustrated
in Figure 2. Lockyer Creek is the main stream which runs eastward into the Brisbane
River then enters Moreton Bay [32]. The catchment is located east of Toowoomba and
west of Brisbane, within the local government boundaries of the Lockyer Valley Regional
Council, Somerset Regional Council, Toowoomba Regional Council and Ipswich Regional
Council [33]. Recognising its significance, the relevant infrastructure operators and decision-
makers, such as the Queensland Department of Environment and Science and Seqwater,
acknowledged the importance of this catchment [34]. It covers approximately 3000 km2,
with an average annual rainfall of 1000–2012 mm [35].
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Figure 2. Geographical location of studied area in Australia (Left). Hydro-meteorological stations
considered along the Lockyer Catchment (Right).

However, there is a significant temporal fluctuation, resulting in rivers that are dry for
most of the year. The watershed comprises some of Australia’s richest farmed areas, with
high-value vegetable cultivation and grazing [32]. The northern and southern sections of
the Lockyer watershed receive a lot of rain. The majority of the basin received moderate
to low rainfall and during Australia’s recent droughts and the Lockyer Creek valley was
one of the driest catchments in Queensland [36]. Collectively, they drain around 3000 km2

of land, about a fourth of the Brisbane River’s watershed. The Lockyer Catchment, which
has a population of over 35,000 people, has considerable environmental, economic and
social importance.

In this region, there have been several unique climatic events in recent decades, such
as between 1988 and 1989, when there was above average rainfall, and from 2000 to 2008,
when there was a catastrophic and prolonged drought. Drought relief measures were
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implemented in 2008. However, the region continues to experience reoccurring cycles of
drought and flood crises, sometimes impacting the entire country for an extended duration.
The frequency of flood events, like the one in 2022, may be misestimated under a stationarity
assumption given that previous studies have shown the assumption to no longer be valid.
Moreover, it has been observed that the relationship between runoff and rainfall in the
Lockyer Catchment is non-stationary [37,38]. Therefore, it is crucial to develop novel
methods to estimate non-stationary rainfall extremes, evapotranspiration extremes and
water storage deficit to enhance the design and management of hydraulic structures which
minimise human and financial losses in the future.

2.2. Observed and Global Climate Dataset

Daily meteorological data including minimum and maximum air temperature (◦C),
minimum and maximum relative humidity (%), wind speed (m/s), surface solar radia-
tion (MJ/m2) and hydrological data, such as evapotranspiration (mm) and rainfall (mm),
were sourced from two datasets: ground-based observations (Figure 2) and global cli-
mate products. The ground-based observations were obtained from SILO, an Australian
climate data source (http://www.longpaddock.qld.gov.au/silo (accessed on 15 January
2023)) [39,40] that covers the period from 1990 to 2022. SILO data are the most commonly
used and most reliable climate data for environmental studies in Australia [41]. Fourteen
SILO meteorological and hydrological stations were applied for this research. First, the
Inverse Distance Weighting (IDW) interpolation method was used to interpolate the sta-
tion data and rasterise the meteorological parameters. To run the geeSEBAL algorithm,
daily meteorological ground-based observations and the hourly fifth generation ECMWF
reanalysis (ERA5) climate dataset with 9 km spatial resolution were incorporated in GEE
and were used separately for running geeSEBAL, as well as estimation of water storage.
Land use information was obtained from the Australian government, Geoscience Australia
(https://www.ga.gov.au/, accessed on 15 January 2023), for simulation purposes. A Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM) [42] dataset with a grid
size of 90 m was used as input for the geeSEBAL algorithm.

2.3. Google Earth Engine Application: The geeSEBAL Algorithm

The initial method created by Bastiaanssen et al. [17] is the foundation for the geeSE-
BAL [11], which makes the assumption that latent heat flux (LE) (W/m2) can be approxi-
mated as a residual of the surface energy balance.

LE = Rn − G− H (1)

where Rn is the net radiation; G is the soil heat flux (W/m2); H is the sensible heat flux
(W/m2). Given that both H and the aerodynamic resistance to turbulent heat transport (rah)
are unknown, H was calculated by an iterative procedure.

