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Abstract: With the rapid development of the economy, car ownership has grown rapidly, which
causes many traffic problems. In recent years, intelligent transportation systems have been used
to solve various traffic problems. To achieve effective and efficient traffic management, intelligent
transportation systems need a large amount of complete traffic data. However, the current traffic data
collection methods result in different forms of missing data. In the last twenty years, although many
approaches have been proposed to impute missing data based on different mechanisms, these all have
their limitations, which leads to low imputation accuracy, especially when the collected traffic data
have a large amount of missing values. To this end, this paper proposes a latent-factor-model-based
approach to impute the missing traffic data. In the proposed approach, the spatial information of
the road network is first combined with the spatiotemporal matrix of the original traffic data. Then,
the latent-factor-model-based algorithm is employed to impute the missing data in the combined
matrix of the traffic data. Based on the real traffic data from METR-LA, we found that the imputation
accuracy of the proposed approach was better than that of most of the current traffic-data-imputation
approaches, especially when the original traffic data are limited.

Keywords: missing traffic data imputation; latent factor model; a large amount of missing values

1. Introduction

In the last ten years, with the rapid development of the world’s economy, car own-
ership has grown rapidly. Taking Sichuan Province as an example, the scale of the car
manufacturing industry and the number of cars produced, as two main indicators of the
national economy, have increased by 29.4% and 84.2% from January to April 2022, respec-
tively, compared to the same period for the previous year [1]. The increasing number of
cars has greatly increased the traffic pressure on the road network. The latest data from the
Beijing Municipal Commission of Transport shows that, at 8:00 a.m. on 1 September 2022,
the transportation congestion index of the main road network of Beijing was 8.0, which is
considered to be serious traffic congestion [2]. Traffic congestion not only seriously affects
people’s travel experience, but also causes many problems, such as air pollution, noise, etc.
To handle these problems, intelligent transportation systems play an increasingly impor-
tant role in traffic management [3]. Based on accurate traffic data prediction, intelligent
transportation systems can effectively alleviate traffic congestion in the road network [4].
However, the accurate prediction of traffic data needs to be based on complete traffic data.

Currently, traffic data collection is mainly based on roadside facilities [5] (i.e., radar
speed guns) or the GPS on cars [6,7]. However, both traffic data collection methods have
their shortcomings, which leads to missing data [8]. By using roadside facilities, the traffic
data of the roads can be continuously collected; however, the traffic data of roads without
roadside facilities will be lacking. Based on the GPS data of cars, the traffic data of different
roads can be calculated and collected. However, it is not possible for all roads in a road
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network to have cars with GPS at the same time, so there will be missing traffic data from
roads with cars that do not have GPS. The missing traffic data will greatly reduce the
effectiveness and efficiency of traffic management by intelligent transportation systems. At
present, the main challenges in the research field of missing traffic data imputation include
few public data sets, a high missing data rate, inaccurate data, etc. Currently, the main
solutions to handle the above challenges are to use more accurate mechanisms or additional
information to improve the imputation accuracy.

Based on these problems, in recent years, many approaches have been proposed to
achieve missing traffic data imputation from different perspectives [9–12]. According to the
mechanisms they use, the data imputation approaches can be roughly divided into three
categories, which are interpolation-based approaches, regression-based approaches, and
matrix-factorization-based approaches.

Interpolation is a widely used mechanism for missing data imputation [13]. The idea of
interpolation is using the neighboring existing values to estimate the missing values based
on different types of functions. For example, linear interpolation estimates the missing
values by calculating the mean of the adjacent existing values. Polynomial interpolation
estimates the missing values by constructing an n-degree polynomial function f (x) that
satisfies all the conditions of the existing values. Spline interpolation estimates the missing
values by constructing a set of piecewise lower-order polynomial functions that satisfy all
the conditions of the existing values. In the last decade, many interpolation approaches
have been proposed for missing traffic data imputation. For example, Ma et al. proposed a
copula-based model for missing traffic data imputation [14]; Li et al. proposed an algorithm
based on the spatial–temporal queuing mode [15]; Soriguera and Robuste found that the
interpolation approaches omitting traffic dynamics and queue evolution cannot achieve
accurate traffic data imputation and prediction [16].

