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Abstract: Road crack detection is one of the important issues in the field of traffic safety and urban
planning. Currently, road damage varies in type and scale, and often has different sizes and depths,
making the detection task more challenging. To address this problem, we propose a Cross-Attention-
guided Feature Alignment Network (CAFANet) for extracting and integrating multi-scale features of
road damage. Firstly, we use a dual-branch visual encoder model with the same structure but different
patch sizes (one large patch and one small patch) to extract multi-level damage features. We utilize a
Cross-Layer Interaction (CLI) module to establish interaction between the corresponding layers of
the two branches, combining their unique feature extraction capability and contextual understanding.
Secondly, we employ a Feature Alignment Block (FAB) to align the features from different levels or
branches in terms of semantics and spatial aspects, which significantly improves the CAFANet’s
perception of the damage regions, reduces background interference, and achieves more precise
detection and segmentation of damage. Finally, we adopt multi-layer convolutional segmentation
heads to obtain high-resolution feature maps. To validate the effectiveness of our approach, we
conduct experiments on the public CRACK500 dataset and compare it with other mainstream
methods. Experimental results demonstrate that CAFANet achieves excellent performance in road
crack detection tasks, which exhibits significant improvements in terms of F1 score and accuracy,
with an F1 score of 73.22% and an accuracy of 96.78%.

Keywords: road crack detection; multi-scale features; cross-layer interaction; feature alignment

1. Introduction

Roads are of vital importance to economic growth and development, offering sub-
stantial societal advantages. They enable mobility and connectivity, granting individuals
convenient access to employment opportunities, social services, healthcare, and educational
facilities [1]. Road infrastructure is an integral component of public assets. However, traffic
accidents can occur due to the gradual wear and deterioration of the road surface. This
can be attributed to various factors including location, traffic volume, weather conditions,
and construction materials. Many countries already account for 99% of their total road
mileage through road maintenance. Hence, Road Crack Detection (RCD) holds significant
importance in road infrastructure as it entails road damage identification and classifica-
tion [2–5]. Identifying roads that require maintenance to mitigate potential safety hazards
is of paramount importance for ensuring cost-effective road maintenance and enhancing
traffic safety. In recent years, numerous experts and scholars have devoted themselves to
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researching automatic RCD and have obtained promising research results. At present, au-
tomatic RCD research is roughly divided into three methods: traditional image processing
methods, machine learning methods, and deep learning methods.

In traditional methods, the detection of road damage regions typically relies on the
threshold-based method [6–8]. These algorithms employ different thresholds to quickly
identify the results in the input image. Using this method, one can easily spot road
damage, since it tends to absorb more light than other parts of the image, resulting in
darker areas. Nevertheless, in the presence of noise, pixels with lower intensity than the
damaged pixels can significantly compromise performance of overall detection. Having no
comprehensive understanding of global information makes these methods susceptible to
noise and heavily dependent on threshold selection. Other researchers have explored the
use of feature descriptors that are designed artificially to recognize damage in road images.
As an example, Gabor filters [9] and wavelet transforms [10] have been instrumental in
making remarkable advancements in detecting simple cracks. Despite these advancements,
challenges persist due to the complexity of road damage, which exhibits diverse topologies,
arbitrary shapes, and varying widths and can be mixed with other strong disturbances
such as oil spots, weeds, and stains on the road. As a result, the current performance of
these methods remains limited in accurately detecting and categorizing all types of road
damage effectively.

The machine learning method has seen significant progress and widespread adoption
in the realm of RCD. In order to detect cracks more accurately and efficiently, researchers
have explored a variety of approaches. For instance, an enhanced active contour model and
a greedy search-based Support Vector Machine (SVM) have been applied to study bridge
damage detection [11]. Ai [12] proposes another approach to calculate probability maps
that integrate neighborhood information at multiple scales using an SVM. The Probabilistic
Generation Model (PGM) and SVM probability maps are merged using a fusion algorithm,
enabling crack detection with greater accuracy than individual probability maps. Using
the random forest method, Prasanna et al. [13] classify multiple spatially adjusted visual
features. In contrast, these detection methods are constrained by their ability to only
identify learned cracks, making them less effective at detecting new or previously unseen
cracks. To address these limitations, CrackForest [14] is introduced, which uses a randomly
structured forest to detect cracks automatically. By meticulously choosing crack features
and comprehensively understanding their internal structure, this method proficiently
suppresses noise. Nevertheless, CrackForest does not account for different kinds of damage
in complex crack extraction scenarios. In traditional methods, cracks are often simulated
by manually setting color or texture features, but these features are not robust enough to
handle changes in diverse environments. Consequently, in the context of complex road
images, manually designed features demonstrate limited effectiveness in extracting cracks.
To enhance crack detection performance in such varying conditions, there is a need for
more adaptive and data-driven approaches that can automatically learn and generalize
features from the input data.

