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Abstract: The increasing prevalence of cognitive disorders among the elderly is a significant con-
sequence of the global aging phenomenon. Wandering stands out as the most prominent and
challenging symptom in these patients, with potential irreversible consequences such as loss or even
death. Thus, harnessing technological advancements to mitigate caregiving burdens and disease-
related repercussions becomes paramount. Numerous studies have developed algorithms and smart
healthcare and telemedicine systems for wandering detection. Broadly, these algorithms fall into
two categories: those estimating path complexity and those relying on historical trajectory data.
However, motion signal processing methods are rarely employed in this context. This paper proposes
a motion-signal-processing-based algorithm utilizing the wavelet packet transform (WPT) with a
fourth-order Coiflet mother wavelet. The algorithm identifies wandering patterns solely based on
patients’ positional data on the current traversed path and variations in wavelet coefficients within
the frequency–time spectrum of motion signals. The model’s independence from prior motion behav-
ior data enhances its compatibility with the pronounced instability often seen in these patients. A
performance assessment of the proposed algorithm using the Geolife open-source dataset achieved
accuracy, precision, specificity, recall, and F-score metrics of 83.06%, 92.62%, 83.06%, 83.06%, and
87.58%, respectively. Timely wandering detection not only prevents irreversible consequences but
also serves as a potential indicator of progression to severe Alzheimer’s in patients with mild cogni-
tive impairment, enabling timely interventions for preventing disease progression. This underscores
the importance of advancing wandering detection algorithms.

Keywords: geospatial information system; Alzheimer’s disease; wandering; signal processing;
wavelet packet decomposition

1. Introduction

In the last few decades, the increase in the growth rate of the world’s elderly population
has become a serious public health concern [1]. At the same time, age-related diseases
are challenges that require innovative solutions to maintain the quality of life of affected
people and their caregivers [2]. Alzheimer’s disease (AD) is the fifth leading cause of
death among people over 65 years of age, which is associated with irreparable mental and
physical consequences for patients and their families [3]. In 2019, the population over 65
in the world was 702.9 million people, and out of that 50 million people were suffering
from dementia. It is estimated that in 2050 these statistics will increase to 1548.9 million
and 150 million, respectively [4]. In Iran, the population of elderly people is increasing
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exponentially, so that according to predictions, in 2050, it will constitute 30 million people
of the country’s population, of which 2.4 million people will suffer from dementia [5].

Wandering is one of the first most progressive and most challenging symptoms of AD:
6 in 10 patients with AD suffer from wandering [6,7]. With the progress of the disease and
the loss of spatial and temporal memory, wandering causes irreparable damages such as
mental distress for the patient and his/her caregivers and relatives, getting lost, running
away, severe physical injuries, accidents, and even death [8,9]. Therefore, wandering
detection and helping in emergency situations by caregivers to prevent the occurrence of
irreparable accidents is one of the most important challenges for patients, their families,
and their caregivers [10].

Location-based technologies are trying to develop new support systems to maintain
the quality of life of people living with cognitive impairment and physical disabilities.
Therefore, taking advantage of technological advances can reduce the negative effects of
incurable diseases such as AD [11]. In recent years, smart healthcare and telemedicine
systems have worked well as support technologies in the field of establishing communica-
tion between medical and care service providers and patients by using information and
wireless communication technologies such as Geospatial Information Systems (GISs) and
sensors [12]. Many studies have focused on improving the diagnosis, care, and treatment
of various diseases through the development of algorithms and intelligent remote care
systems for patients with cognitive impairment and AD, some of which are seeking to
provide new methods of wandering management.

In general, the common techniques for wandering detection in previous research can
be divided into the following three general categories [13]:

I. Event monitoring:
In this technique, the sequence of events is used to identify wandering behaviors.
Usually, information is collected using a network of sensors. Opening and closing of
doors and movement of the patient inside the rooms are examples of events in this
technique.

II. Trajectory tracking:
This technique is developed based on the identification of wandering movement
patterns introduced by Martino-Saltzman in 1991 [14]. He showed that wandering
often appears with three types of patterns in the movement of the patient (Figure 1):

• Random: moving along a random path with consecutive and unusual direction
changes.

• Lapping: continuous rotating movement in the form of closed loops with at least
three consecutive turns.

• Pacing: continuous back-and-forth movement between two repetitive positions.
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Among the above-mentioned wandering patterns, lapping and pacing are known as
the most common wandering patterns.

III. Localization combined with the geofence-based technique:
In this technique, by using the person’s locational data and defining the safe and risk
zones, wandering behaviors are identified based on the patient’s entry into the risk
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zones or exiting from the safe zones. These zones can be defined dynamically or based
on local properties of predefined ranges of boundaries.

Depending on whether the person has wandered in or out of the home or care facility,
the technique will be different. Due to the dangerous consequences of wandering in an
outdoor environment, such as getting lost and accidents, wandering detection in an outdoor
environment is more important [8,10]. In outdoor scenarios, a patient’s locational data
play the main role in the management of wandering. Collecting these data is one of the
most important challenges in the development of algorithms and smart healthcare and
telemedicine systems for patients with cognitive impairment, which is often performed us-
ing technologies such as the Global Navigation Satellite System (GNSS), Global Positioning
System (GPS), and Geospatial Information System (GIS) [15].

The proposed algorithms in this field in previous studies are generally divided into two
groups including algorithms based on path complexity estimation and algorithms based
on the history of the patient’s movement paths. In the former group, it is assumed that the
complexity of the patient’s movement path increases with the occurrence of wandering [16].
In these algorithms, parameters such as fractal dimension [16], the travel time between two
points [17], and sharp changes in vector angles [18,19] are used to estimate the complexity of
the paths. In one study, a model based on graph theory was developed to detect wandering
by calculating the number of nodes and short loops in sub-graphs with algorithms such as
Schwarcfiter and Lauer (JGraph from Java Library), the Java Matrix Package (JAMA), and
the proximity matrix of trajectory nodes [20,21]. Another algorithm from this group was
developed based on using a grid network and centrality measures of the nodes, as well as
estimating the path efficiency [22,23], sub-path intersections, number of consecutive loops
in the path, and the area enclosed within the loops [24].

The second category of algorithms typically extract features from the history of the
patient’s mobility behavior, and the wandering detection is based on the changes in these
features. Various techniques have been employed to develop algorithms in this field. One
such approach involves using minimum boundary boxes to determine the weight of the
patient’s trajectory based on the overlap of boxes. Wandering can be detected by analyzing
changes in the weight of the trajectories [25]. Another approach utilizes an Adaptive
Confidence Estimation Predictor to forecast the patient’s next location based on prior
movements [26]. Machine learning algorithms, such as naïve Bayes, multi-layer perceptron,
bagging, support vector machine (SVM), K-nearest neighbor (KNN), logistic regression
(LR), pruned decision tree, and tree-based deterministic algorithms (e.g., random forest),
have also been applied to detect wandering [17,23,27–30]. These algorithms are trained on
a patient’s movement data and can accurately identify the occurrence of wandering.