The regression-based missing data imputation approaches use different functions to
fit the temporal and spatial relationships of existing values to calculate the missing values
according to the functions. Common regression models include linear regression, ridge
regression, Lasso regression, ElasticNet regression, etc. [17–19].

The matrix-factorization-based approaches perform missing value imputation or
estimation using lower-dimensional factor matrices or tensors to fit the existing values in
the matrices or tensors. They have the advantages of wide applicability, easy expansion,
high prediction accuracy, and easy interpretation [20,21].

Although, in the last twenty years, many approaches have been proposed to achieve
missing traffic data imputation, most of these approaches have their limitations, which
reduce their accuracy and efficiency in performing missing traffic data imputation in real
applications:

1. Because the interpolation-based approach only considers the neighboring data of
missing values and ignores the overall relevant data, the imputation accuracy of the
interpolation-based approach is low;

2. Because it is difficult to fit the non-linear changes of traffic data by linear functions,
the imputation accuracy of regression-based approaches is low when they are used to
impute non-linear traffic data;

3. In real applications, many other forms information can be used to improve the accu-
racy of traffic data imputation, such as the road network structure, road conditions, etc.
However, most of the current matrix-factorization-based approaches do not consider
this information, which reduces their imputation accuracy.

Therefore, the motivation of this paper was to overcome the limitations of current
traffic imputation approaches and use spatial information to improve the accuracy of the
traffic data imputation of matrix-factorization-based approaches. In the proposed approach,
a spatiotemporal matrix (i.e., road and time interval matrix) was used to represent the
original traffic data. Then, the adjacent matrix of the road distance was constructed and
combined with the spatiotemporal matrix in the road dimension. Finally, the latent-factor-
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model (LFM)-based algorithm [22] was used to impute the missing data in the combined
matrix. The contributions of the proposed approach can be summarized as follows:

1. In the proposed approach, the adjacent matrix of road distance is proposed to represent
the spatial information of the road network, which can be combined with original
traffic data. This is an innovative mechanism to add auxiliary information to original
traffic data;

2. The LFM-based data imputation algorithm is employed to impute the missing traffic
data in the combined traffic data, so as to accurately impute the missing traffic data;

3. The real traffic dataset METR-LA is used to evaluate the performance of the proposed
approach. The experimental results indicate that the proposed approach can achieve
accurate traffic data imputation in different data missing patterns and with limited
amount of traffic data.

The reminder of the paper is structured as follows. The related works are introduced
and analyzed in Section 2. The traffic data imputation problem is given in Section 3. The
basic principle of the proposed approach is described in Section 4. The experiments and
analysis are provided in Section 5. Section 6 concludes the paper and gives our future
research directions.

2. Related Works

In the last ten years, many missing traffic data imputation approaches were proposed
from different perspectives [23–29]. In this section, we will introduce the representative
approaches and compare them with the proposed approach.

2.1. Interpolation-Based Approaches

Some people used interpolation-based approaches to impute the missing data [30–36].
For example, Ma et al. proposed a copula-based model for missing traffic data imputa-
tion [14], which combined spatial dependency and marginal distribution from missing
annual average daily traffic data. In their approach, copula, as a joint function, was used
to capture the positive, negative or tail dependencies between values and impute missing
values according to the captured dependencies. Li et al. proposed an algorithm based on
the temporal–spatial queuing model [15]. Their algorithm used the correlations between
the missing values and the values of upstream or downstream detectors to impute the
missing traffic data and predict the future traffic data. Soriguera and Robuste found that
the interpolation approaches omitting traffic dynamics and queue evolution cannot achieve
accurate traffic data imputation and prediction [16]. Therefore, they proposed a traffic data
interpolation approach through keeping the smoothness of imputed traffic data.