Recent theoretical progress reveals that deep learning can proficiently tackle intricate
problems by autonomously acquiring features at various hierarchical levels [15]. Deep
Convolutional Neural Networks (DCNNs) are known for their ability to extract rich hier-
archical features [16–21], and their end-to-end trainable framework of deep learning has
demonstrated remarkable advancements in pixel-level semantic segmentation tasks [22–24].
As a result, several crack detection methods leveraging deep learning, such as object de-
tection [25,26] and image block segmentation [27–29], have emerged. However, these
approximate methods lack the ability to capture intricate crack details at the pixel level,
resulting in imprecise categorization and assessment of crack types and severity levels in
subsequent stages. To tackle this issue, Huang et al. [30] propose an approach employing
the FCN to extract cracks at the pixel level. Nevertheless, this method fails to consider
that cracks of varying widths and topologies necessitate context information of different
sizes. In addition, it neglects to consider the different impacts of various crack features
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on crack detection, treating all features on the same level. There are other studies in the
literature [31,32] that use 3D crack detection networks based on DCNNs to detect pixel-
level cracks in 3D asphalt pavements. However, the uniform convolution kernels used
in the network’s convolutional layer may confuse the target and context of the analysis.
With the SegNet encoder–decoder architecture, Zou et al. [33] implement DeepCrack. They
combine the convolution features from both the encoder and decoder networks at the same
scale to achieve accurate pixel-level crack detection. However, the learning mechanisms
during the encoding–decoding stage of the SegNet network are relatively simplistic, and the
up-sampling in shallow layers does not entirely recover spatial information. Song et al. [34]
propose a crack segmentation network based on the DeepLabv3 [35] framework, which suc-
cessfully achieves accurate pixel-level segmentation of tunnel cracks. Despite the method’s
successful utilization of the Atrous Spatial Pyramid Pooling (ASPP) [36] module to capture
multi-scale information, it does not fully recognize the significance of the up-sampling
operation in improving detection results. Researchers are still working on robust pixel-level
crack detection in trainable DCNN models that incorporate rich semantic information,
although deep learning methods yield superior results compared to traditional methods.
Based on DCNNs, the crack detection methods mentioned above fail to properly classify
cracks and assess damage severity.

The utilization of deep learning features in these detection methods greatly enhances
the detection performance of RCD. However, they still face some significant issues to solve.
First, many types of road damage, such as cracks, potholes, broken shoulders, and roadside
facilities, exist. Each damage type possesses unique characteristics and manifestations,
making it difficult to learn effective multi-scale characteristics for achieving efficient RCD.
Second, road damage occurs in various sizes and shapes, highlighting the importance of
utilizing multiple feature maps with different resolutions to capture features at diverse
scales. Third, deep learning models need to have good generalization performance and
can be applied to images from different geographical regions, different road types, and
different lighting conditions, which requires the model not only to fit specific data sets but
also to have the ability to generalize to new situations.

Taking these issues into account, we propose a cross-attention-guided feature align-
ment network specifically designed for RCD. Firstly, the Cross-Layer Interaction (CLI)
module [37] is utilized to effectively capture multi-scale spatial information, enrich the
feature space, establish long-term dependencies between diverse channels, and refine fea-
ture extraction. This module enhances the information interaction and correlation among
multi-scale features, thereby improving the accuracy of feature fusion and effectively
addressing scale variations. Secondly, the obtained multi-scale features are fed into the
Feature Alignment Block (FAB) [38], which aids the network in better understanding the
semantic information in road images. This module enhances the focus on road damage
areas, reduces noise interference, improves the feature representation capability of small
targets, and achieves precise RCD. Lastly, the fused features are processed through the
segmentation detection module to generate the final segmentation results. In conclusion,
this research makes the following key contributions:

(1) By incorporating the CLI module into the backbone network, it promotes the
interaction between global and local information, thereby enhancing CAFANet’s ability to
express multi-scale features.

(2) The introduction of the FAB ensures the consistency in scale and semantics between
different levels or branches of features, improving CAFANet’s detection capability for
small targets.

(3) We extensively conduct experiments on the well-known CRACK500 dataset for
road crack detection, further validating the superiority of CAFANet.

There are four remaining sections in this paper: Section 2 provides an overview of
the network’s architecture, including the CLI module and the FAB, and explains how they
contribute to feature extraction and fusion. Section 3 describes the dataset and experimental
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settings, as well as provides comprehensive results. Section 4 delves into the generalization
of the experiments, while Section 5 summarizes this work.

2. Materials and Methods
2.1. Network Architecture

Road crack detection can be modeled as an image segmentation problem, aiming
to accurately separate the damaged areas from the background in road images. Given a
road image as input, the goal is to automatically segment the damaged regions from the
background using algorithms or models. The segmentation results are usually represented
by pixel-level segmentation masks, where pixels belonging to the damaged areas are
labeled as foreground, and background pixels are labeled as background. Adopting an
encoder–decoder structure is a common design for end-to-end segmentation networks.
The encoder is responsible for extracting high-level semantic features from the input
image, while the decoder, through step-wise up-sampling and feature fusion operations,
restores the features extracted by the encoder to the original image size and generates the
segmentation result. However, performing feature fusion in the decoder is a challenge, as
effectively integrating features of different resolutions and preserving detailed information
are crucial for accurate segmentation results. Additionally, due to the potential scale
variations in road damage regions, the network needs to be capable of adapting to different
scales to accurately segment damage of various sizes.

Based on the above idea, we propose a cross-attention-guided feature alignment net-
work specifically designed for road crack detection. Figure 1 illustrates the overall network
framework. To accurately detect road damage, we construct a multi-stage architectural
model consisting of two layers. In the feature extraction stage, we employ four feature
levels to extract rich features from the images, generating feature maps at different scales.
Each feature hierarchy comprises Multi-Scale Patch Embedding (MSPE) and Multi-Head
Convolutional self-Attention (MHCA) blocks to enhance feature representation. We utilize
the CLI module to establish interaction between different feature levels, attentively incor-
porating the two types of feature information. Subsequently, we fuse the extracted features
at different scales by using the FAB. Ultimately, we obtain the RCD result.
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Figure 1. Overview of the proposed CAFANet.