Furthermore, some methods of this group involve analyzing changes in inertial sensor
data, such as from accelerometers and magnetometers, for wandering detection [31–33].
Additionally, another algorithm detects wandering based on defining safe zones and
implementing data mining [34]. Another promising method involves using wireless physi-
ological sensors and wearable biosensors, including heart rate and blood pressure sensors,
accelerometers, and gyroscopes, in conjunction with trajectory tracking techniques and
machine learning algorithms such as deterministic tree-based algorithms to detect the oc-
currence of emotional arousal in the patient while wandering [35,36]. The use of advanced
technologies such as the internet of things (IOT), Long-Short Term Memory (LSTM), neural
networks, and the Gray model have also contributed to the accurate detection of wandering
in another study of this group [37,38]. Furthermore, in [39], two time series processing
techniques, the autocorrelation function and the partial autocorrelation function, used in
conjunction with machine learning algorithms, were used to classify wandering patterns.
Other studies from this group involve proposing techniques for wandering detection based
on an LSTM-based deep classification method using off-the-shelf Wi-Fi devices [40], deter-
mining frequent locations between which movements occur by transforming GPS data into
geohash sequences [41], and integrating a convolutional neural network (CNN) into the
IoT architecture [42].
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In [43], a pedestrian dead reckoning (PDR) method was proposed for tracking patients’
movement behaviors and walking pattern recognition using multi-head convolutional
neural networks and the integration of IOT technology and ubiquitous location-based
services. The advantage of this study lies in its capacity to operate independently, without
reliance on external devices or historical training data. Furthermore, Ref. [44] has proposed
an application called “WanDa” for monitoring people with neurodegenerative diseases and
preventing wandering in real time, which guides them to a safe place and alerts caregivers
or relatives in outdoor scenarios. Another recent study by this research group has focused
on the development of location detection algorithms to identify wandering patterns based
on frequency of visit, navigation, geofences, and movement patterns. The evaluation of
these algorithms has shown that geofences offer the most effective solution for accurately
detecting the locations of patients [45].

A number of applications have also been developed for wandering detection in
patients with cognitive impairment, such as SingTRACeX [46], the position tracking system
called NEMO with a combination of the LoRa protocol of communication [47], geofencing
and adaptive GPS duty cycling strategies [48], and the SafeMove system based on a
space–time convolutional neural network to identify and predict abnormal behaviors of
elderly people [49].

Overall, all of the approaches mentioned above offer promising avenues for detecting
wandering in healthcare settings, but they have some limitations. The history-based
algorithms typically require a large database of movement data to be collected before the
system can be activated. The algorithm relies on the history of the patient’s past mobility
behaviors recorded in the database, and any new mobility behavior that deviates from the
recorded data due to cognitive function weakening or spatio-temporal memory instability
of the patient with Alzheimer’s disease can disrupt the system’s performance. Moreover,
some algorithms require more information than just the patient’s location, such as sensor
data and map information. While these additional data may improve the detection of
wandering, it may also lead to problems such as loss of quick access to information,
longer processing time, and increased data volume. Therefore, the main objective of this
research is to develop a simple and efficient algorithm that can accurately and rapidly
detect wandering using minimal information for any new path that the patient takes.

According to the previous research, the neural structures associated with spatial
navigation in the human brain have significant overlap with regions affected by AD and
dementia [50]. Therefore, the most prominent signs of cognitive impairment and wandering
are observable in an individual’s motion signals. However, it seems that processing these
signals could provide a pathway for extracting wandering-related features. There are
several techniques available for processing non-stationary signals like motion signals. In
our previous study [51], we developed an algorithm based on motion signal processing
with the short-time Fourier transformation (STFT) to detect intervals of wandering using
the variations in the frequency components of the signals. This approach has demonstrated
acceptable performance of motion signal processing in detecting wandering. Nevertheless,
given the manifestation of these features in motion signals, there exists the possibility of
exploring the most suitable signal processing technique for more precise and expedited
detection of wandering.

Here, a novel algorithm is proposed based on motion signal processing with wavelet
packet decomposition transformation (WPD) for wandering detection in patients with
cognitive impairment and Alzheimer’s disease. This method assumes access to the patient’s
location data via GPS-enabled devices, and that their wandering behavior follows the
most common patterns introduced by Martino-Saltzman [14], namely lapping and pacing.
Variations in the signal spectrum at different scales and in the frequency–time domain
during wandering and normal trajectories were studied using real trajectories from the
Geolife open-source dataset. Then wandering features were extracted by analyzing the
changes in the wavelet coefficients of the sub-signals during wandering. Finally, the
proposed algorithm was evaluated and compared to existing methods. Figure 2 depicts
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the flowchart of the proposed algorithm, illustrating the step-by-step operation of the
wandering detection model. The rest of this paper is organized as follows. Section 2
introduces materials and methods, i.e., the wavelet transform. In Section 3, a case study
is used to illustrate the application of the proposed method. Section 4 incorporates the
results, including the evaluation metrics. Finally, the conclusions and future directions are
presented in Section 5.
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2. Materials and Methods

Based on prior research, a significant hallmark of wandering in patients with cognitive
impairments is the disruption in spatial and temporal orientation [50]. Consequently, ana-
lyzing their motion behavior can yield valuable insights for devising strategies to improve
their quality of life and provide assistance in emergency situations. Signal processing
is the science of obtaining additional information contained in the signal by applying a
mathematical transformation that is unavailable in the raw signal [52]. Therefore, pro-
cessing the movement signals of the patients with Alzheimer’s disease can provide useful
information to extract patterns from their mobility behaviors [39]. However, one of the
most significant challenges in signal processing is selecting the appropriate mathematical
transformation based on the signal properties and the desired features to be extracted [53].
Therefore, careful consideration of the signal properties and studying the characteristics of
mathematical functions of signal processing are essential in selecting the best approach to
extract the required information [53].