H =
ρa CpdT

rah
(2)

where Cp is the specific heat capacity, rah aerodynamic resistance to turbulent heat transmis-
sion between two heights, dT represents the near-surface temperature difference between
two heights ρa is air density [17]. A linear connection between Ts and (dT) is provided and
cold and hot endmember selection is required to solve the iterative approach. The a and b
coefficients are calculated individually for each picture.

dT = a + bTs (3)

Comprehensive documentation for the formulation and calibration of the SEBAL
algorithm is covered in [17]. GEE infrastructure was used to develop the geeSEBAL algo-
rithm [43], which enables the estimation of evapotranspiration at regional scales by using

http://www.longpaddock.qld.gov.au/silo
https://www.ga.gov.au/
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meteorological reanalysis data and Landsat imagery [11]. The schematic representation
of geeSEBAL is illustrated in Figure 1, highlighting the factors that were considered in
the present study. The JavaScript APIs were used to integrate the SEBAL algorithm into
GEE [11].

The three primary purposes of the geeSEBAL tool are: (1) Image: derivation of actual
evapotranspiration from a particular image (accessible for JavaScript); (2) ImageCollection:
batch method to calculate ETa provided a date range and (3) Timeseries: long-term ETa time
series estimate at user-provided locations. All applications and codes are freely accessible
at https://github.com/et-brasil/geesebal (accessed on 15 January 2023). Additionally,
the Earth Engine programme (https://etbrasil.org/geesebal, accessed on 15 January 2023)
offers a graphical user interface version of geeSEBAL [11,44,45]. For the purpose of running
geeSEBAL, a series of Landsat images with the highest data quality were used. We used
cloud cover filters using the CFMask method [46], which generates a bitmask to identify
each image’s pixels for clouds, clouds with shadows, clouds with confidence and pixels
for ice and snow. The characteristics of Landsat collections used in this study are included
in Table 1.

Table 1. The datasets available in the GEE platform that are used in geeSEBAL.

Product GEE ID Resolution Time Coverage

LANDSAT
8 OLI/TIRS LANDSAT/LC08/C01/T1_SRLANDSAT/LC08/C01/T1 30 m Apr/2013–Present

LANDSAT 7 ETM+ LANDSAT/LE07/C01/T1_SRLANDSAT/LE07/C01/T1 30 m Jan/1999–Present

LANDSAT
5 TM

LANDSAT/LT05/C01/T1_SR
LANDSAT/LT05/C01/T1 30 m Mar/1984–May/2012

The geeSEBAL algorithm was run separately using ERA5 reanalysis data and station
data. Advised hot and cold endmembers percentiles were applied to determine the hot
and cold pixels. The selection of candidates for the cold endmembers involved identifying
densely vegetated areas, whereas sparsely vegetated regions were considered for the hot
endmembers. The candidate with the lowest Ts (20%) and greatest NDVI (5%) percentiles
was selected to represent the cold end. Conversely, the hot endmember was determined
by selecting the candidate with the highest Ts percentile (20%) and the lowest NDVI
(10%) percentiles.

Long-term ETa was generated using the geeSEBAL algorithm, and the gaps between
the Landsat images were filled by multiplying a ratio map of the last available simultaneous
maps of ETa and reference evapotranspiration, ETo, to the new ETo map [47]. It is vital to
consider the non-stationary condition of rainfall and storage (Equation (4)) in a catchment,
especially when the relationship between rainfall and runoff is non-stationary. In this
equation, P is daily precipitation (mm), q is runoff (mm) 20% of precipitation [30,48], and
ETa is daily actual evapotranspiration (mm) derived from the geeSEBAL algorithm.

dS
dT

= P− q− ETa (4)

2.4. Assessing Extremes in a Non-Stationary Approach Using GEV Model

A stationary time series is defined as one in which all finite dimensional distribu-
tions are time invariant [49]. The stationary assumption may not be valid in relation
to changes caused by human and climatic factors, which results in non-stationary sit-
uations [3]. The simplifying assumption of stationarity is used to estimate the largest
instantaneous extremes, and structures are built with this assumption in mind. It is impor-
tant to acknowledge that the impacts of climate change are growing, leading to an increase
in non-stationary conditions worldwide. The frequency of flood events like the one in 2022
may be misestimated under a stationarity assumption given that previous studies [38] have

https://github.com/et-brasil/geesebal
https://etbrasil.org/geesebal
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shown the assumption to no longer be valid. Therefore, it is critical to take a non-stationary
approach to these issues (Figure 1). In order to analyse the non-stationary extremes, the
NEVA software package [1] was utilised.