2.2. Cross-Layer Interaction

Road cracks often occur on complex backgrounds, such as road texture, changing
lighting conditions, shadows, and road markings. These background disturbances pose
difficulties for crack detection because they resemble background features and make ac-
curate distinction challenging. Moreover, road cracks exhibit different shapes (e.g., linear,
reticular, speckled) and sizes (ranging from a few millimeters to several meters). This
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diversity complicates the precise detection of cracks, necessitating the processing of crack
instances of various shapes and sizes. MSPE and MHCA blocks possess unique feature
extraction and context understanding abilities, capturing rich multi-scale feature informa-
tion. Simultaneously, using the CLI module to attentively focus on the extracted feature
information helps the proposed model better capture the contextual information of road
cracks, thereby enhancing CAFANet’s accuracy.

Feature Extraction. With an original image P of H ×W × 3 in size as input, we pass
it through encoder1 and encoder2 simultaneously for feature extraction. In encoder1,
we utilize a trunk block consisting of two 3× 3 convolutional layers with a stride of 2.
In the first convolutional layer, there are channels C1

2 , and in the second layer, there are
channels C1. A feature of size H

4 ×
W
4 ×C1 is generated as a result of this operation, with C1

representing the channel size in stage 1. After each convolutional operation, we apply batch
normalization [39] and activate the output using the Hardswish function [40]. We stack the
MSPE and MHCA blocks in each stage, ranging from stage 1 to stage 4. Figure 2 shows that
we first employ an MSPE block, which introduces coarse-grained and fine-grained visual
tokens at the same time. We employ overlapping patches in convolution operations to
achieve this. Specifically, we input a token map (i.e., 2D-reshaped output feature map) from
a previous stage into each subsequent stage. Through the convolutional patch embedding
layer, we can modify the stride and padding parameters to adjust the length of token
sequences. By employing varying patch sizes, it becomes viable to generate features of
identical dimensions (i.e., resolution). Consequently, we construct multiple layers with
different kernel sizes in parallel for the convolutional patches. As a result of encoder1
and encoder2’s multi-path structures, which have more embedding layers, we employ
depth-wise separable convolution in the MHCA block to reduce model parameters and
computational costs. In this convolution, the depth-wise convolution has a kernel size of
1× 1, and the point-wise convolution has a kernel size of 1× 1. After each convolutional
layer, we apply batch normalization. Additionally, the Hardswish activation function is
used. Next, we independently feed the token embedding features of different sizes into
each MHCA encoder. Finally, we utilize a depth-wise residual bottleneck block, which
consists of a 1× 1 convolution combined with the same channel size, a 3× 3 depth-wise
convolution, and a 1× 1 convolution coupled with a residual connection. After performing
the above operations, stage 1 to 4 in encoder1 respectively generate a map of features with
a size of 64× 64, 32× 32, 16× 16, and 8× 8 from the input images, with separation rates of
1
4 , 1

8 , 1
16 , and 1

32 . Furthermore, the four feature maps have 64, 128, 256, and 512 channels,
respectively. Similarly, the original image is also fed into encoder2, and the same feature
extraction process as in encoder1 is carried out. The four stages in encoder2 produce feature
maps with dimensions of 64× 64, 32× 32, 16× 16, and 8× 8, and the number of channels
is 128, 256, 512, and 1024. We represent the four feature maps in encoder1 as [P1, P2, P3, P4]
and denote the four feature maps in encoder2 as [P′1, P′2, P′3, P′4].
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Feature Interaction. Figure 3 shows the feature-crossing structure of the CLI module.
We cross-extract features obtained from the four stages of encoder1 and encoder 2 in a
one-to-one correspondence, that is, P1 and P′1, P2 and P′2, P3 and P′3, P4 and P′4. Here are the
specific operations involved in feature interaction: first, the input feature matrices with
shapes [B, C, H, W] and [B, 2C, H, W] are reshaped separately. This transformation converts
them from 4D tensors to 3D tensors, and we exchange their second and third sizes to obtain
tensors e and r. We simultaneously perform normalization and global averaging pooling
on the tensors e and r to obtain feature vectors of length 1, which are denoted as e_t and r_t.
We map e_t and r_t to the dimensions of each other and insert a dimension of length 1 on
the second dimension. We then concatenate r and e_t, e and r_t in the second dimension,
and subsequently feed the concatenated feature tensors into the transformer encoder for
their individual cross-attention calculation.
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As a result of the study of human visual function, the attention mechanism [41] is
initially applied to machine translation. This algorithm has been extensively used in
recognizing speech, images, and natural language over the years. By directing its attention
resources towards the target region, it focuses on gathering detailed information while
suppressing irrelevant data. The attention mechanism in deep learning involves assigning
different weights to inputs or features. The attention mechanism gives more weight to
important information and assigns less weight to relatively unimportant information. In
the attention mechanism workflow, the first step involves scoring the hidden state of each
unit in the encoder. Subsequently, the scores are normalized using the SoftMax function [42]
to derive the corresponding weights. For the next layer, to obtain the input variable, we
perform a summation across all time steps, where each hidden state is multiplied by its
corresponding weight and then summed. This weighted summation process ensures
that the important information from the previous layer is effectively integrated into the
subsequent layers. In transformer encoder, the input feature is mapped to three spaces,
Query (Q), Key_i (Ki) and Value_i (Vi), by linear transformation, and a series of <Key,
Value > data pairs are written as Sou. We can divide the process of computing attention
into three stages.

