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Abstract: Predicting ship trajectories plays a vital role in ensuring navigational safety, preventing
collision incidents, and enhancing vessel management efficiency. The integration of advanced ma-
chine learning technology for precise trajectory prediction is emerging as a new trend in sophisticated
geospatial applications. However, the complexity of the marine environment and data quality issues
pose significant challenges to accurate ship trajectory forecasting. This study introduces an innovative
trajectory prediction method, combining data encoding representation, attribute correlation attention
module, and long short-term memory network. Initially, we process AIS data using data encoding
conversion technology to improve representation efficiency and reduce complexity. This encoding
not only preserves key information from the original data but also provides a more efficient input
format for deep learning models. Subsequently, we incorporate the attribute correlation attention
module, utilizing a multi-head attention mechanism to capture complex relationships between dy-
namic ship attributes, such as speed and direction, thereby enhancing the model’s understanding of
implicit time series patterns in the data. Finally, leveraging the long short-term memory network’s
capability for processing time series data, our approach effectively predicts future ship trajectories.
In our experiments, we trained and tested our model using a historical AIS dataset. The results
demonstrate that our model surpasses other classic intelligent models and advanced models with
attention mechanisms in terms of trajectory prediction accuracy and stability.

Keywords: ship trajectory prediction; AIS; long short-term memory network; attribute correlation
attention

1. Introduction

In today’s era of globalization, ships play an instrumental role in oceanic transporta-
tion, accounting for over 80% of global cargo movement [1]. However, the rapid growth of
maritime transport has led to an increased risk of ship collisions. As reported by the Inter-
national Maritime Organization (IMO), there has been an annual average of about 75 ship
collisions globally in the past decade, causing significant human and financial losses, and
posing threats to the marine environment [2]. Against this backdrop, the importance of ship
trajectory prediction technology is increasingly evident. This technology aims to forecast
the future paths of ships, helping detect potential collision risks at an early stage and
enabling timely evasive actions. It also assists captains or automated navigation systems in
making optimal navigational decisions, such as course adjustments and speed regulation, to
respond swiftly and minimize collision risks [3]. Moreover, accurate and prompt trajectory
prediction can reduce economic losses from collisions, enhance navigational efficiency, and
save fuel.

Ship trajectory prediction refers to the estimation of a vessel’s future navigational
position and status, primarily including longitude, latitude, heading, and speed. Typically,
based on time scales, trajectory prediction tasks can be categorized into long-term, medium-
term, and short-term. Long-term predictions are primarily determined by navigational
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plans or mission requirements [4]. Medium-term predictions are significantly influenced
by weather information and real-time traffic conditions. For short-term predictions, the
decisive factors are the ship’s current and recent past motion states, from which trends
in position and status changes can be extrapolated. This article focuses on short-term
trajectory prediction challenges.

Short-term ship trajectory prediction is a crucial aspect of intelligent maritime naviga-
tion, aimed at forecasting a vessel’s position and heading in the imminent future, spanning
from a few minutes to several hours. This challenge encompasses the complex and dy-
namic maritime environment and intricate behavioral factors of the vessels themselves [5].
Current research methods typically rely on AIS data, integrating physical and data-driven
models for estimation and prediction. Advancements in short-term ship trajectory predic-
tion are vital for enhancing maritime traffic safety, effective navigation management, and
supporting maritime emergency responses.

Machine learning-based ship trajectory prediction methods have emerged as a research
focus in recent years [6]. With continual advancements in computational capabilities
and algorithms, these techniques are rapidly evolving and maturing. Current trajectory
prediction models, predominantly based on sequential deep learning models like Recurrent
Neural Networks (RNN) [7] and Long Short-Term Memory (LSTM) [8], face challenges
in processing time-dependent historical trajectory sequences. The sequential nature of
these models often leads to dominance of near-term information and dilution or loss of
long-range data, reducing efficiency in handling time dependencies [9]. When dealing
with extensive trajectory sequences composed of multiple trajectory points [10], serial
processing methods can result in inadequate extraction of historical information. Existing
ship trajectory prediction methods still face several challenges when contending with
complex maritime environments and variable sailing conditions.

(1) Limitations in Data Representation Efficiency: Conventional methods for predicting
ship trajectories primarily involve direct processing of raw AIS data, which often struggle
to enhance the representation efficiency of large, multidimensional datasets. This can lead
to information loss and constrain the extraction of advanced abstract features from the data,
underscoring the necessity for innovative data handling strategies.

(2) Time Series Data Processing: Given their intrinsic temporal nature, AIS data demand
models adept at managing correlations over time and historical context. Traditional fore-
casting techniques may encounter challenges when optimizing performance for extended
time series with intricate temporal dependencies, highlighting the imperative to devise
sophisticated temporal analysis methodologies.