From a signal processing perspective, human movement data can be viewed as a
signal with three dimensions, X, Y, and time (t), which can be plotted in a three-dimensional
and orthogonal space of XYt. Motion signals are inherently non-stationary because their
characteristics, such as frequency, amplitude, and phase, undergo constant changes over
time as the movement progresses [54]. Therefore, selecting a mathematical transformation
that is compatible with the non-stationary nature of these signals is crucial, particularly
when it comes to wandering detection. This is because detecting wandering requires
capturing all changes in frequency components, which can only be accomplished through
appropriate signal processing techniques.
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The wavelet transform is an exceptionally powerful tool for measuring the frequency–time
content of non-stationary signals, making it a well-suited choice for capturing signal
variations in both time and frequency domains simultaneously [55]. Moreover, the wavelet
transform is particularly adept at identifying transient features, which are frequently
encountered during wandering [56]. It also enables the multi-resolution analysis of signals,
allowing for a detailed examination of the signal’s behavior across different scales [55,57].
On the other hand, one of the most significant attributes of the wavelet transform is its
resilience against noise and artifacts, which can be common in motion signals [58].

2.1. Wavelet Transform

Wavelet transformation is a mathematical tool that decomposes a signal into its con-
stituent frequency components, enabling the accurate analysis of the signal’s characteristics
over time through pointwise multiplication of the signal and the wavelet function [59].
Wavelet transformation’s high accuracy and precise mathematical foundation make it one
of the most powerful tools in sensitive and critical areas of signal processing [59]. The
wavelet transform of the function x(t), (wt(s,τ)) is defined using Equation (1) [60–62]:

wt(s, τ) =
1√
s

∞∫
−∞

x(t)ψ*(
t− τ

s
)dt (1)

where s is the scale factor of the wavelet, τ is the wavelet shift, t is the time, ψ is the
mother wavelet function, and * denotes the complex conjugate. The wavelet transform
is a powerful signal processing tool that offers high resolution in both the frequency and
time domains [60,61]. It can accurately determine the frequencies present in a signal and
their occurrence times through various wavelet transforms, such as the continuous wavelet
transform (CWT), the discrete wavelet transform (DWT), the fast wavelet transform (FWT),
wavelet packet decomposition (WPD), and the stationary wavelet transform (SWT) [63].

In this study, due to the discrete structure of the locational data, the discrete wavelet
transform (DWT) (Figure 3) was utilized for analysis. The DWT has become increasingly
popular in recent years due to its ability to analyze non-stationary signals, such as motion
data [64]. It decomposes a signal into a series of sets, each representing the signal’s evolution
in a corresponding frequency band, as described by wavelet coefficients [65]. This approach
makes the DWT well suited for analyzing signals with varying frequencies over time [64].
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The DWT involves filtering the signal to be analyzed through a sequence of low-
pass (LP) and high-pass (HP) filters with varying cutoff frequencies at different scales,
resulting in a filter bank that decomposes the signal into different sub-bands [66]. The
lower frequency sub-bands provide good frequency resolution but have coarser time
resolution compared to the higher-frequency sub-bands [66].

The output of the high-pass filter corresponds to the high-frequency details of the
signal, represented by the detail coefficients. In contrast, the output of the low-pass
filter contains low-frequency information and the identity characteristics of the signal,
represented by the approximation coefficients [66]. These coefficients follow the original
shape of the signal, enabling the reconstruction of the original signal with minimal loss of
information [66].

One of the limitations of the DWT is that it ignores the high-frequency details of the
signal or the part that passes through the high-pass filter in each step, as represented by
the detail coefficients in Figure 3 [63]. However, in applications such as wandering pattern
detection, all details of the motion signals are important. To address this issue, the wavelet
packet decomposition (WPD) method has been developed, as shown in Figure 4. In WPD,
the detail part is also decomposed into smaller sub-bands using filters, allowing for a more
detailed analysis of the high-frequency components of the signal [67]. The number of WPD
levels depends on the frequency characteristics of the signal being analyzed, as shown in
Figure 5 [68].
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Wavelet transformation is a method of extracting frequency and time information
from a signal by measuring the similarity between the signal’s frequency content and a
wavelet function at different scales [59]. The mother wavelets used in this transformation
include Haar, Daubechies, Symlet, Coiflet, Gaussian, Morlet, Biorthogonal, Mexican hat,
and Shannon wavelets [71]. Each of these wavelets is best suited for specific applications
in signal processing, as they have different shapes, compressions, and smoothness levels
(Figure 6) [72]. Wavelets also have subgroups based on the number of vanishing moments
and the level of decomposition [59]. As the number of vanishing moments increases, the
wavelet’s degree of approximation and smoothness also increase. Additionally, increasing
the decomposition level leads to an increase in the number of samples used to express the
wavelet [59].
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The proper selection of an appropriate wavelet function with the number of vanishing
moments and level of decomposition is a crucial aspect in wavelet signal processing [59].
The selection of the mother wavelet function is performed based on the type of time series
and the specific features to be extracted from the signal using quantitative and qualitative
methods [74]. In the qualitative method, the best mother wavelet function is selected
based on its ability to fit the geometric shape of the time series curve, resulting in good
mapping [74]. On the other hand, the quantitative method involves separating orthogonal
wave functions that can be reconstructed from their decomposition coefficients. Then, the
correlation of the mother wavelet functions with the processed signal is analyzed to identify
the optimal wavelet function [74].

2.2. Evaluation Metrics

Evaluating the performance of an algorithm is a crucial aspect of research. In this study,
several metrics have been utilized to evaluate the performance of the developed algorithm,
including overall accuracy, precision, specificity, sensitivity (recall), and F-score. The overall
accuracy quantifies the algorithm’s ability to correctly classify instances across all classes,
providing an overarching measure of its general performance. Precision, specificity, and
sensitivity (recall) metrics delve deeper into specific aspects of classification. Precision
assesses the algorithm’s ability to minimize false-positive errors, specificity evaluates
its capacity to correctly identify negative instances, and sensitivity (recall) gauges its
effectiveness in capturing positive instances. The F-score is a harmonic mean of precision
and sensitivity, offering a unified performance measure that is robust to imbalanced data.
These metrics were calculated based on Equations (2)–(6), as described in [75].

accuracy =
TP + TN

P + N
(2)
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precision =
TP

TP + FP
(3)

specificity =
TN
N

(4)

recall =
TP
P

(5)

F− score =
2 ∗ precision ∗ recall

precision + recall
(6)

The terms TP, TN, FP, FN, P, and N are used to refer to the number of true-positive,
true-negative, false-positive, false-negative, positive, and negative samples, respectively.
True positives are the cases where the model correctly predicted the positive class. True
negatives are the cases where the model correctly predicted the negative class. However,
false negatives are the cases where the model predicted the negative class, but the actual
class is positive, and false positives are the cases where the model predicted the positive
class, but the actual class is negative. Furthermore, positives and negatives indicate the
total number of positive and negative cases, respectively. These terms are often used to
construct a confusion matrix, which is a tabular representation of the model’s predictions
against the actual truth. These terms are represented in the confusion matrix illustrated
in Table 1.

Table 1. The confusion matrix, shown with totals for positive and negative instances [75].