NEVA calculates the extreme value in a Bayesian method using a Differential Evolution
Markov Chain technique for global optimisation across the parameter field [1]. Extreme
Value Theory (EVT) provides two fundamental distributions for describing extremes: either
the peaks-over-threshold approach using the Generalised Pareto Distribution (GPD) [50–52]
or the block maxima (or minima) approach using the Generalised Extreme Value (GEV)
family of distributions [53]. NEVA typically contains two sections: 1. GEV distribution for
yearly maximum analysis (block maxima) and 2. The peak-over-threshold (POT) approach
uses the GPD for analysis of extremes over a specific threshold. The GEV method has
been applied in this study. The GEV distribution’s cumulative distribution function (cdf) is
represented using the following equations:

F (x) = exp

{
−
(

1 + E

(
x− µ

σ

))−1
E

}
(5)

(
1 + E

(
x− µ

σ

))
> 0 (6)

The GEV distribution is incredibly adaptable to simulate the behaviour of many
severe occurrences since it just has three parameters (µ, E, σ). The location, scale and shape
parameters are defined by µ, E and σ, respectively [52].

The GEV becomes the Gumbel, Fréchet and Weibull distributions, respectively, when
E = 0, E < 0 and E > 0, respectively.

In NEVA, the shape and scale parameters are assumed to be constant while the
location parameter is considered to represent a linear function of time to accommodate for
non-stationary [1].

µ (t) = µ1t + µ0 (7)

NEVA uses the Mann–Kendall trend test at the user-selected significance level to
identify trends and non-stationarity in extremes in data [1]. The Mann–Kendall (MK)
statistical test [54] was undertaken to calculate the importance of climatic time series’
trends [55–58]. There is no monotonic trend at the specified level of significance according
to the null hypothesis (H0) of the MK test. The alternative hypothesis (Ha) in this test shows
a monotonic trend over time. More details about Mann–Kendall are documented in [31].
The Bayesian approach employs a generic inference methodology. The Bayes theorem for
estimating GEV parameters under the non-stationary assumption can be defined as follows
under the assumption that observations are independent of one another [1,52]:

p
(

β
∣∣∣→y,x

)
∝ p
(→

y
∣∣∣β, x

)
p((β|x)) (8)

p
(→

y
∣∣∣β, x

)
= ∏Nt

t=1 p(yt|β, x(t)) = ∏Nt
t=1 p(yt|µ(t), σ, E) (9)

For the components, which are β without x(t), the stationarity may be thought of as a
specific instance of the aforementioned equation:

p
(

θ
∣∣∣→y) ∝ p

(→
y
∣∣∣θ) p(θ) = ∏Nt

t=1 p (yt|θ) p(θ) (10)

Thus, according to the non-stationary assumption, x(t) stands for the collection of all
covariate values. The derived posterior distributions p

(
θ
∣∣∣→y) and p

(→
y
∣∣∣β, x

)
reveal the

parameters’ behaviour under stationarity θ = (µ, E, σ) or non-stationarity β = (µ1, µ0, E, σ).
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3. Results

The research introduces a comprehensive approach by combining geeSEBAL with
two climate data sets (global data and station data), NEVA-GEV and spatial distribution
analysis. This integrated framework aims to assess the return levels of extreme events, such
as heavy rainfall, evapotranspiration and water storage deficit, by taking into account the
physical factors and their interactions within the system.

3.1. Station Data and ERA5 Land Reanalysis Feeding into geeSEBAL as Meteorological Inputs

GeeSEBAL was run by ERA5 reanalysis and station data with advised percentiles. The
cold (wet) endmember was selected in the area with the highest concentration of vegetation,
consisting of the coldest 20% Ts of the top 5% vegetated pixels according to NDVI, and the
hot (dry) endmember was chosen in the area with the lowest concentration of vegetation,
consisting of the warmest 20% Ts of the lowest 10% NDVI vegetated pixels. To identify the
spatial pattern of four parameters among stations and ERA5 reanalysis are displayed in
Figures 3 and 4 at Lockyer Catchment. These two figures provide better insight into how
rain, ETo, ETa and WS are distributed over the catchment for the period of 2000 to 2022.
Rainfall follows a similar trend in the upstream and downstream parts of the catchment
during these years. The rainfall and ETa have almost identical trends which indicates the
highest rise in the year 2010.