The interpolation-based approaches mainly use the neighboring data of missing data
to achieve data imputation, which can quickly obtain the missing data without much
calculation. Since the interpolation-based approaches only use the neighboring data of
missing data to impute them and ignore the overall impacts of global data on the missing
data, the imputation accuracy of interpolation-based approaches is low.

2.2. Regression Based Approaches

Some people used the regression-based approaches to impute the missing data [37–40].
For example, Rodrigue et al. proposed a framework to impute missing values in crowd-
sourcing traffic data [17]. In their framework, the multi-output Gaussian process was used
to simulate the complex spatial and temporal correlations in the traffic data. By using
Gaussian process regression, the framework could accurately impute the missing traffic
data under medium and high loss rates. Li et al. proposed a data imputation method based
on Bayesian vector autoregression [18], which can realize the imputation of missing data
for mixed frequency traffic conflict data with irregular intervals. In their approach, a Gibbs
sampler was mainly used for the Bayesian inference of missing model parameters and
high-frequency variables. Li et al. proposed a multi-view learning method to estimate
the missing values of traffic-related time series data [19]. Their method used collaborative
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filtering technology to impute the missing data by considering local and global changes in
temporal and spatial views.

The regression-based approaches impute the missing data through fitting the collected
data with various linear functions. However, the changes of many traffic data are nonlin-
ear, such as traffic speed, traffic volume, etc., so the regression-based approaches cannot
accurately impute these kinds of traffic data.

2.3. Matrix-Factorization-Based Approaches

Some people used the matrix-factorization-based approaches to impute the missing
traffic data [41–44]. For example, Tan et al. proposed a tensor-completion-based approach
for traffic volume prediction [20]. In their approach, the traffic volume data were modeled
using a time intervals × days × weeks tensor. Then, the traffic volume prediction was
achieved through using a Tucker decomposition and gradient-descent-based tensor com-
pletion algorithm to impute the missing data in future time intervals. Chen et al. proposed
a truncated-nuclear-norm (TNN)-based low-rank tensor completion (LRTC) framework to
impute the missing traffic data [21]. In their approach, a TNN was defined using a locations
× days × time intervals tensor. Based on the defined TNN, the LRTC and alternative
direction multiplier method (ADMM) are used to impute the missing data in the tensor.

The matrix-factorization-based approaches can achieve high accuracy in missing
traffic data imputation. However, researchers found that the accuracy of the missing
data imputation of matrix-factorization-based approaches is inversely proportional to the
missing rate of collected traffic data. When the amount of missing values in the collected
traffic data is large, the imputation accuracy of matrix-factorization-based approaches
is low.

3. The Problem Description

Generally, the original traffic data of a road network have space and time features,
which can be described by a spatiotemporal matrix, where the rows and columns of the ma-
trix indicate different roads and time intervals, respectively. An example of spatiotemporal
matrix of original traffic data V ∈ RI·J is given in Figure 1.

Figure 1. An example of a spatiotemporal matrix of original traffic data V ∈ RI·J .

where an element of V (i.e., vi,j) indicates the traffic value of the i road at the j time
interval, the gray values indicate the missing traffic data values in the original traffic data
(i.e., vi,j ∈ ∅).

During the traffic data collection, there are three main situations that will cause the
traffic data to be missing, which can be described as follows.

1. Roadside facilities can continuously collect the traffic data of their roads. However,
the traffic data of the roads without roadside facilities are all missing;

2. GPS data of cars can be used to calculate the traffic data of roads passed by cars.
However, it is hard for all roads of a road network to have cars with GPS at the same
time, so the traffic data of the roads without cars with GPS are missing;
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3. Due to the network failure, when the collected data are uploaded to the database, the
traffic data of all roads in some time intervals are missing.

The patterns of traffic data missing are different in the above three situations. If we
use the spatiotemporal matrix to describe the traffic data of a road network, the traffic
data missing pattern of roadside facilities is shown in Figure 2a, where the traffic data
of roads without roadside facilities are missing. The traffic data missing pattern of GPS
in cars is shown in Figure 2b, where the traffic data of roads without cars with GPS are
missing (when several roadside facilities or their networks are unstable, the traffic data
collected by them will also have this missing pattern). The traffic data missing pattern of
network failure is shown in Figure 2c, where the traffic data of roads in some time intervals
are missing.