Predicted Class

Actual class

Yes No Total

Yes TP FN P

No FP TN N

Total P’ N’ P + N

Overall, the evaluation metrics utilized in this study provide a comprehensive assess-
ment of the developed algorithm’s performance. The obtained results will be crucial in
determining the effectiveness of the algorithm and its potential for real-world applications.

3. Implementation and Case Study

In this study, the modeling and evaluation of the wandering detection algorithm
were conducted with the trajectory tracking method and movement data of the patients.
However, the difficulty in obtaining real-world data from patients, due to privacy con-
cerns and legal restrictions, posed a significant challenge. To overcome this issue, the
Geolife (https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-
dataset-user-guide/ (accessed on 10 September 2023)) open-source dataset [76–78] was
utilized, which was provided by Microsoft Research Asia over a period of five years (April
2007–August 2012) with a sampling rate of 1–5 s. The dataset covers over 30 cities in China,
as well as some cities in the United States and Europe, and has been used extensively
in mobility pattern mining research, such as wandering pattern detection. This dataset
includes spatial–temporal information for 182 individuals, with each data file containing
details about an individual’s geographic coordinates at distinct dates and times (as depicted
in Table 2).

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
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Table 2. An illustrative instance of the data contained within a data file in the Geolife dataset.

Person ID Latitude (DD) Longitude (DD) Altitude (ft) Date Time

010

42.018427 123.50619 248 4 August 2007

42.018712 123.506153 246 4 August 2007

42.018998 123.50611 246 4 August 2007

. . .

The Geolife open-source dataset contains a total of 69 files with an attached file
containing individual transportation mode information (walking, cycling, bus, car, subway,
train, plane, boat, running, and motorcycle). Table 3 displays a segment of the data
contained in the attached file, illustrating an individual’s transportation mode data. Each
row corresponds to a specific date and time interval. The “Transportation Mode” column
indicates the mode of transportation associated with the individual’s recorded location
information during each recorded instance. As the focus of this study was to identify
wandering patterns of patients, the data labeled as “walking” were extracted for each
individual, and evaluations were performed on this subset of the dataset.

Table 3. A section of the information contained in one of the attached files reveals the transportation
mode details.

Person ID Start Date Start Time End Date End Time Transportation Mode

010

26 June 2007 11:32:29 26 June 2007 11:40:29 bus

28 March 2008 14:52:54 28 March 2008 15:59:59 train

31 March 2008 16:00:08 31 March 2008 16:09:01 taxi

1 April 2008 01:00:22 1 April 2008 01:08:13 walk

18 June 2008 04:46:10 18 June 2008 04:54:59 subway

1 August 2008 05:20:07 1 August 2008 07:03:51 airplane

27 September 2008 11:42:13 27 September 2008 12:29:29 car

. . .

The first step in the modeling phase was to pre-process the dataset. It was crucial
to ensure that the overall shape of the raw data’s movement path remained unaltered,
regardless of any samples added or removed. The first pre-processing phase involved
segmenting the trajectories into episodes, each comprising both locomotion and non-
locomotion phases. Each locomotion phase consisted of a sequential set of spatio-temporal
data. A criterion of over 60 s between two consecutive data points was considered, allowing
to distinguish between the locomotion and non-locomotion phases in each trajectory [79].

The precision of spatio-temporal data can be compromised by sensor noise and envi-
ronmental factors, resulting in some deviant points when plotted as trajectories over a time
series. To improve the accuracy of wandering detection and eliminate the impact of these
outliers, the second stage of data pre-processing involved eliminating them from the data
list. The approach involved using the significant changes in instantaneous velocity of the
patient in each position as an index to identify erroneous points [79]. Initially, a moving
window with a size of five points was selected, and for each point, two points before and
after were included in the window. Subsequently, if the instantaneous velocity at any point
exceeded the threshold limit value (four times the average instantaneous velocity of the
points in the window, excluding the point itself), that point was recognized as an outlier
and removed from the data list. Figure 7 provides an example of a corrected path after the
removal of the outliers.



ISPRS Int. J. Geo-Inf. 2023, 12, 379 11 of 25

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 11 of 26 
 

 

The first step in the modeling phase was to pre-process the dataset. It was crucial to 
ensure that the overall shape of the raw data’s movement path remained unaltered, re-
gardless of any samples added or removed. The first pre-processing phase involved seg-
menting the trajectories into episodes, each comprising both locomotion and non-locomo-
tion phases. Each locomotion phase consisted of a sequential set of spatio-temporal data. 
A criterion of over 60 s between two consecutive data points was considered, allowing to 
distinguish between the locomotion and non-locomotion phases in each trajectory [79]. 

The precision of spatio-temporal data can be compromised by sensor noise and en-
vironmental factors, resulting in some deviant points when plotted as trajectories over a 
time series. To improve the accuracy of wandering detection and eliminate the impact of 
these outliers, the second stage of data pre-processing involved eliminating them from the 
data list. The approach involved using the significant changes in instantaneous velocity of 
the patient in each position as an index to identify erroneous points [79]. Initially, a mov-
ing window with a size of five points was selected, and for each point, two points before 
and after were included in the window. Subsequently, if the instantaneous velocity at any 
point exceeded the threshold limit value (four times the average instantaneous velocity of 
the points in the window, excluding the point itself), that point was recognized as an out-
lier and removed from the data list. Figure 7 provides an example of a corrected path after 
the removal of the outliers. 

X
450,200 450,250 450,300 450,350

4,425,200

4,425,220

4,425,240

4,425,260

4,425,280

4,425,300

4,425,320

4,425,340

Y

Main path
Deviated path
Corrected path

Outlier

 
Figure 7. Cleaned trajectory by removing outliers [51]. 

In order to ensure uniformity and enhance the accuracy of the analysis and modeling 
process, it was essential to address the variable sample rates present in the Geolife dataset, 
ranging from 1 to 5 s. Therefore, as a subsequent step in the pre-processing phase, the 
sample rates within each segment were adjusted through sample rate conversion using 
the upsampling method. This conversion procedure served to increase the sample rate to 
a consistent one sample per second throughout the dataset using interpolation. By harmo-
nizing the sample rates, the data were standardized, facilitating a more precise and relia-
ble analysis during subsequent stages of the research. 

According to the research conducted by Martino-Saltzman [14], it has been identified 
that lapping and pacing are the most prevalent wandering patterns. Lapping is character-
ized by successive rotational movements, while pacing involves continuous back and 
forth motion between two points or positions (Figure 1). To ensure an accurate motion 
signal analysis and enable the identification of specific wandering features, a comprehen-
sive set of motion paths was plotted and meticulously examined. Data files that encom-

Figure 7. Cleaned trajectory by removing outliers [51].