In the first stage, the Einstein sum function and computation mechanism can calculate
the similarity or correlation between the two, based on the Q and a Ki. It is as follows:

Similarity(Q, Ki) = Q× Ki (1)

In the second stage, the calculation method of the SoftMax function to convert the
scores of the first stage is introduced. From one perspective, we can normalize the initially
calculated scores and transform them into a probability distribution, ensuring that the
weights of all elements sum up to 1. From another perspective, the SoftMax mechanism
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enables us to accentuate the weights of crucial elements. It is common practice among
researchers to utilize the following formula for computation:

bi = So f tMax(Simi) =
aSimi

∑Lx
j=1 aSimj

(2)

where Lx =‖ Sou ‖. The computation in the second stage yields coefficient weights bi
corresponding to Vi, and then weighted summation can obtain the attention value:

Atten(Q, Feature) = ∑Lx
i=1 bi ×Vi (3)

In the above formula, i represents the index dimension, and aSimi is a dot product
matrix at the index dimension i. Through the calculation of the above three stages, we can
obtain the attention value for Q.

We take out all elements except the first element and reshape them into a 4D tensor
and acquire the feature map of the feature interaction results and record the two results
as E, R. We concatenate E and R in the second dimension and through two layers of
convolution, normalization, and ReLU function activation series of operations. Finally,
after going through the CLI module, we receive the feature mapping of P1 and P′1, P2 and
P′2, P3 and P′3, P4 and P′4 for their respective interactions. The sizes of the four feature maps
are 64× 64, 32× 32, 16× 16, 8× 8, and the number of channels is 128, 256, 512, 1024.

2.3. Feature Alignment Block

Crack images display considerable variations owing to variations in lighting condi-
tions, surface types, and background textures. At different scales, they manifest diverse
features: larger scales enable reliable crack detection while exhibiting poorer localization,
potentially overlooking thin cracks. Within small scales, it preserves the detail, but the
clutter in the background texture significantly impacts detection. Incorporating the feature
alignment operation into the fusion module helps the network focus more on the crack
region, reduces noise interference, enhances the feature expression capability, and improves
the network’s understanding of semantic information in road images, thereby achieving
accurate crack detection.

Before entering the FAB, we first initiate the adjustment of channel sizes for the four
feature maps obtained from the CLI module by applying a convolutional layer with a
kernel size of 3. Subsequently, a series of concatenation and convolution operations are
performed to achieve channel sizes of 256, 512, 1024, and 2048. However, the four feature
maps still have the following sizes: 64× 64, 32× 32, 16× 16, 8× 8, and we name the four
feature maps [P5, P6, P7, P8]. Then, to achieve a channel reduction to 256 in [P6, P7, P8], we
utilize a convolutional layer with a kernel size of 3. Simultaneously, we up-sample after
dimensionality reduction, adjusting all sizes of [P6, P7, P8] to 64. Therefore, we also obtain
4 new feature maps and denote them as [P5, P′6, P′7, P′8].

This paper shows the fusion process of feature alignment in Figure 4. In the FAB, using
a convolutional layer with a 1 m wide kernel, we obtain the input feature map [M1, N1]
with C channels. Subsequently, we increase the number of channels to 2C in the feature
map [M2, N2]. Then, [M2, N2] is spliced in the second dimension to obtain the feature
map F1 with the number of channels of 4C. The next step is to reduce the number of
channels of the feature map F1 from 4C to 2C by using a convolution with convolution
kernel size of 1, and the feature map F2 is available here. In order to distinguish different
spatial positions, we adopt a convolution of 1× 1 to conduct spatial screening of F2. The
SoftMax function is applied to the feature map F2, resulting in a channel size of 2 for the
obtained feature map F3. At the same time, with weighted different feature channels, we
also utilize a 1× 1 convolution to screen F2 channels and acquire the feature map F4 with
the number of channels C through a sigmoid function [43]. The feature map F5 is obtained
by multiplying the first channel of feature map F3 with elements in the corresponding
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position of feature map F4, and feature map F5 indicates the probability of the first channel.
The feature map F6 is acquired by multiplying the remaining channels in feature map F3
with elements in the corresponding positions in feature map F4, and the feature figure F6
represents the probability of the first channel. Weighted fusion is performed on feature
map F5 to combine with input feature map M1 and on feature map F6 to combine with
input feature map N1, resulting in the feature map [M3, N3]. In the end, we concatenate
feature maps M3 and N3 along the first dimension to obtain the output feature map F7.
According to the feature alignment operation of the FAB, we input the feature maps [P5,
P′6], [P5, P′7], and [P5, P′8] into the FAB, respectively, and finally obtain three new feature
maps, denoted as [P′′6 , P′′7 , P′′8 ].
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2.4. Loss Function

In road crack detection tasks, the normal road regions often occupy a larger proportion
in the image, while the damage regions are relatively smaller. This leads to class imbalance,
making it challenging for the model to effectively learn features of the damaged regions.
In the road crack detection task, accurate localization and segmentation of the damage
regions are required. Focal Loss [44] adjusts the losses’ function weights so that they focus
more on samples that are difficult to classify, i.e., the damaged regions. This enhances the
model’s learning ability for the damage regions and improves the detection performance.
Dice Loss [45] considers the overlap between the predicted results and the ground truth
labels during the computation, directing the model’s attention towards accurate pixel
classification and boundary matching. Compared to other loss functions, Dice Loss is more
sensitive to learning boundary pixels and can improve the segmentation quality of the
damage regions. To address class imbalance and segmentation accuracy, we introduce a
flexible optimization approach by combining Focal Loss and Dice Loss. This hybrid loss
function allows the proposed method to effectively tackle the challenges associated with
imbalanced classes while improving the precision of the segmentation.