(a) In roads (b) GPS (c) In time intervals

Figure 2. Three kinds of traffic data missing patterns.

Traffic data imputation is used to find suitable functions (i.e., f unction(·) to estimate
or evaluate missing traffic data values (i.e., ∀vi,j ∈ V and vi,j ∈ ∅) based on existing traffic
data values (i.e., ∀vi,j ∈ V and vi,j /∈ ∅), which can be described as follows:

v̂ = f unction(∀vi,j ∈ V ∧ vi,j /∈ ∅), (1)

The objective of the traffic data imputation is to minimize the difference between the
imputed and real traffic data values, which can be described as follows:

objective = min
I

∑
i=1

J

∑
j=1
|vi,j − v̂i,j|, (2)

where the missing of traffic data in the j time interval on the i road or section in V is indicated.

4. LFM-Based Traffic Data Imputation Approach

In this section, the basic principles of the proposed LFM-based traffic data imputation
approach are described in detail. First, the construction of the adjacent matrix of road
distance is given. Then, the combination of the adjacent matrix of road distance and the
spatiotemporal matrix of traffic data is introduced. Finally, the process of the LFM-based
data imputation algorithm is provided.

4.1. LFM-Based Factorization

LFM uses a series of factor values to represent the hidden relationships between two
dimensions of a matrix. For a I · J matrix X ∈ RI·J , if we use F number of latent factors to
represent the hidden relationships between two dimensions of X, the process of LFM based
factorization of X can be described as X = P ·Q, which is illustrated in Figure 3.

In Figure 3, P ∈ RI·F and Q ∈ RF·J are two factor matrices of X, where pi, f indicates
in the i road and f latent factor in factor matrix P; similarly, q f ,j indicates the f latent factor
and j time interval in factor matrix Q. An element of X (i.e., xi,j) can be calculated by the i
row of factor matrix P and j column of factor matrix Q, which can be described as follows.

xi,j = P(i, ·) ·Q(·, j) =
F

∑
f=1

pi, f · q f ,j, (3)
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Figure 3. The process of LFM based factorization of X.

4.2. The Construction of the Adjacent Matrix of Road Distance

The spatiotemporal matrix of traffic data includes the traffic data of several roads
in several continuous time intervals (see Figure 1). In a road network, the traffic data of
roads have a wide range of relationships. For example, if the traffic data of a road are large,
the traffic data on adjacent or neighboring roads will be large. Therefore, the accuracy of
missing traffic data imputation can be greatly improved by adding spatial information
on the road network. In the proposed approach, the adjacent matrix of road distance is
proposed to represent spatial information on the road network.

Supposing there are I roads or sections in a road network, the adjacent matrix of road
distance can be described by D ∈ RI·I , where an element of D (di1,i2 = dis) represents the
road accessible distance distance between the ith

1 and ith
2 roads. If the number of roads

between the ith
1 and ith

2 roads is more than 3, dis is set to the maximum distance between
two roads (i.e., max(di1,i2 ∈ D)) in the adjacent matrix of road distance. This setting is
because the farther the distance between two roads, the weaker the relationship of traffic
flow between the two roads. In the research field of urban planning and traffic engineering,
it is verified that, if the distance between two roads is greater than three roads or sections,
it may lead to inconsistency in the traffic flow data in a road network, while the impacts
between roads with a distance greater than three roads or sections are the least [45].

After the construction of the adjacent matrix of road distance, the distance values of
the adjacent matrix are normalized, which are calculated as follows.

norm(di1,i2) = 1−
di1,i2

max(di1,i2 ∈ D)
(4)

After normalization, the normalized adjacent matrix of road distance norm(D) ∈ RI·I

is obtained.
An example of a road network is shown in Figure 4.

Figure 4. An example of road network.