In order to ensure uniformity and enhance the accuracy of the analysis and modeling
process, it was essential to address the variable sample rates present in the Geolife dataset,
ranging from 1 to 5 s. Therefore, as a subsequent step in the pre-processing phase, the
sample rates within each segment were adjusted through sample rate conversion using
the upsampling method. This conversion procedure served to increase the sample rate
to a consistent one sample per second throughout the dataset using interpolation. By
harmonizing the sample rates, the data were standardized, facilitating a more precise and
reliable analysis during subsequent stages of the research.

According to the research conducted by Martino-Saltzman [14], it has been identified
that lapping and pacing are the most prevalent wandering patterns. Lapping is character-
ized by successive rotational movements, while pacing involves continuous back and forth
motion between two points or positions (Figure 1). To ensure an accurate motion signal
analysis and enable the identification of specific wandering features, a comprehensive
set of motion paths was plotted and meticulously examined. Data files that encompass a
significant volume of trajectories, wherein movement paths showcasing visual patterns
reminiscent of wandering (lapping and pacing) are evident, were identified as abnormal
trajectories and partitioned for the modeling and assessment of the proposed algorithm.

In order to ensure that the mobility behavior during each separated trajectory is
unintentional, a thorough analysis was conducted on abnormal trajectories. Specifically,
the average speed of movement was considered as a criterion to distinguish intentional
from unintentional mobility. Given that cognitive impairment primarily affects the elderly
population, it is crucial to ensure that the speed of movement during wandering does
not significantly deviate from the average walking speed of older individuals. Any sub-
stantial deviation would indicate intentional movement similar to wandering rather than
wandering itself.

To further validate the unintentionality of the wandering behavior, an analysis of the
trajectory was performed by visualizing it on the global map provided by OpenStreetMap
(OSM) (https://www.openstreetmap.org (accessed on 10 September 2023)), considering
the person’s surrounding environment. Out of the available 69 data files, which included
corresponding transportation label files, a subset of 10 data files was carefully chosen
based on their validity under the aforementioned conditions for algorithm modeling and
evaluation purposes.

In order to analyze signal properties during wandering by applying WPD, after fol-
lowing the required pre-processing steps, in the first place, motion signals were transferred

https://www.openstreetmap.org
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from the three-dimensional XYt space to two orthogonal two-dimensional spaces, Xt and
Yt. This transformation facilitates a more streamlined and effective analysis and processing
of the motion signals. When implementing the wavelet transform, the selection of an
appropriate mother wavelet function becomes crucial. Factors such as the desired number
of vanishing moments and the desired decomposition level need to be meticulously taken
into account in order to determine the optimal wavelet function. The wavelet function
assumes a significant role in quantifying the similarity between the signal spectrum and
the wavelet function across different scales. By carefully selecting the most suitable wavelet
function, the algorithm can accurately capture and examine the motion patterns across
diverse scales, thereby enabling efficient processing of the motion signals.

In this study, the selection of the most appropriate mother wavelet function and the
application of wavelet packet decomposition (WPD) for extracting wandering features from
motion signals were carried out using coding and the Wavelet Toolbox in the MATLAB
software. It provides a comprehensive library of wavelet functions, allowing to choose from
a variety of wavelet bases suitable for the specific signal processing task. By examining
the behavior and characteristics of the motion signals under study, as well as the desired
features for extraction, and through qualitative testing of various mother wavelets with
different orders and levels of decomposition, the fourth-order Coiflet wavelet function was
determined to be the most suitable choice.

Once the mother wavelet function was selected, WPD was applied to the signal. WPD
decomposed the motion signal into its constituent frequency components across different
time scales. The decomposed signal was divided into sub-bands, each representing a
specific range of frequencies. It provided a time–frequency representation of the motion
signal, enabling the visualization of how different frequency components evolve over time.
By analyzing the variations in the wavelet coefficients of various sub-bands obtained from
the decomposition during wandering and normal motion, wandering features of the motion
signal were extracted. Figures 8 and 9 depict two examples of real trajectory data exhibiting
wandering patterns from the Geolife dataset, along with the results of applying WPD.

In Figure 8a, the observed trajectory depicts a transition from a normal walking path
to a pacing pattern associated with wandering behavior. An examination of the wavelet
coefficients of sub-signals obtained through WPD reveals interesting insights. During the
normal walking phase, the wavelet coefficients of the sub-signal in both Xt and Yt exhibit
insignificance, oscillating around zero with a small amplitude. However, as the individual
enters the wandering phase, significant fluctuations occur, leading to prominent high and
low points in the wavelet coefficients (Figure 8b,c).

Similarly, Figure 9a illustrates a scenario where the person initially follows a normal
path, then deviates into a lapping wandering pattern, and eventually returns to their
normal path. During the normal path segment, the wavelet coefficients of the sub-signal in
both Xt and Yt exhibit insignificance, fluctuating around zero with a smaller amplitude.
However, when wandering occurs, the wavelet coefficients of the sub-signal experience
pronounced fluctuations, characterized by distinct peaks and troughs. Eventually, as the
person resumes their normal path, the wavelet coefficients fluctuate around zero, with a
smaller amplitude (Figure 9b,c).

The outcomes obtained from the application of WPD on various motion signals
revealed that when a person exhibits movement patterns resembling wandering, such
as circular or back-and-forth motions, distinct changes occur in the wavelet coefficients
of sub-signals, and they experience a dramatic fluctuation with peak and trough. These
variations were considered as crucial indicators for identifying the onset of wandering
using the algorithm. Given that changes in wavelet coefficients of the sub-signal appear
at the onset of wandering, to ensure that these changes were not due to intentional and
random movement, a wandering index was devised by considering the cumulative sum
of the wavelet coefficients during the last 10 s of the motion. If this index experiences a
significant increase, it signifies the initiation of wandering.



ISPRS Int. J. Geo-Inf. 2023, 12, 379 13 of 25ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 13 of 26 
 

 

0 5 10 15 20 25 30 35 40
−0.04

−0.02

0

0.02

0.04

0.06

0.08

Scaled window number

W
av

el
et

 c
oe

ffi
ci

en
t

Scaled window number

W
av

el
et

 c
oe

ffi
ci

en
t

0 5 10 15 20 25 30 35 40
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(a)

(b)

(c)

X
440,600 441,000 441,400 441,800 442,200

4,425,200

4,425,250

4,425,300

4,425,350

4,425,400

4,425,450

4,425,500

4,425,550

Y

 
Figure 8. The result of applying WPD to the real motion signal: (a) real motion signal with pacing 
pattern; (b) changes in wavelet coefficients in Xt; (c) changes in wavelet coefficients in Yt (red cir-
cle: onset of wandering). 
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The proposed algorithm for wandering detection operates as follows: upon receiving
a motion signal, it initially undergoes pre-processing steps encompassing episode segmen-
tation, data cleaning, and sample rate conversion. Subsequently, the pre-processed signal
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undergoes processing through wavelet packet decomposition. WPD decomposes the mo-
tion signal into various sub-signals at multiple scales by recursively applying high-pass and
low-pass filters to capture different frequency components. Then, it monitors the wavelet
coefficients’ changes across different decomposition levels and sub-bands. If the coefficients
of the sub-signal undergo significant changes according to the predetermined threshold,
characterized by peaks and troughs, the algorithm detects the initiation of wandering.