Between December 2010 and January 2011, flooding of historic proportions swept across
large areas of Queensland due to prolonged rainfall [59], as illustrated in Figures 3 and 4. More
than 78% of the state was declared a disaster zone, affecting 2.5 million people negatively
and causing about 33 deaths [59]. The flood events affected approximately 29,000 homes
and businesses, with an estimated damage cost of over $5 billion [59]. Interestingly, the
estimation of spatial patterns derived from ERA5 land reanalysis are almost identical with
station data for rain. Whereas in ETa, ERA5 reanalysis overestimates the spatial variability
compared to station data. Accordingly, water storage for the year 2010 confirms that the
whole catchment reached its highest annually. The spatial pattern of figures for ERA5
reanalysis represents the more noticeable variation in the year 2005. The rain and water
storage deficit in station data range from (~1200 mm) to (~1500 mm) and from (~250 mm)
to (~500 mm), respectively (Figure 3). Similarly, Figure 4 shows the rain and water storage
in ERA5, depicting the highest rise (~1500 mm) and (~500 mm) for years 2010 and 2020,
respectively, while potential evapotranspiration has a remarkable increase from (~1450 mm)
to (~1600 mm) in the year 2020 for both station and ERA5 reanalysis datasets. Water storage
for both the station and ERA5 data remain the same, whereas ETa for the station and ERA5
exhibit variation from approximately 100 mm to 700 mm and from 400 mm to 1000 mm,
respectively. ERA5 reanalysis overestimates ETa in comparison to the station.

So, the relationship between actual evapotranspiration and water storage is similar.
Irrigated areas were concentrated alongside the streams and the Gatton area, which is
known as the agricultural hub in Southeast Queensland. This also confirms the strong
correlation between water storage and irrigated areas. The Lockyer Valley includes some
of Australia’s richest farmed area, with high-value vegetable cultivation, and, as can be
observed, the highest water storage is concentrated in the irrigated areas [32]. So, the
relationship between actual evapotranspiration and water storage is similar.
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3.2. Validation of geeSEBAL ETa and ETo and Rain across Stations

To determine the model’s accuracy, we compared the geeSEBAL algorithm driven by
ERA5 reanalysis data and the reported data in the stations. Descriptive statistics results
showed reasonable accuracy agreement between geeSEBAL ETa, gridded ETo and ERA5
rainfall and stations (Table 2). All the stations presented R2 and Pearson correlation for
rainfall ranging from 0.76 to 0.84 and from 0.87 to 0.92, respectively, and some of the stations’
results are presented in Table 2. The minimum RMSE was represented by Whitestone station
(37.53 mm) and West Haldon station (38.97 mm) for rainfall. Due to the lack of clear sky
images, R2 values of ETa were low, ranging from 0.35 to 0.56 for the Upper Tenthill and
Townson stations, respectively. Despite the low values of R2, ETa presented a similar
accuracy to rain and its RMSE, ranging from 45.23 mm (Whitestone) to 58.56 mm (Upper
Tenthill). On the other hand, ETo estimates indicated a high accuracy for the 32 years,
ranging from R2 of 0.97 to 0.94, and Pearson’s correlation of 0.97 to 0.96 for Townson and
Placid Hills stations, respectively.

Table 2. Statistical comparison of annual cumulative rainfall, actual and potential evapotranspiration
derived from geeSEBAL with the gauging station data.