From Figure 4, it can be seen that the road network has six roads, which are A to F.
The road-accessible distances between any two adjacent roads are given in the figure. The
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adjacent matrix of road distance D is shown in Figure 5a. Specifically, since the number of
roads between roads A and F is 4 (i.e., more than 3), the distance between them is set to the
maximum distance of roads in the adjacent matrix of road network, which is 18 (i.e., the
distance between B and F). The normalized adjacent matrix of road distance norm(D) is
shown in Figure 5b.

(a) D (b) norm(D)

Figure 5. The original and normalized adjacent matrix of road network.

4.3. The Combination of the Adjacent Matrix of Road Distance and the Spatiotemporal Matrix of
Traffic Data

In order to add the spatial information to the missing traffic data imputation, the
normalized adjacent matrix of road distance norm(D) will be combined with the spatiotem-
poral matrix of traffic data V ∈ RI·J (see Section 3). Before the matrix combination, the
spatiotemporal matrix of traffic data also needs to be normalized. An element of spatiotem-
poral matrix of traffic data (i.e., vi,j) is normalized to norm(vi,j) based on the following
equation.

norm(vi,j) =
vi,j −minV

maxV −minV
, (5)

Where minV and maxV are the minimum and maximum value of vi,j in V, respectively.
After normalization, the normalized adjacent matrix of road distance norm(D) is

combined with the normalized spatiotemporal matrix of traffic data norm(V) from the
dimension of roads. The combined matrix VD ∈ RM·N is illustrated in Figure 6, where M
is I, N is I + J.

Figure 6. The combined matrix VD.
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4.4. The Process of LFM-Based Data Imputation Algorithm

After the matrix combination, the LFM-based data imputation algorithm will be used
to impute the missing data in the combined matrix (i.e., the missing data values on the part
of the spatiotemporal matrix).

The idea of the LFM-based data imputation algorithm can be described as follows.

1. According to the length M and width N of the matrix VD and the number of latent
factors F, two factor matrices, P ∈ RM·F and Q ∈ RF·N , are generated with random
values; the Cartesian product of P and Q can construct the matrix VD′, whose size is
the same as matrix VD.

2. According to the value difference between the existing elements in VD and the corre-
sponding elements of VD′, the values of the factor matrices are alternatively updated
by gradient descent algorithm. The objective function of the factor matrices update is
shown in Equation (6)

obj = min ∑
xm,n 6=0

(xm,n − x̂m,n)
2 + λ

(
∑ p2

m, f + ∑ q2
f ,n

)
, (6)

where λ
(

∑ p2
m, f + ∑ q2

f ,n

)
is the regularization part and λ is the parameter to control

the regularization.
3. Repeat Step (2) until the above objective function is minimized, and the two matrices

VD and VD′ are considered to be the same. The missing elements of VD can be found
in VD′.

Based on the above idea, the LFM-based data imputation algorithm is described in
Algorithm 1.

Algorithm 1 LFM-based data imputation algorithm

Require: The combined matrix VD ∈ RI·J ;
Number of latent factors F;
Error threshold ε;

Ensure: Full matrix VD′

1: Initialize matrix P ∈ RI·F and matrix Q ∈ RF·J with random values.
2: Set parameters max_iter (the maximum number of iterations), α (step size), λ (parameter

that controls the regularization), objt and objt+1.
3: while (|objt − objt+1| > ε) ∧ (iter < max_iter) do
4: VD′ = P ·Q;
5: for pm, f do
6: pm, f = pm, f + α((xm,n −∑F

f=1 pm, f q f ,n)q f ,n − λpm, f );
7: end for
8: for q f ,n do
9: q f ,n = q f ,n + α((xm,n −∑F

f=1 pm, f q f ,n)pm, f − λq f ,n);
10: end for
11: objt = objt+1;
12: objt+1 = ∑xm,n 6=0

(xm,n − x̂m,n)
2 + λ

(
∑ p2

m, f + ∑ q2
f ,n

)
;