We employ the Focal Loss function to address the extreme class imbalance between
positive and negative samples, thus enhancing the binary cross-entropy loss with the
development of Focal Loss. It is a cross-entropy loss that is dynamically scaled with
a dynamic scaling factor. During training, it adaptively reduces the weights of easily
separable samples, allowing the weights to concentrate more rapidly on difficult-to-separate
samples. The formula is as follows:

LFocal = −σ(1− T)ς log(T) (4)
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In this formula, σ is the balancing factor that helps address class imbalance. The
parameter ς controls the focusing effect, allowing the loss to pay more attention to hard-to-
classify examples. The term (1− T)ς serves as the dynamic scaling factor. It down-weights
well-classified examples (where p is close to 1) and assigns higher weights to misclassified
examples (where T is closer to 0). By incorporating the dynamic scaling factor, Focal Loss
encourages the model to focus more on difficult samples, effectively addressing the issue
of imbalanced classes and improving the model’s ability to handle challenging cases.

Using the Dice coefficient, we can calculate the similarity between two samples using
the Dice Loss function to address foreground–background imbalance. This formula is
as follows:

LDice = 1− 2|M ∩ N|
|M|+|N| (5)

In this formula, the |M ∩ N| expresses the number of pixels where both samples have
a positive value. The sum of |M| and the sum of |N| represent positive pixels totaled in
their respective samples. Keeping the Dice Loss to a minimum, we encourage the model
to achieve a higher overlap between the foreground and background, indicating a better
similarity between the samples. In this way, the segmentation task is more accurate as it
balances foreground and background classes.

Based on the calculations of the aforementioned loss functions, we can represent the
mixed loss used as follows:

LMixed = λ× LFocal + (1− λ)× LDice (6)

In this formula, λ represents the coefficient that determines the balance between
the two losses. By adjusting the value of λ, we can control the emphasis given to each
component of the mixed loss. The mixed loss combines the strengths of Focal Loss
and Dice Loss, addressing the issues of class imbalance and segmentation accuracy. By
optimizing this mixed loss during training, CAFANet’s goal is to improve road crack
detection performance.

2.5. Evaluation Metrics

Eight evaluation metrics were selected to quantitatively assess the performance of
CAFANet, including Precision, Recall, F1 score [46], Intersection Over Union_0 (IOU_0),
Intersection Over Union_1 (IOU_1), Mean Intersection Over Union (mIOU), Overall Accuracy
(OA), and Kappa coefficient. Specifically, we define the evaluation metrics as follows:

(1) Precision: This statistic indicates the percentage of samples predicting positive
results that are also positive in reality. It measures the classifier’s accuracy when predicting
a positive sample. By using Equation (7), we can calculate this metric:

Precision =
TP

TP + FP
(7)

(2) Recall: When an actual positive sample is produced, it indicates the percentage of
positive samples correctly predicted by the classifier. It measures the classifier’s ability
to cover positive samples. Due to this, it is also referred to as sensitivity, which can be
calculated using Equation (8):

Recall =
TP

TP + FN
(8)

(3) F1 score: The combination of Precision and Recall rates comprises this metric. A
higher F1 score indicates a more accurate classifier. This metric can be calculated using
Equation (9):

F1 =
2× TP

2× TP + FP + FN
(9)
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(4) IOU_0: The first category label occurring simultaneously rather than other segmen-
tation results with truth. It measures the segmentation accuracy of the classifier for the first
category. This metric can be calculated using Equation (10):

IOU_0 =
TN

TN + FN + FP
(10)

(5) IOU_1: The second category of segmentation results is the ratio with the true label.
It measures the accuracy of the second category segmentation. This metric can be calculated
using Equation (11):

IOU_1 =
TP

TN + FN + FP
(11)

(6) mIOU: It compares the segmentation results of all categories and the real label. It
synthesizes the segmentation accuracy of each category and the segmentation performance
is evaluated using this method. This metric can be calculated using Equation (12):

mIOU =
IOU_0 + IOU_1

2
(12)

(7) OA: It indicates the classification accuracy of the classifier on all samples. It
measures the overall ability of a classifier to classify all categories. This metric can be
calculated using Equation (13):

OA =
TP + TN

TP + TN + FP + FN
(13)

(8) Kappa: A measure of consistency for an observer or classifier. It can eliminate the ef-
fect of accidental consistency and provide a more accurate measure for evaluating the consis-
tency of a classifier or observer. This metric can be calculated using Equations (14) and (15):

TMP =
(TP + FP)(TP + FN) + (FP + TN)(FN + TN)

(TP + TN + FP + FN)2 (14)

Kappa =
OA− TMP

1− TMP
(15)

In the provided Equations (7)–(15), TP samples are those which are correctly predicted
to be positive. TN is the number of true negative samples, which are correctly predicted to
be negative. FP indicates the number of false positive samples predicted as positive but
subsequently found not to be. FN refers to the number of false negative samples, which are
incorrectly predicted to be negative while in fact being positive.

2.6. Parameter Settings

To build all of the models, we use the PyTorch framework. We utilize an NVIDIA Tesla
A100 GPU with 80 gigabytes of onboard memory in the experiment. In the network model,
we set 4 as the batch training size when configuring the training parameters. The initial
learning rate is 0.0035. Using the training sets, we train the framework to generate the
“optimized” model. We halt the training process if the training losses show no reduction for
500 consecutive epochs in order to mitigate overfitting. In the process, when the training
dice scores reach their highest point, we save the generator model weights. In the test set,
we use the model that performs best in the validation set.