Station Variable
mm

R2

%
Pearson’s

Correlation
RMSE

mm/Month Bias MBias

Gatton

P 0.76 0.87 45.38 1.14 0.16

ETa 0.53 0.73 49.96 −34.07 0.15

ETo 0.94 0.96 83.73 −71.33 0.28

Placid Hills

P 0.82 0.90 48.35 −4.63 0.16

ETa 0.42 0.65 54.34 −38.45 0.13

ETo 0.94 0.96 83.15 −69.19 0.28

Thornton

P 0.84 0.92 44.09 −9.04 0.17

ETa 0.54 0.73 51.47 −35.77 0.14

ETo 0.94 0.97 80.25 −64.27 0.27

Townson

P 0.84 0.92 57.10 −19.70 0.17

ETa 0.56 0.75 53.02 −39.15 0.14

ETo 0.95 0.97 77.29 −62.01 0.26

Upper Tenthill

P 0.80 0.89 41.93 −0.17 0.16

ETa 0.35 0.59 58.56 −45.15 0.12

ETo 0.94 0.97 81.23 −65.86 0.28

West Haldon

P 0.82 0.90 38.97 −4.07 0.16

ETa 0.51 0.72 49.14 −33.76 0.15

ETo 0.95 0.97 73.13 −56.93 0.29

Whitestone

P 0.83 0.91 37.53 3.14 0.16

ETa 0.54 0.74 45.23 −30.51 0.15

ETo 0.944 0.97 74.33 −62.85 0.28

Figure 5a–u illustrates the nominated stations’ Pearson correlation which revealed a
strong spatial agreement with ETo. For all 14 stations, ETo had remarkable agreement, rang-
ing from 0.65 to 0.97. It also shows a similar relationship for the rain and ETa, respectively.
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Figure 5. The relationship between monthly cumulative rainfall, reference evapotranspiration and
actual evapotranspiration derived from geeSEBAL for the period 1990–2020 with the station datasets
(a–u) in the Lockyer Catchment.

3.3. Results of Trends

The null hypothesis (H0) identified that there is no monotonic trend at the specified
significance level (SL) in extremes. The alternative hypothesis (Ha) suggests that the data
exhibit a trend at the SL. The SLs of 0.01 (1%), 0.05 (5%) and 0.1 (10%) were investigated in
the calculation. The results in Table 3 show that there is a significant trend in the maximum
precipitation series for the stations Placid Hills (5% SL) and Townson (1%) and the global
climate dataset for Placid Hills (5% SL) and Townson (1% SL). Some stations and the global
climate dataset exhibit a trend; therefore, they are in the non-stationary form.

Table 3. Detailed statistical results of trend and step change analysis of rain extremes for gauging
stations in Lockyer Catchment.

Test Statistical
Tests

p-Value Test Statistic
Critical Values

Test ResultSL = 0.1 SL = 0.05 SL = 0.01

Placid Hills
Trend detection Mann–Kendall 0.028 −2.2 1.645 1.960 2.576 H0 rejected at 5%
Global climate dataset
corresponding to Placid Hills
Trend detection Mann–Kendall 0.011 −2.5 1.645 1.960 2.576 H0 rejected at 5%
Townson
Trend detection Mann–Kendall 0.009 −2.62 1.645 1.960 2.576 H0 rejected at 1%
Global climate dataset
corresponding to Townson
Trend detection Mann–Kendall 0.016 −2.41 1.645 1.960 2.576 H0 rejected at 5%

3.4. Results of Stationary and Non-Stationary Analysis for Rainfall

Studying the non-stationary aspects of the extremes is the goal of this research. Table 4
shows the return levels of rainfall for the stations and global climate data for 14 selected
stations in the Lockyer Catchment which are located in the southern part of Queensland.
Return levels of extreme were estimated using the NEVA software for the return periods of
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10 through 100 years, which are the standard design return periods used in hydrologic stud-
ies. The (100-year return period) and (10-year return period) station rainfall in Gatton and
Helidon range from 550.98 mm to 312 mm (stationary), from 624.97 mm to 324.47 mm (non-
stationary) and from 441.30 mm to 279.35 mm (stationary), from 450.77 mm to 282.12 mm
(non-stationary). The return levels of Townson and Placid Hills which are located next
to the Gatton agricultural hub of Southeast Queensland are indicated in Table 4. Placid
Hills exhibits a variation of design rainfall for (20-year return period) to (50-year return
period), from 371.52 mm (stationary) to 387.93 mm (non-stationary), and from 467.35 mm
(stationary) to 491.09 mm (non-stationary), respectively. However, for gridded rainfall,
Placid Hills indicates the highest variability of (50-year return period) from 354.20 mm
(stationary) to 624.46 mm (non-stationary). Moreover, design rainfall of Placid Hills for
(20-year return period) ranges from 305.19 (stationary) to 406.05 (non-stationary). Accord-
ing to Table 4, the extreme rainfall events under the non-stationary assumption are higher
than the extreme rainfall events under the stationary assumption in both ground-based
measurements and global climate data. The results also show that the difference between
the maximum rainfall events under the stationary and non-stationary assumptions in the
global climate data is generally greater than in the station data for different return periods.

Table 4. The maximum rainfall (mm) in different return periods for different stations in the
Lockyer Catchment.