13: iter = iter + 1;
14: end while
15: return VD′

Algorithm 1 can be explained as follows. The inputs of the algorithm are the combined
matrix VD, the number of latent factors F and the error threshold ε. The output of the
algorithm is the completed matrix VD′. At the beginning of the algorithm, factor matrices
P and Q are initialized with random values (Line 1). Then, the parameters of the iteration
are set, including the maximum number of iterations max_iter, the step size α, and the
regularization control parameter λ, and the objective value |objt − objt| is calculated (Line
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2). When the object value |objt − objt+1| is larger than ε and iter is less than max_iter, the
values of factor matrices P and Q are updated according to the gradient descent algorithm []
(Lines 3 to 14). When the object value |objt − objt| is less than ε or iter is large than max_iter,
we consider that matrix VD′, combined by factor matrices P and Q, is the same as matrix
VD. Finally, the completed matrix VD′ is returned.

5. Experiments and Analysis

In this section, the real-world traffic data were used to verify the performance of
the proposed LFM-based traffic data imputation approach in different missing patterns,
missing rates, and data sizes (i.e., the amount of collected traffic data).

5.1. The Data Set and General Settings of Experiments

The real-world public traffic speed data set METR-LA was used as the original traffic
data in the experiments. METR-LA contains the traffic data collected by loop detectors on
highways in Los Angeles County. The data were collected from 325 roads for 4 months
(from 1 March 2012 to 30 June 2012), including 34,272 time intervals (a time interval is
5 min).

To reduce the effects of temporal information on traffic data, we only use the traffic
data of 325 roads in 20 time intervals in the experiments, so the size of spatiotemporal
matrix of the traffic data is 325× 20 (i.e., V ∈ R325×20).

To simulate different patterns of traffic data missing, we use different ways to remove
traffic data from the original traffic data (see Figure 2).

As shown in Table 1, we used three different ways to remove traffic data from original
traffic data to simulate different traffic data missing patterns. First, the traffic data of
roads without roadside facilities are missing (removal of certain roads) (see Figure 2a).
Second, the traffic data of roads without cars with GPS are missing (random removal) (see
Figure 2b). Third, the traffic data of roads in some time intervals are missing (removal of
certain time intervals) (see Figure 2c).

Table 1. The three data missing patterns in the experiment.

Data Size Missing Patterns Pattern Names

Spatiotemporal matrix: 20× 325 In roads Removal of certain roads

Roads: 20 GPS Random removal

Time intervals: 325 In time intervals Removal of certain time intervals

To simulate different missing rates of traffic data, for each traffic data missing pattern,
20%, 40%, 50%, and 70% of the data were removed, respectively, from the original traffic
data as the missing traffic data.

Two error criteria (i.e., MAPE and RMSE) are used to indicate the accuracy of traffic
data imputation approaches. MAPE refers to mean absolute percentage error. It is the
average percentage error between true and predicted values, which uses absolute values to
avoid offset of positive and negative errors. This indicator is sensitive to relative errors and
will change when target variables are globally scaled. RMSE refers to root mean squared
error, which is the square root of the mean of the sum of deviation squares between K
imputed and real values. It is sensitive to error value, and can highlight them with greater
impact. Both of them are calculated as follows.

MAPE =
1
K

K

∑
k=1

∣∣∣∣ xk − x̂k
xk

∣∣∣∣ · 100%, (7)

RMSE =

√√√√ 1
K

K

∑
k=1

(xk − x̂k)
2, (8)
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where xk is a real traffic data value, x̂k is the imputed traffic data value, and K is the number
of missing traffic data values.

5.2. The Experimental Results and Analysis
5.2.1. The Accuracy of Different Traffic Data Imputation Approaches

In this experiment, the accuracy of the missing traffic data imputation of the proposed
approach will be compared with current missing traffic data imputation approaches.

The baseline approaches used in this experiment are introduced as follows.

• ARIMA: The Autoregressive Integrated Moving Average is a popular time series
traffic data prediction and imputation approach. It uses the temporal relationships of
data to predict or impute the missing data [46].

• Mean interpolation, which uses the mean of temporal neighboring data around the
missing data to achieve the imputation [47].