An efficiency analysis was undertaken to assess the performance of the proposed
algorithm, focusing on the evaluation of time complexity across each distinctive stage.
The algorithm’s workflow is bifurcated into two fundamental steps: pre-processing and
processing of motion signals. In the pre-processing phase, encompassing tasks such as
episode segmentation, data cleaning, and sample rate conversion, the computational
complexity for each of these operations adheres to a time complexity of O(n), where “n”
symbolizes the number of samples within the signal. This signifies that the processing time
scales linearly with the volume of data. Furthermore, the subsequent processing phase
involves the application of wavelet packet decomposition. The computational complexity
linked with this phase aligns with a time complexity of O(2n), with “n” signifying the
number of decomposition levels. The exponential nature of this complexity indicates that
the processing time increases significantly with higher levels of signal decomposition.
The overarching computational complexity emerges as O(2n), primarily influenced by the
wavelet packet decomposition stage. This comprehensive efficiency analysis underscores
the intricate interplay of the algorithm’s stages, emphasizing their computational demands
and revealing the core factors governing their execution times.

4. Results and Discussion

The evaluation of the proposed algorithm is a crucial aspect of any research study,
as it provides valuable insights into its success and effectiveness. In this article, several
performance evaluation measures were employed to assess the algorithm’s performance,
including accuracy, precision, specificity, recall, and F-score [75]. These measures collec-
tively validate the algorithm’s efficacy in accurately detecting wandering behaviors within
the tested dataset and distinguishing between normal movement paths and those exhibit-
ing wandering patterns. To evaluate the algorithm, a total of 3702 motion signals from
10 individuals in the Geolife open-source dataset were selected as test data. These signals
were subjected to pre-processing and divided into two categories: 2663 normal movement
paths and 1039 movement signals exhibiting wandering patterns.

Subsequently, the performance of the proposed algorithm in accurately classifying the
test signals was meticulously analyzed by examining the changes in the sum of wavelet
coefficients obtained through the application of WPD using the fourth-order Coiflet mother
wavelet. The overall performance evaluation measures of the algorithm, calculated based
on the contingency table data (Table 4), are reported in Table 5.

Table 4. The confusion matrix resulting from the evaluation of the proposed algorithm.

Actual Class/Predicted Class Normal Wandering

Normal 2212 451

Wandering 176 863

Table 5. Evaluation measures of the proposed algorithm.

Accuracy
(%)

Precision
(%)

Specificity
(%)

Recall
(%)

F-Score
(%)

83.063 92.629 83.060 83.064 87.586

The proposed algorithm exhibited an accuracy rate of 83.063%, signifying its profi-
ciency in accurately classifying various motion paths. Notably, the specificity and recall
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values were measured at 83.060% and 83.062%, respectively, underscoring the algorithm’s
consistent performance in correctly identifying normal and wandering paths. Moreover,
the algorithm’s high level of precision (92.629%) indicates its ability to discern between
different types of movement paths with minimal instances of incorrect classification by
the algorithm.

The analysis of wavelet coefficients resulting from the application of WPD with the
Coiflet mother wavelet function on the investigated motion signals revealed distinctive
patterns. During normal motion, the calculated coefficients exhibited insignificance, fluc-
tuating around zero with a smaller amplitude in either the Xt or Yt dimension, or both
dimensions. However, as wandering commenced, these coefficients underwent pronounced
fluctuations, characterized by peaks and troughs. This discernible behavior serves as a
reliable indicator for detecting the initiation of wandering, particularly in lapping and
pacing patterns. The findings attest to the efficacy of the proposed algorithm in accurately
identifying the onset of wandering behaviors based on the observed changes in wavelet co-
efficients. Consistent with these findings, Figure 10 visually demonstrates the outcomes of
applying WPD to an additional set of real motion signals, further substantiating the claim.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 26 
 

 

(a)

(b)

(c)

X
450,320 450,340 450,360 450,380 450,400

4,424,920

4,424,940

4,424,960

4,424,980

4,425,000

4,425,020

4,425,040

Y

0 5 10 15 20 25
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Scaled window number

W
av

el
et

 c
oe

ffi
ci

en
t

Scaled window number
0 5 10 15 20 25

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

W
av

el
et

 co
ef

fic
ien

t
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To assess the impact of the pre-processing stage on the performance of the proposed
wandering detection algorithm, an ablation study was conducted by selectively mitigating
the data cleaning stage. This ablation scenario aimed to evaluate the significance of outlier
removal in enhancing the algorithm’s robustness and accuracy in detecting wandering
behaviors. The results of this study, which are reported in Tables 6 and 7, provide insights
into the pivotal role of outlier removal in the algorithm’s overall performance. As bolded
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in Table 7, the analysis of the elements within the confusion matrix and evaluation metrics
demonstrates that the omission of the data cleaning stage has led to a decrease in overall
accuracy, precision, recall, and F-score, while specificity has shown an increase. This
implies that the presence of noise in the data significantly affects the algorithm’s overall
performance in correctly identifying the type of motion signals (accuracy and F-score have
markedly decreased). Furthermore, this omission has resulted in the algorithm incorrectly
identifying a considerable number of normal motion signals as having wandering patterns
(recall has undergone a noticeable decline). Consequently, the absence of this stage has
somewhat mitigated the occurrence where signals with genuine wandering patterns were
erroneously categorized as normal motion signals (specificity has slightly increased).

Table 6. The confusion matrix resulting from the ablation study of the outlier removal on the proposed
algorithm’s performance.

Actual Class/Predicted Class Normal Wandering

Normal 1938 725

Wandering 165 874

Table 7. Evaluation measures of the proposed algorithm and the ablation study of the outlier removal.