3. Experiments and Results
3.1. Datasets

To demonstrate the superiority of CAFANet, we employ the public CRACK500
dataset [47] due to the difficulty in obtaining RCD data. The dataset consists of approxi-
mately 500 images, each with a resolution of approximately 2000× 1500. These images
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are obtained from the main campus of Temple University with a phone. We divide each
image into 16 non-overlapping regions and save only regions with over 1000 crack pixels
due to computing resource limitations. Each crack image undergoes pixel-level annotation.
Therefore, the CRACK500 test data consist of 1124 crack images, 1896 crack images for
the training data, and 348 crack images for the validation data. Figure 5 shows some data
samples, with the first row showing the original images and the second row showing the
corresponding label images. We mark the crack region in the original image with a red box.
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3.2. Baselines and Implementation

This paper compares CAFANet with seven mainstream segmentation methods and find
it to be effective, including the Deeply Supervised Image Fusion Network (DSIFNet) [48],
DeepLabV3+ [49], Faster Fully Convolutional Network (FastFCN) [50], U-shaped Network
(UNet) [23], Fully Convolutional Networks (FCN32s [22] and FCN8s [22]), Pyramid Scene
Parsing Network (PSPNet) [51], Learning UNet (LUNet) [52], and Mixed Transformer
UNet (MTUNet) [53]. Among them, DSIFNet and PSPNet are small-scale models, typically
characterized by smaller network sizes and faster inference speeds. On the other hand,
the other models are large-scale models with intricate network structures, allowing them
to learn a greater number of potential semantic features. Taking the above-mentioned
methods as reference points, we conduct a comprehensive evaluation of their performance.
Additionally, to validate the approach, we conduct ablation experiments.

3.3. Visual Performance
3.3.1. Detection Results

Figure 6 presents some segmentation result examples of CAFANet, showcasing its
excellent visual perception performance. The first, second, and third rows are the different
segmentation results of four road damage images. The source image is (a), the label image is
(b), and the segmentation result is (c). A red box marks the crack region in the original image.
Furthermore, all the images show correctly segmented road damage regions at different
scales, which indicates that the combination of the CLI module and FAB facilitates the
integration of local and global information and enhances CAFANet’s understanding of the
spatial context and overall damage patterns. The CLI module allows CAFANet to capture
long-range dependencies and context information, while the FAB ensures that CAFANet can
properly integrate features from different branches and levels. This comprehensive feature
fusion enables the model to make accurate predictions and generate more informative
result images. In addition, CAFANet performs well in RCD tasks.
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3.3.2. Attention Maps

The proposed CAFANet effectively identifies a diverse range of road damage images
in the RCD task. As shown in Figure 7, to further demonstrate the superior performance
of CAFANet, the CLI module’s four stages are visualized and analyzed using attention
images. Lower attention values are blue and higher attention values are red. A red box
marks the crack region in the original image.
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Firstly, we analyze the images from a low level, which is in the first stage. By observing
the corresponding attention maps, we can see that CAFANet primarily focuses on the edge
and texture details in the images during this stage. At this point, most of the colors in the
image appear as blue, indicating that the CLI module effectively captures subtle features in
road damage images and utilizes them for subsequent processing. Next, we move on to
the second stage, which is responsible for feature fusion and contextual understanding of
the images. Analyzing the corresponding attention maps, we find that CAFANet directs
its attention towards the contextual information surrounding the road damage regions.
Moreover, at this stage, there is gradually less red in the damaged edge regions of the
image. The CLI module’s awareness enables CAFANet to better understand the location
and boundaries of road damage, thereby improving the accuracy of detection. The third
stage is the crucial detection stage, where CAFANet predicts the presence and accurate
location of road damage. By observing the corresponding attention maps, we can see
that as we move towards the center of the damaged region, a faint red color gradually
appears. This indicates that CAFANet focuses its attention on the regions that potentially
contain road damage during this stage. Lastly, we enter the fourth stage, which is the
post-processing stage used to further optimize and refine the detection results. In this
stage, the damaged regions in the image exhibit a deeper red color with a larger area. By
analyzing the corresponding attention maps, we can observe that the proposed CAFANet
guides attention towards crucial regions that contribute significantly to the road crack
detection task. By doing so, it will be possible to detect damage with even greater precision
and accuracy.

As we analyze the attention maps produced at each stage of the CLI module, we can
clearly see that CAFANet performs better in detecting road damage images. It effectively
captures fine-grained features and contextual information, accurately locates road damage,
and enhances the results through post-processing. These characteristics enable CAFANet
to achieve outstanding performance and robustness in road damage image detection. The
research results demonstrate the effectiveness of CAFANet and give strong support to the
idea that road damage can be detected and identified quickly and accurately.

3.3.3. Comparative with Baselines

In this section, we conduct a comparison between our approach and a baseline method.
Figures 8–16 show the results of segmentation for road damage by various methods. We
mark the transverse cracks in the original image with a red box, while the white outlines
of the label and segmentation maps represent the damaged region of the road, and the
black region forms the background. Among them, Figures 8–10 show the comparison
results between CAFANet and the comparison method with segmental transverse cracks
of the road, while Figures 11–13 show the comparison results between CAFANet and
the comparison method with segmental longitudinal cracks of the road. Figures 14–16
show the comparative results between CAFANet and the comparison method in segmental
road mesh cracks. Figures 8–16 show that using the CLI module and FAB produces a
good segmentation result, while other methods perform slightly worse, indicating they
approximate the effective characteristics of road damage segmentation. A multi-scale
feature interactive learning approach is more effective at segmenting road damage than
other large-scale models, indicating that CAFANet provides better segmentation than the
mainstream models. We can see that the segmentation results of CAFANet are significantly
more complete than those obtained by other methods. In addition, CAFANet makes it
possible to segment the image more accurately than other methods, with most of the
damaged regions being correctly segmented. This indicates that the CLI module and FAB
are helpful in improving CAFANet’s feature extraction and recognition. To summarize,
the visual results depicted in Figures 8–16 provide clear evidence that CAFANet excels in
segmenting road damage images, outperforming the baseline methods to some extent.
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Figure 15. Segmentation result examples obtained by various methods for mesh cracks.
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3.4. Quantitative Analysis