• HaLRTC: High-accuracy low-rank tensor completion was proposed by Liu et al. in
2009. The HaLRTC algorithm applies the Alternating Direction Multiplier Method
(ADMM) to the process of low-rank tensor completion for missing data imputa-
tion [48].

• LRTC-TNN: Low-rank tensor completion and truncated nuclear norm was proposed
by Chen et al. in 2020. As with HaLRTC, LRTC-TNN is also based on low-rank tensor
completion, and uses a truncated nuclear norm to improve the imputation accuracy of
missing data [21].

The experimental results are shown in Table 2.
Table 2 shows the accuracy of different approaches for traffic data imputation in

different data missing patterns (i.e., removal of certain roads, random removal, and removal
of certain time intervals, see Figure 2) and different data missing rates, where the columns
of the table indicate different traffic data imputation approaches, while the rows of the
table indicate different data missing patterns and missing rates. Among them, black font
indicates that MAPE or RMSE is the lowest on this line.

Table 2. MAPE and RMSE for the three missing patterns.

Missing
Patterns

Missing
Rates ARIMA MEAN HaLRTC LRTC-TNN OUR

Removal of
certain roads

20% N/A N/A 6.74/6.67 5.67/5.01 3.45/3.13

40% N/A N/A 7.73/7.78 6.73/7.89 3.56/3.17

50% N/A N/A 8.76/6.08 7.01/8.07 3.56/3.40

70% N/A N/A 9.26/10.89 8.45/9.77 4.77/5.06

Random
removal

20% 8.50/3.56 9.70/3.19 5.83/3.47 4.65/3.06 3.43/3.26

40% 8.67/9.88 20.51/19.83 6.76/6.83 5.12/4.90 3.87/3.45

50% 10.66/11.20 25.05/26.89 7.30/8.07 5.50/5.41 5.73/5.70

70% 12.45/13.37 36.37/36.09 8.89/10.76 6.53/7.04 5.70/6.00

Removal of
certain time

intervals

20% 6.49/7.07 10.48/11.14 8.79/9.69 6.93/6.19 3.47/3.01

40% 8.45/7.98 20.76/21.52 10.19/10.27 7.59/8.50 3.80/3.47

50% 10.04/11.89 25.73/21.24 12.37/10.11 8.61/7.97 3.77/3.64

70% 12.09/11.17 36.33/35.85 14.34/16.94 8.41/8.45 5.46/4.77

From Table 2, it can be seen that that MEAN and ARIMA cannot impute the missing
data in the missing pattern of removal of certain roads, because they all need the temporal
neighboring data to impute the missing data. When roads do not have roadside facilities,
the traffic data of the road in all time intervals are missing. For the other three traffic
imputation approaches, when the missing rates of traffic data increase, the accuracy of
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traffic data imputation approaches decreases. The proposed approach has the most accurate
imputation results in three traffic data imputation approaches. When the data missing rate
is low (i.e., 20%, 40%, and 50%), the MAPEs and RMSEs of the proposed approach are
lower than 4. When the data missing rate is 70%, the MAPE and RMSE of the proposed
approach are only 4.77 and 5.06, respectively. This is because the proposed approach
combines the adjacent matrix of road distance with the spatiotemporal matrix of traffic data,
which greatly reduces the sparsity of the combined matrix, so as to improve the imputation
accuracy. In addition, the missing value imputation of the proposed approach relies on a
complete adjacent matrix rather than just certain values around the missing values, so the
proposed approach can fit any missing patterns and high missing rates. LRTC-TNN has
the second highest data imputation accuracy in three approaches. This is because LRTC-
TNN adds a truncated nuclear norm (TNN) to the process of low-rank tensor completion,
which improves the accuracy of missing data imputation. HaLRTC has the lowest data
imputation accuracy in three approaches, this is because HaLRTC only uses the low-rank
tensor completion algorithm without adding other algorithms or information. From the
5th to 8th rows of Table 2, it can be seen that, for the missing pattern of random removal,
all approaches can impute the missing traffic data. As with the first four rows, when the
missing rates of traffic data increase, the accuracy of traffic data imputation approaches
decreases. For the same reason, the proposed approach still has the highest accuracy in
most of missing rates, LRTC-TNN has the second highest accuracy in most of the missing
rates and HaLRTC has the third highest accuracy. For MEAN and ARIMA, the accuracy
of ARIMA is higher than MEAN. This is because ARIMA imputes the missing data by
considering all time series data, while MEAN only considers the temporal neighboring
data of missing data, which reduces the imputation accuracy of MEAN. From the last four
rows of the table, it can be seen that, as with the above experiments, when the missing rates
of traffic data increase, the accuracy of traffic data imputation approaches decreases. The
proposed approach also has the highest accuracy in this missing pattern of traffic data.