Rainfall Rainfall

Return Period Station ERA5 Data

Gatton Stationary Non-Stationary Stationary Non-Stationary

10 312.64 324.47 279.35 282.12

20 379.38 402.04 325.41 328.86

50 472.53 520.23 388.93 394.75

100 550.98 624.97 441.30 450.77

Helidon

10 339.96 336.66 292.61 325.507

20 437.19 436.11 343.12 393.58

50 596.99 606.25 417.67 492.67

100 748.07 765.74 478.62 575.84

Placid Hills

10 310.52 323.20 267.89 298.30

20 371.52 387.83 305.19 406.05

50 467.35 491.09 354.20 624.46

100 560.60 583.60 390.19 874.67

Townson

10 434.12 419.51 289.18 303.4

20 528.48 513.25 344.46 365.64

50 670.93 657.57 424.26 460.33

100 796.57 788.64 493.24 544

Whitestone

10 311.75 325.49 285.94 285.94

20 370.14 390.83 340.92 340.92

50 452.33 479.13 422.21 422.21

100 512.60 546.52 499.93 499.93
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Table 4 shows the variation in gridded rainfall data for the 100-year return period
from 450.77 mm (non-stationary) to 441.30 mm (stationary) for Gatton and from 575.84 mm
(non-stationary) to 478.62 mm (stationary) for Helidon. For the design rainfall in Helidon
(gridded data), for a 100-year period, the change between stationary and non-stationary
was more noticeable; 97.22 mm compared to 9.45 mm in Gatton. Whereas in Helidon
(station data), the difference between stationary and non-stationary indicates less vari-
ability, 17.4 mm (100-year period) compared to Gatton, 73.99 mm (100-year period). Of
the 14 stations, the GEV distribution rainfall shows that 5 stations’ data (Helidon, Gatton,
Placid hills, Townson and Whitestone) and 3 gridded data (Helidon, Gatton and Placid
hills) represent the non-stationary condition, respectively (Table 4). As Gatton is identified
as the agricultural hub in Southeast Queensland, it is important to understand the short,
intense rainfall for water resource management. As can be seen from Table 4, Gatton station
represents the most remarkable variations in comparison to other stations. Rainfall return
levels at high return periods were found to have noticeable variation compared to low
return periods. The ERA5 estimates are noticeably lower than the station-based estimates
for the region, as shown in Table 4, especially at the 50 and 100-year return periods.

3.5. Results of Stationary and Non-Stationary Analysis for Evapotranspiration

For the management of water resources, a precise estimation of evapotranspiration is
necessary. Among the ET algorithms, SEBAL is the most promising methods for estimating
evapotranspiration [18]. The GEV distribution evapotranspiration confirmed that, of the
14 stations, 6 stations’ data (Helidon, Gatton, Placid hills, Thornton, Townson and Whitestone)
and 2 gridded data (Thornton and Whitestone) exhibited the non-stationary condition.

Figures 6 and 7 show the return levels for evapotranspiration derived from the geeSE-
BAL algorithm for both station and global climate data. According to Figure 6a–e, sta-
tions’ actual evapotranspiration shows a range of 184.88 mm (stationary) to 169.02 mm
(non-stationary) for the 100-year return period and from 169.38 mm (stationary) to
157.86 mm (non-stationary) for the 10-year period in Gatton. Helidon also exhibits vari-
ation in ETa, ranging from 189.76 mm (stationary) to 161.98 mm (non-stationary), from
164.43 mm (stationary) to 153.41 mm (non-stationary) for (100-year period) and (10-year pe-
riod), respectively. The difference between stationary and non-stationary reaches 27.78 mm
in Helidon compared to 13.99 mm in Townson for the 100-year return period. Additionally,
this demonstrates that Helidon experiences significant variability compared to other sta-
tions. According to Figure 7a-d, ETa derived from the geeSEBAL algorithm ranges from
171.32 mm (stationary) to 170.62 mm (non-stationary) for the 100-year period and from
149.57 mm (stationary) to 146.22 mm (non-stationary) for the 10-year period in Thornton.
The least variation is observed from the 100-year to 10-year return level periods.