This paper presents a quantitative comparison of CAFANet with the baseline methods
in Table 1. As we can see, CAFANet achieves 68.46% in Precision, 73.22% in F1 score, 96.63%
in IOU_0, 57.75% in IOU_1, 77.19% in mIOU, 96.78% in OA, and 71.52% in Kappa. Among the
baseline methods, DSIFNet obtains the highest Precision of 67.42%, while FastFCN achieves
the highest values in six metrics: F1 score (72.52%), IOU_0 (96.51%), IOU_1 (56.88%), mIOU
(76.7%), OA (96.66%), and Kappa (70.75%). It can be observed that among the seven indices,
CAFANet’s Precision is 1.04% higher than that of DSIFNet, and the other six indices of
CAFANet are 0.7%, 0.12%, 0.87%, 0.49%, 0.12%, and 0.77% higher than those of FastFCN.

Table 1. The quantitative results of proposed method on CRACK500.

Method Precision Recall F1 Score IOU_0 IOU_1 mIOU OA Kappa

UNet 66.41 79.44 72.34 96.45 56.67 76.56 96.6 70.55
LUNet 67.41 78.93 72.71 96.54 57.13 76.83 96.69 70.96

MTUNet 47.17 80.3 59.43 93.58 42.28 67.93 93.87 56.35
FastFCN 67.19 78.76 72.52 96.51 56.88 76.7 96.66 70.75

DeepLabV3+ 61.42 83.37 70.73 95.95 54.72 75.34 96.14 68.72
DSIFNet 67.42 73.55 70.35 96.39 54.27 75.33 96.53 68.52
FCN32s 61.81 78.81 69.27 95.91 53.01 74.46 96.09 67.23
FCN8s 66.55 78.93 72.21 96.45 56.51 76.48 96.6 70.42
PSPNet 61.26 79.74 69.29 95.86 53 74.43 96.05 67.21

CAFANet 68.46 78.69 73.22 96.63 57.75 77.19 96.78 71.52

Note that the units of all indicators are percentages. The best results in red, the next best in blue.

Compared with the baselines, CAFANet achieves leadership in almost all metrics for
RCD tasks except Recall, which is slightly lower. More specifically, the maximum Precision
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means that a higher percentage of the predicted results of CAFANet are actually road
damage, reducing the possibility of false positives, the best F1 score expresses that CAFANet
is better able to capture true road damage, reducing the possibility of missed detection, the
highest IOU_0 shows that CAFANet can accurately distinguish between road damage and
background, the best IOU_1 value indicates that CAFANet effectively captures the location
and shape of road damage, the highest mIOU illustrates that CAFANet can accurately
predict regions of damage category, the highest OA declares CAFANet to be more accurate
in predicting road damage overall, and the highest Kappa implicates that the predicted
results of CAFANet have a high consistency with the actual labeling, which reduces the
influence of random errors. Although the Recall of the proposed method scheme lags
behind other methods, it makes sense because CAFANet selects more significant regions of
the source image and ignores those that are less critical. In a more specific sense, CAFANet
leverages comprehensive global interactions within road damage images. It prioritizes the
prominent regions, leading to information loss in less significant areas.

As an additional measure highlighting the exceptional performance of the proposed
method, we perform segmentation detection on 141 images using CAFANet and baseline
methods. It is shown in line graphs in Figure 17 for four metrics: F1 score, mIOU,
Precision, and IOU_1. A curve with points (x, y) indicates that 100% * x % of images have
metrics that do not exceed y. By comparative analysis of these metrics, we can evaluate
the performance of different methods for road crack detection and determine whether
CAFANet is optimal.
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First, observe the line graph of F1 score. It utilizes Precision and Recall to measure
classification accuracy and omission rate. By comparing the F1 score curves of different
methods, we can see that CAFANet achieves the highest F1 score on most images. This
demonstrates that CAFANet strikes the optimal balance between classification accuracy
and omission rate in road crack detection. Next, let us focus on the line graph of mIOU,
which measures the model’s prediction accuracy in multi-class problems. By comparing
the mIOU curves of different methods, we find that CAFANet has the highest mIOU
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value on most images. This means that CAFANet can accurately predict the location of
road damage regions and has a high degree of overlap with the actual annotations. In
addition, the line graphs of Precision and IOU_1 are also significant references for evaluating
model performance. Precision reflects the proportion of samples that are predicted by the
model to be positive among the true positive samples, while IOU_1 represents the overlap
between the predicted road damage regions and the actual annotations. By comparing the
Precision and IOU_1 curves of different methods, the results of these two metrics show that
CAFANet is also the most effective. In conclusion, through the comparative analysis of the
line graphs of F1 score, mIOU, Precision, and IOU_1, CAFANet delivers better results in road
crack detection.

3.5. Ablation Anaysis

As shown in Table 2, this paper presents the results of the FAB and CLI module
performance evaluation on the CRACK500 dataset.

Table 2. Results of ablation experiments using CRACK500 dataset.