5.2.2. The Imputation Accuracy of the Proposed Approach under Different Amounts of
Collected Traffic Data

In this experiment, we use different amounts of collected traffic data to evaluate the
imputation accuracy of the proposed approach.

Specifically, the spatiotemporal matrix of traffic data with different time intervals
(i.e., 5, 10, and 15, where a time interval is 5 min), missing patterns (removal of certain
roads, random removal, removal of certain time intervals), and missing rates (i.e., 20%,
40%, 50%, and 70%) are used in this experiment. MAPE and RMSE are still used to indicate
the accuracy of the proposed approach.

The experimental results are shown in Table 3.
Table 3 shows the accuracy of the proposed approach for traffic data imputation in

different amounts of collected traffic data, different data missing patterns (i.e., the removal
of certain roads, random removal, and the removal of certain time intervals, see Figure 2),
and different data missing rates, where the columns of the table indicate different amounts
of collected traffic data, while the rows of the table indicate different data missing patterns
and missing rates.

From Table 3, it can be seen that when the missing rates of traffic data increase,
the accuracy of the traffic data imputation approaches decreases. When the amounts of
collected traffic data increase, the imputation accuracy of the proposed approach increases.
However, the difference of imputation accuracy of the proposed approach under different
amounts of collected traffic data is not big. Therefore, we can say that the proposed
approach can achieve accurate traffic data imputation with a very limited amount of
collected traffic data. So, we can say the proposed approach has high completion accuracy
under different amounts of collected traffic data, even if they are extremely small. As before,
black font indicates that MAPE or RMSE is the lowest on this line.
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Table 3. MAPE and RMSE for three missing patterns in different data sizes.

Missing
Patterns

Missing
Rates 5 Time Intervals 10 Time Intervals 15 Time Intervals

Removal of
certain roads

20% 3.78/3.47 3.57/3.26 3.45/3.13

40% 3.90/3.26 3.84/3.29 3.56/3.17

50% 4.07/3.56 3.85/3.37 3.56/3.40

70% 5.90/4.89 5.98/4.98 5.77/5.06

Random
removal

20% 4.03/3.47 3.56/3.34 3.43/3.26

40% 4.13/3.98 3.93/3.67 3.88/3.45

50% 5.89/5.04 5.57/4.84 5.43/4.73

70% 6.04/5.13 5.83/5.02 5.70/5.00

Removal of
certain time

points

20% 3.73/3.47 3.24/3.12 3.23/3.01

40% 3.86/3.89 3.78/3.27 3.80/3.39

50% 4.01/3.78 3.90/3.43 3.77/3.37

70% 5.74/4.88 5.38/4.65 5.46/4.77

6. Conclusions and Future Work

In this paper, an innovative approach is proposed to impute the missing traffic data.
In the proposed approach, the additional spatial information of the road network is added
to the original traffic data, so as to reduce the sparsity of the combined matrix. Then, the
missing data in the combined matrix are imputed by using the LFM-based data imputation
algorithm. The real traffic data set METR-LA is used to evaluate the performance of
the proposed approach. The experimental results indicate that the proposed approach
outperforms most of current approaches in terms of traffic data imputation, even when
the collected traffic data are limited. In the future, we will add additional information into
the original traffic data to further improve the accuracy of the traffic data imputation. In
addition, we will also explore the weights of additional information and the original traffic
data in the combined matrix.
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