3.6. Results of Stationary and Non-Stationary Analysis for Water Storage

Due to a lack of field data for water storage, this variable was assessed based on
the satellite-derived images. The return levels of water storage for station and global
climate data are shown in Table 5. The 10-year and 100-year return levels’ water storage
derived using the global climate data varies from 202.44 mm to 224.80 mm and from
95.45 mm to 108.70 mm for stationary and non-stationary, respectively in Gatton. The
results of the Gatton station data illustrate no variation between the stationary and non-
stationary conditions. Whitestone and Gatton act quite similarly when experiencing non-
stationary conditions in the global climate data. The GEV distribution for water storage in
Whitestone station varies from 321.33 mm (stationary) to 344.60 mm (non-stationary), from
99.57 mm (stationary) to 106.32 mm (non-stationary) for (100-year period) and (10-year
period), respectively, whereas the rest of the stations indicate a lack of variation in the
stationary condition.
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Table 5. The maximum water storage in different return periods of different stations in the
Lockyer Catchment.

Water Storage Water Storage

Return Period Based on Station Based on ERA5 Data

Gatton Stationary Non-Stationary Stationary Non-Stationary

10 100.71 100.71 95.45 108.70

20 144.89 144.89 126.97 142.55

50 202.65 202.65 168.84 188.3

100 247.64 247.64 202.44 224.80

Helidon

10 133.93 133.93 132.96 132.96

20 196.26 196.26 156.91 156.91

50 286.70 286.70 195.64 195.64

100 363.34 363.34 224.83 224.83

Placid Hills

10 120.79 120.79 113.70 113.70

20 179.07 179.07 136.92 136.92

50 255.67 255.67 163.25 158.23

100 316.06 316.06 180.55 176.99

Thornton

10 165.76 165.76 110.55 110.55

20 233.13 233.13 137.04 137.04

50 328.51 328.51 174.03 174.03

100 415.159 415.159 199.66 199.66

Townson

10 197.20 197.20 97.80 97.80

20 256.35 256.35 136.77 136.77

50 343.19 343.19 193.38 193.38

100 411.08 411.08 241.17 241.17

Whitestone

10 99.57 106.32 96.92 96.92

20 156.79 164.97 147.03 147.03

50 244.30 258.30 231.33 231.33

100 321.33 344.60 314.13 314.13

4. Discussion

This research study’s results clearly indicate that extreme events including extreme
rainfall, extreme evapotranspiration and water storage deficit under the stationary assump-
tion are mostly lower than the extreme events under the non-stationary assumption in
both station and global climate datasets. Like previous studies on rainfall IDF [60,61],
the annual rainfall extremes, evapotranspiration extremes and water storage extremes are
well-described by the GEV distribution. In a previous study, the global-scale models of
climate variability were considered in the development of nonstationary TDF curves in
Canada [28]. Another study on rainfall IDF shows that adoption of stationary assumption
underestimates the design climate extremes [23]. Since rainfall extremes are well-researched
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from both the stationary and nonstationary perspectives [62,63], a comparison can easily be
made. This study considered stationary and non-stationary assumptions. The reasons for
adopting this approach are its easy estimation procedure which is suitable for professional
applications. In the majority of instances, the gap between stationary and non-stationary
widens as the return period increases as it is highlighted in several studies [1,64]. Numerous
studies have been performed around the world to prove the effect of non-stationary on
extreme values [65,66]. Moreover, the extreme events in all studied variables and return
periods of the global climate data are lower than the extreme events of the ground-based
measurements. The spatial patterns derived from ERA5 land reanalysis data closely re-
semble the station data for water storage and rainfall. In ETa, ERA5 reanalysis and station
were approximately the same. However, the ERA5 land data of some years overestimates
the higher spatial variability compared to station data. Therefore, reanalysis data offers
satisfactory outcomes for estimating ETa, providing an intriguing option for assessing
spatial and temporal aspects across regional and continental scales.

A common pattern of uncertainty ranging between stationary and non-stationary
assumptions is noticed across all stations with varying variables, including extreme rainfall,
extreme ETa and extreme water storage deficit. The findings suggest that extreme rainfall
shows a greater disparity between ground-based measurements made under stationary
and non-stationary assumptions compared to data obtained from global climate products.
The uncertainty range expands from the 10-year period to 100-year period, with the water
storage deficit showing less variation between stationary and non-stationary conditions,
while rainfall exhibits a sharp variation, and evapotranspiration shows moderate vari-
ation. Evapotranspiration and water storage derived from ERA5 land reanalysis data
follow the same uncertainty with stations’ data. The highest difference between stationary
and non-stationary 100-year station rainfall is observed in Thornton (89.25 mm), Gatton
(73.99 mm), Whitestone (33.92 mm), Placid Hills (23 mm) and Helidon (17.67 mm), re-
spectively. It is noted that the global climate data tends to underestimate the outcomes in
comparison to station data. Overall, this study highlights the importance of considering
non-stationary conditions in hydroclimatic analysis and provides valuable insights into the
performance of the geeSEBAL algorithm and NEVA methods for estimating and analysing
hydrological variables.