Accuracy
(%)

Precision
(%)

Specificity
(%)

Recall
(%)

F-Score
(%)

Proposed algorithm 83.063 92.629 83.060 83.064 87.586

Ablation study of the data cleaning 75.95 92.15 84.11 72.77 81.32

Due to the progressive deterioration in spatio-temporal memory, individuals affected
by Alzheimer’s disease and dementia commonly exhibit heightened instability in their
daily motion behaviors. Consequently, algorithms need to accurately identify wandering
based on their current motion behavior without being compromised by their previous
behaviors. This ensures that the algorithm’s performance remains unaffected when travers-
ing any new path. Numerous wandering detection algorithms developed in previous
studies [17,19,25–27,29,32–35,37–42], including machine-learning-based methods and next
location prediction algorithms, rely on the patient’s historical motion behaviors. However,
there exists a potential disruption in the algorithm’s performance when confronted with
new behaviors that contradict the historical patterns.

Furthermore, an ideal wandering detection algorithm should be capable of operating
affectively with minimal information, ensuring robust performance even in scenarios where
additional data are not accessible. Some previous algorithms rely on additional data, such
as historical movement paths, contextual information, maps, and physiological and inertial
sensor data. Nevertheless, it is important to acknowledge that although the integration of
the aforementioned information with locational information may improve the precision
of wandering detection, it can present challenges in cases where sensor performance
deficiencies during data collection not only compromise data accuracy but also disrupt the
functionality of the algorithm.

The proposed algorithm presented in this study addresses these challenges by detect-
ing wandering solely based on the locational information of the patient through the current
trajectory. This is an advantage over previous algorithms, as it allows for real-time detec-
tion of wandering behavior without relying on extensive auxiliary data. Furthermore, the
strength of the developed algorithm for wandering detection lies in its compatibility with
unstable motion behaviors exhibited by cognitively impaired patients. Table 8 discusses the
types of sensors utilized in previous studies and the proposed algorithms’ compatibility
with the instability in the motion behaviors of the patients. A comparison between them
and the algorithm in this study can be made from this perspective.
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Table 8. Algorithms developed for wandering detection.

Year Sensor Algorithm Evaluation Compatibility with
the Instability

[16] 2010
An ultra-wideband sensor

network using
wireless transponders

Path tortuosity measurement using fractal dimension
Movement path tortuosity was significantly and

negatively correlated with cognitive status as
measured by the Mini Mental State Examination

Yes

[17] 2011 GPS Detection and classification of wandering patterns using
traveling time between two known locations - No

[18] 2012 GPS
Wandering behavior detection method called Ө_WD for

detecting loop-like traces using sharp changes in
vector angle

AUC > 0.99, detection rate 90% at the false alarm rate
of less than 5% Yes

[19] 2019 GPS
Optimal path planning, POF-based navigation,

wandering detection, and remote route tracking with A*
algorithm which introduced the θ_WD approach

Accuracy (91.7%) No

[20] 2015 GPS
Wandering detection technique based on the analysis of
randomness by counting the number of Eulerian cycles

and their lengths
- Yes

[21] 2015 GPS

Wandering
detection by calculating the number of nodes and short

loops in sub-graphs with algorithms such as
Schwarcfiter and Lauer (JGraph from Java Library), Java

Matrix Package (JAMA), and proximity matrix of
trajectory nodes

- Yes

[23] 2015 GPS
Wandering detection based on using grid network and
centrality measure of the nodes, as well as estimating

the path efficiency
- Yes

[24] 2016

Indoor: Ubisense, Inc.
Ultra-wideband (UWB)

radio research pack with
wrist-worn transponders

and 4 wall-mounted
sensors. Outdoor: GPS

Wandering pattern detection based on sub-path
intersections, number of consecutive loops in the path,

and area enclosed within the loops

Accuracy (90%), recall (direct 94%, random 92%,
lapping 88%, and pacing 86%), and precision (direct

98%, random 85%, lapping 90%, and pacing 88%)
Yes

[25] 2010 GPS Real-time deviation or anomaly detection with Box
trajectory; movement behavior learning Precision (90%) and recall (95%) No
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Table 8. Cont.

Year Sensor Algorithm Evaluation Compatibility with
the Instability

[26] 2011 GPS
State predictors with confidence counter (CC), Adaptive

Confidence Estimation, movement behavior learning,
next location prediction, and anomaly detection

Accuracy (88%) No

[27] 2014 RFID Movement pattern detection, machine learning, and ad
hoc approaches

RF: sensitivity (92.3%), specificity (92.3%), precision
(92.2%), recall (92.3%), and F1 measure (92.2%)

Deterministic algorithm:
sensitivity (98.2%), specificity (98.1%), precision
(98.2%), recall (98.2%), and F1 measure (98.2%)

No

[29] 2007 RFID Movement pattern detection using integrated
circuit (IC) tags - No

[31] 2015 Wearable inertial monitor
(Opal) from APDM (Inc.) Wandering pattern detection using inertial sensors Sensitivity (83.44%), latency at least 40 and 350 times

faster than others Yes

[32] 2018 GPS and accelerometer Use tensorflow as a machine learning tool for fall
detection and wandering detection by geofence strategy - No

[33] 2019 Accelerometer, gyroscope,
and GPS

Fall detection using machine learning techniques and
wandering detection by geofence strategy Theoretical accuracy (100%) No

[34] 2018 GPS A data-mining-based approach to construct a
personalized safe geofence - No

[35] 2018

Heart rate, blood pressure
sensors, kinects, and

wireless spatial inertial and
RFID sensors

Wandering prediction and identification with trajectory
tracking techniques and machine learning algorithms,

such as deterministic tree-based algorithms
- No

[36] 2023 RFID and wearable
biosensors

Real-time monitoring of mental stress, depression,
and wandering detection of elderly using a localization

system called Sirit RFID robust reader
- Yes

[37,38] 2020 IoT sensors
Wandering detection and prediction using internet of

things (IOT), Long-Short Term Memory (LSTM), neural
network, and the Gray model

RSME for the next day and the next week: 63.39%
and 54.86% No

[39] 2021 -

Two time series techniques, the autocorrelation function
and the partial autocorrelation function, used in

conjunction with the machine learning algorithms, were
evaluated to classify wandering patterns

Accuracy greater than 90% No
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Table 8. Cont.