Method Precision Recall F1 Score IOU_0 IOU_1 mIOU OA Kappa

Baseline 68.87 76.73 72.58 96.61 56.97 76.79 96.76 70.87
Baseline + CLI 66.33 80.52 72.74 96.47 57.16 76.81 96.63 70.96
Baseline + FAB 68.29 78.76 73.15 96.62 57.67 77.15 96.77 71.44

Baseline + CLI + FAB 68.46 78.69 73.22 96.63 57.75 77.19 96.78 71.52

Upon adding the CLI module separately, the F1 score increases to 72.74% compared
to the baseline’s 72.58%. Similarly, only by adding the FAB, the F1 score grows to 73.15%
compared to the baseline. When we simultaneously incorporate the CLI module and FAB,
the model achieves an F1 score of 73.22%, which is a 0.64% improvement over the baseline.
If we only have the CLI module, Kappa shows a modest improvement of 0.09%, while
the FAB leads to a 0.57% improvement in Kappa. This indicates that the FAB enhances
the prediction results, making them more consistent with the actual situation. Finally, by
integrating all modules, the F1 score, IOU_1, mIOU, OA, and Kappa for RCD reach their
highest values of 73.22%, 57.75%, 77.19%, 96.78%, and 83.37%, respectively. This surpasses
the baseline’s performance.

4. Case Study

Road damage can occur on different types of roads, with varying degrees of damage,
and under various weather and lighting conditions. Road crack detection is a crucial task
related to road safety, and the accuracy and reliability of the model are crucial for practical
applications. To evaluate and validate the generalization ability of CAFANet in different
environments and conditions, we conduct generalization experiments on the public dataset
CPRID. According to the experimental results, CAFANet performs well and is applicable
to new data.

4.1. Datasets

The Cracks and Potholes in Road Images Dataset (CPRID) [54] serves as the primary
dataset for this research, offering a comprehensive and widely utilized dataset specifi-
cally designed for road crack detection and analysis. It consists of a diverse collection of
high-resolution road images annotated with cracks and potholes. The CPRID contains
approximately 2235 images. We partition it into training, validation, and test sets in a
ratio of 5:1:4, similar to the division in CRACK500. In total, we obtain a training set with
1118 images, a verification set with 223 images, and a test set with 603 images. In the
road damage images, the pixel values corresponding to the length and width of potholes
are also different. According to the label image of the source image (the white area is
the pothole, the background area is black), the corresponding pothole pixel value can be
calculated. Finally, through a comparative analysis of the sizes of all pixel values, potholes
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with pixel values below 10,000 pixels are defined as small potholes, those between 10,000
and 30,000 pixels are defined as medium potholes, and those above 30,000 pixels are defined
as large potholes. Figure 18 shows some examples of potholes.
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4.2. Detection Results

We extensively evaluate CAFANet on the CPRID, demonstrating its robust general-
ization performance across various pothole sizes. Figure 19 presents a subset of source
images along with their corresponding ground truth labels and detection results. The first,
second, and third rows are the different segmentation results of four road damage images.
In the original image, a red box marks the pothole region. A visual analysis reveals that the
network detects small, medium, and large potholes well.
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For small potholes, CAFANet effectively captures their subtle features and correctly
localizes them within the image. This precise detection is crucial for identifying potential
road hazards and timely repairs. CAFANet demonstrates reliable performance in medium
pothole detection and segmentation. It accurately outlines the boundaries of potholes and
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provides detailed pixel-level segmentation, enabling a comprehensive understanding of
the pothole’s extent and shape. Even for large potholes, CAFANet detects and segments
them. The proposed method successfully captures significant features and accurately
distinguishes large potholes from the surrounding road surface. The combination of the
CLI module and FAB allows CAFANet to leverage contextual information and capture
multi-scale features. This capability enables the network to handle variations in pothole
sizes effectively and consistently, leading to strong performance across the entire range of
pothole sizes.

Overall, experimental results on the CPRID demonstrate the impressive generalization
capability of the network that combines cross-attention and feature alignment. It accurately
detects and segments small, medium, and large potholes, showcasing the network’s reliable
performance across different pothole sizes.

5. Conclusions

The detection of road damage is an important part of road maintenance and safety. In
recent years, researchers have explored numerous methods to enhance the accuracy and
efficiency of road crack detection systems. This paper proposes a CAFANet architecture
for detecting road damage. Firstly, by incorporating the CLI module into CAFANet,
we aim to leverage its advantages for precise and reliable detection of damaged areas.
The CLI module effectively exchanges information between different levels or branches
of the neural network, promoting enhanced feature learning and representation, thus
improving CAFANet’s multi-scale feature expression capability. Secondly, we employ
the FAB to address challenges arising from variations in road conditions, lighting, and
background textures. In road crack detection, aligning features at different scales and levels
is crucial for capturing comprehensive information and accurately representing damaged
regions. Through feature alignment, CAFANet effectively distinguishes critical information
from irrelevant details and focuses more on regions of interest, thereby enhancing its
detection capability for small targets. We conduct experiments on the CRACK500 dataset,
and the results demonstrate CAFANet’s effectiveness in terms of detection accuracy for
road damage.

This paper emphasizes the importance of integrating the CLI module and FAB tech-
nique in road crack detection. The CLI module enables CAFANet to capture long-range
dependencies and effectively utilize contextual information. The FAB operation further
enhances the model’s alignment and integration capability for features at different scales,
improving the comprehensive understanding of damaged regions. By combining these
techniques, the model can improve contextual accuracy, align features at different scales,
and accurately detect and localize road damage. In the real world, road cracks are usu-
ally a minority category. The imbalance of sample categories may cause the model to
pay too much attention to most categories, thus affecting the detection performance for
road cracks. Future research can further explore the optimization and extension of the
CLI module and FAB technique for road crack detection. This will be carried out by
applying them to practical applications to assist transportation departments in effectively
maintaining roads.
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