5. Conclusions

In this study, the non-stationary and stationary conditions for extreme rainfall, extreme
evapotranspiration and water storage deficit were investigated in Southeast Queensland
(SEQ), Australia. The geeSEBAL algorithm was used to generate actual evapotranspiration,
and the NEVA programme was used to estimate the intensity and frequency of extremes
using the GEV distribution. The estimation was likely based on the assumption that the
location parameter has a linear relationship with time. The key findings of this study are as
follows: (1) The ETa derived from geeSEBAL by feeding global climate products overesti-
mates ETa derived from geeSEBAL by feeding station data; (2) the statistical results indicate
reasonable accuracy agreement between global climate datasets, P, ETo and geeSEBAL ETa
and ground-based measurements; (3) the analysis of the spatiotemporal distribution of
rainfall is almost identical with two different climate datasets (ground-based observations
and global climate products). ET0 from global climate datasets underestimates the results
compared to station data. Interestingly, rainfall and ETa have shown that the highest rise
is in the year 2010, which admits the historical flooding in SEQ; (4) the spatiotemporal
distribution of water storage derived from a lump water balance remains the same for both
climate datasets; (5) the intensity and frequency of rainfall extremes, evapotranspiration
extremes and water storage deficit extremes under the stationary assumption are mostly
lower than extreme events under the non-stationary assumption in both ground-based and
global climate datasets under different return levels.

This research utilised the geeSEBAL algorithm in the Google Earth Engine (GEE)
environment to estimate evapotranspiration (ET) at regional scales using Landsat imagery.
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Understanding the dynamics of evapotranspiration (ET) is essential to address the chal-
lenges related to freshwater scarcity and increased water demand for agriculture and food
production. While the GEV distribution approach was employed to analyse extremes,
further investigations into other mechanisms, such as evapotranspiration and water stor-
age, would provide a more comprehensive understanding of the underlying issues. The
examination of station data also demonstrated that, even though geeSEBAL primarily
relies on reanalysis data for meteorological input, the estimations of ET are similar to those
obtained when the algorithm is supplied with real ground-based observations of meteo-
rological conditions. The evaluation of ETa and water storage deficit demonstrated that
the geeSEBAL algorithm has the capability to enhance irrigation management in Gatton, a
prominent agricultural centre in the study area. By addressing the rising water needs for
food production and water supplies, it also has the ability to lessen the consequences of
drought [45]. This research can provide a foundation for future research and facilitate com-
parisons with existing studies by focusing on advanced statistical analysis. Understanding
the statistical properties and characteristics of extreme events is essential for risk assessment
and management and for the development of adaptation strategies. From the results, it
can be concluded that extreme events under the stationary assumption are lower than
extreme events under the non-stationary assumption in both global climate products and
ground-based measurements for this region. In this study, the framework used examined
the severity and coverage of various variables by analysing their frequency, intensity and
duration, thereby exploring their spatiotemporal evolution. This framework can be applied
to any geographical area, providing estimations of extreme conditions that are essential
for infrastructure planning and design, risk assessment and disaster management. As we
only covered the non-stationary conditions in extreme events with NEVA by incorporat-
ing the outputs of geeSEBAL, it is recommended that, in future studies, spatial Bayesian
Hierarchical Modelling methods and ProNEVA [67] that allow for the incorporation of
additional covariates for modelling the spatial variability observed in the GEV parameters
are applied.

The outcomes regarding extreme events highlight that failure to account for non-
stationary conditions and neglecting trends in extreme events results in inaccuracies when
estimating such events. These inaccuracies can lead to errors in infrastructure development
and design, causing financial losses and potential harm to human lives. Conducting
detailed investigations into the underlying causes of extremes can be interesting for future
studies. By quantifying the probabilities of extreme occurrences, decision-makers can
make informed choices regarding infrastructure development, resource allocation and
emergency planning.
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