Year Sensor Algorithm Evaluation Compatibility with
the Instability

[40] 2021 Off-the-shelf Wi-Fi devices
An LSTM-based deep classification method for

differentiating the
wandering-caused Wi-Fi signal change from the others

Accuracy (92.86%), precision (96.18%), recall (96.34%),
and F1 score (96.19%) No

[41] 2022 GPS
Wandering detection based on determining frequent

locations between which movement occurs and a step
that transforms GPS data into geohash sequences

AUC = 0.99 No

[42] 2022 Non-intrusive ultrasonic
sensors

Movement pattern identification using the integration of
the proposed CNN with the IoT architecture F1 score (75%), recall (60%), and precision (100%) No

[43] 2020 Smartphone-embedded
sensors

Walking pattern recognition using PDR method
by multi-head

convolutional neural networks

75th
percentile localization accuracy of the three scenarios

is 1.06 m,
1.08 m, and 1.22 m, respectively

Yes

[44] 2022 Smartphone

Wandering detection with 2 modules:
1. Module with knowledge: using similarity between

real path and ideal path
2. Module without knowledge: using the morphology of

the path and the θ_WD approach

The accuracy of the wandering detection algorithm
(96%) and the user experience (questionnaire) No

[45] 2023
Location detection algorithm has been proposed for

wandering pattern identification based upon frequency
of visit, navigation, geofences, and movement patterns

Geofence-based algorithm (95% detection rate, 95%
accuracy, less than 3% false alarm rate, and less than 1

ms latency), navigation-based algorithm (85%
detection rate, 95% accuracy, less than 2% false alarm

rate, and less than 10 s latency), and
movement-pattern-based algorithm (90% detection

rate, 90% accuracy, 5% false alarm rate, and 12 s
latency).

No

[51] 2023 GPS Wandering detection using motion signal processing
with Fourier transform

Accuracy (96.38%), precision (94.89%), specificity
(96.36%), recall (96.36%), and F-score (95.58%) Yes

Proposed
algorithm in this

paper
2023 GPS Wandering detection using motion signal processing

with wavelet packet decomposition transform
Accuracy (83.06%), precision (92.62%), specificity

(83.06%), recall (83.06%), and F-score (87.58%) Yes
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However, it is important to note that the algorithm only identifies the moment of
wandering onset and does not offer insights into the duration of the wandering episode.
To mitigate misdiagnosis of any intentional movements resembling wandering patterns
as the initiation of wandering, the algorithm utilizes the cumulative sum of wavelet coef-
ficients during the last 10 s of movement as a wandering indicator. While the algorithm
demonstrates successful performance in detecting wandering behavior, its efficiency may
be compromised if wandering occurs in atypical patterns beyond the common lapping and
pacing behaviors.

5. Conclusions and Future Directions

The projected increase in Alzheimer’s disease and dementia cases due to the aging
population highlights the importance of addressing symptoms such as wandering. Wan-
dering poses significant risks, including loss and fatality, making its detection crucial in
ensuring patient safety. The timely detection of wandering and the provision of assistance
in emergency situations play a crucial role in averting irreparable incidents, as previously
highlighted. Furthermore, given that the occurrence of wandering serves as a significant
biomarker for disease progression in individuals with cognitive impairments, an increase
in wandering incidents among those with mild cognitive impairment signifies a progres-
sion towards severe Alzheimer’s disease. By accurately identifying wandering behaviors
through the precise modeling of mobility patterns, the algorithm proposed here offers a
powerful tool for timely interventions and tailored caregiving strategies. The emphasis on
leveraging the inherent connection between movement and cognitive states underscores the
potential to delay disease progression and enhance the quality of life for affected individu-
als. This underscores the significance of the wandering detection models and the developed
algorithm in this study. Extensive research has shown that the most prominent signs of
wandering manifest in the way patients move. This provides an opportunity to extract and
model these patterns based on their mobility behaviors to develop robust algorithms and
methodologies for the accurate detection and monitoring of wandering episodes.

This study has made contributions to the field of wandering detection by devel-
oping a novel algorithm based on the wavelet packet decomposition (WPD) transform
for motion signal processing. By analyzing the variations in wavelet coefficients of the
sub-signals obtained from the application of WPD with the fourth-order Coiflet mother
wavelet function during both wandering and normal trajectories, valuable insights into
wandering behaviors were extracted from the frequency–time spectrum of motion signals.
This detailed multi-resolution analysis enables the identification and characterization of
wandering patterns.

One of the foremost challenges encountered in this research revolved around the
unavailability of authentic motion data from individuals afflicted with cognitive impair-
ment and Alzheimer’s disease. Preserving patient privacy, legal restrictions, and the
families’ reluctance to participate hindered the collection of real-world patient motion
data. Consequently, the proposed algorithm was rigorously evaluated using the Geolife
open-source dataset, which has been used for motion pattern mining in previous studies.
The obtained results demonstrate the algorithm’s acceptable performance, with accuracy
reaching 83.06%, precision achieving 92.62%, specificity measuring 83.06%, recall scoring
83.06%, and an overall F-score of 87.58%. These metrics provide concrete evidence of the
signal-processing-based algorithm’s effectiveness in detecting wandering behaviors, thus
validating the research hypothesis.

Like our previous study, the proposed algorithm possesses the distinctive advantage
of detecting wandering solely based on the patient’s positional information through the
current path, rendering additional data unnecessary. This inherent capability renders it
highly compatible with the heightened instability often witnessed in the mobility behaviors
of elderly individuals afflicted with cognitive impairment, which constitutes a significant
strength of this algorithm. On the other hand, one of the most notable advantages of signal
processing utilizing WPD in the proposed algorithm is its robustness against artifacts.
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A pivotal focus of this study has revolved around the identification of the prevailing
wandering patterns, namely lapping and pacing. It is worth mentioning that the algorithm’s
performance may be compromised in cases where wandering incidents manifest with
movement patterns that significantly diverge from these established patterns. It is essential
to emphasize that the proposed algorithm primarily focuses on detecting the initial onset
of wandering. Despite our previous research findings, no discernible indications of the
wandering period have been observed in the frequency–time spectrum of the motion signal.
Consequently, to leverage the reliability of the detection, the variations in the sum of
wavelet coefficients during the final 10 s of movement served as the wandering index. The
algorithm’s computational complexity, while challenging with O(2n), opens avenues for
the optimization and exploration of innovative approaches to enhance its feasibility and
real-world applicability.

In light of the research findings presented in this study, there are several promising
avenues for future investigations in the field of wandering management and detection in
individuals with cognitive impairments. Firstly, the exploration of dynamic adaptation
in wavelet packet decomposition, tailoring decomposition levels to match the signal’s
nuances, holds potential for optimizing computational resources without compromising ac-
curacy. Complementing this, delving into advanced feature selection and fusion techniques,
potentially incorporating machine learning, offers a pathway to enhancing the algorithm’s
precision and discriminatory power. Moreover, the concept of hybrid approaches presents
an intriguing avenue, where the amalgamation of distinct signal processing methods like
Fourier transform and wavelet packet decomposition could lead to an augmented perfor-
mance. A pragmatic focus on real-time implementation strategies is paramount, enabling
the algorithm to seamlessly operate on streaming data from wearable devices and empow-
ering timely interventions. Adding depth to its functionality, the integration of contextual
cues, such as environmental context and activity level, promises to enrich the algorithm’s
ability to differentiate between wandering and normal movement.
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