(3) The Absence of Dynamic Feature Correlation Between Specific Attributes: Contemporary
predictive methodologies may not fully capitalize on the dynamic feature correlations
among specific trajectory attributes, such as the interplay between a vessel’s coordinates
(longitude and latitude) and variations in its velocity and course. Augmenting the re-
search into the potential interconnectivity between attributes could inform and enrich the
incorporation of these correlations into predictive models.

The Attribute Correlation Attention (ACoAtt) represents an advanced deep learning
technique designed to process and analyze time series data or data with complex intrinsic
relationships. Mirroring the general multi-head attention mechanism, ACoAtt might
employ several “attention heads” to parallelly process data, enabling the model to capture
the intricate and multidimensional relationships between attributes. It is primarily utilized
in domains involving time series data and the analysis of multiple interactive attributes.
To enhance the model’s sensitivity to various input attributes in predicting trajectories,
this paper proposes the integration of the ACoAtt mechanism. This approach aims to
improve model performance by addressing the dynamic interactions among various ship
attributes, such as speed, direction, and location. Unlike traditional models that might
process these attributes in isolation, the ACoAtt module leverages a multi-head attention
mechanism to concurrently consider the interdependencies among these attributes. This
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method allows for a more nuanced understanding of how changes in one attribute could
potentially influence others, thereby enhancing prediction accuracy.

In light of the current research landscape and insights [11], this paper introduces an
innovative method for predicting ship trajectories. This approach integrates data encoding
representation, the ACoAtt module, and LSTM networks to enhance data representation
efficiency and reduce complexity. Initially, we employ data encoding conversion tech-
niques on AIS data, followed by the introduction of the ACoAtt module. This utilizes a
multi-head attention mechanism to capture the complex relationships between dynamic
characteristics of ships, thereby augmenting the model’s comprehension of implicit tem-
poral sequence patterns in the data. Coupled with the LSTM network’s ability to model
temporal dependencies in spatial semantics, this method effectively supports accurate
and rapid predictions of future ship trajectories. The main contributions of this paper are
as follows:

(1) Novel Approaches to Data Representation: In this study, we delve into the applica-
tion of data encoding transformation techniques within the realm of maritime AIS data,
with the aim of augmenting the efficiency of data representation. By mitigating data com-
plexity while preserving essential information, this method could furnish deep learning
models with a more efficacious input format. Furthermore, it is juxtaposed with existing
methodologies to quantify the extent of its improvements.

(2) Enhancing the Correlation of Dynamic Attributes: The introduction of the ACoAtt
module represents an endeavor to effectively capture the intricate relationships between
the dynamic characteristics of vessels, encompassing variations in speed and course adjust-
ments. This initiative seeks to bolster the model’s comprehension of temporal sequence
patterns in maritime movement states through the implementation of a multi-head atten-
tion mechanism.

(3) Optimization of Time Series Data Processing: This study employs multi-layer LSTM
networks to model the temporal dependencies present in AIS data. By harnessing the
temporal processing capabilities of LSTM networks, the aim is to amplify the prediction ac-
curacy of short-term ship trajectories, with a particular focus on the temporal dependencies
of spatial semantics.

The remainder of this paper is structured as follows: Section 2 revisits related work in
the domain of ship trajectory prediction. Section 3 encapsulates the trajectory prediction
model explored in this study. Section 4 applies the proposed prediction methodology to
actual AIS data and summarizes the outcomes. Finally, Section 5 discusses conclusions and
prospects for future research.

2. Related Work

Trajectory prediction is a formidable task, with current methodologies for forecasting
maritime paths bifurcating into two distinct categories [12]. The first encompasses mod-
els predicated upon statistical or physical foundations. Traditional probabilistic models,
through the explicit use of probability distributions, meticulously map the uncertainties
and interrelations between variables. These models are inherently interpretable, typically
employed in scenarios where an in-depth understanding of underlying probability dis-
tributions is paramount. Physical models, given accurate parameters and initial states,
can precisely forecast future positions. However, constructing a model that accurately
and effectively incorporates all influential factors often proves to be exceedingly complex.
Conversely, statistical models are frequently impacted by the quality of data.

The second category encompasses machine learning-based methods for predicting ship
trajectories. This includes models that utilize architectures such as Convolutional Neural
Networks (CNN) or RNN, which are also formulated within a probabilistic framework.
These models, by deciphering complex patterns within the data, implicitly estimate the
underlying probability distributions of data features. However, in contrast to traditional
probabilistic models, machine-based models typically prioritize predictive performance
and the capacity to process high-dimensional data over explicit probabilistic interpretations.
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Learning models are capable of probabilistically forecasting future positions with merely
historical motion data, encapsulating all internal system states and influencing factors
within a single model. The efficacy of these models is significantly contingent upon the
quality of data and the model’s learning capabilities. Particularly in the context of ship
trajectory prediction, the complexity and volume of data may render deep learning models
preferable for their superior pattern recognition prowess, despite both approaches sharing
a probabilistic foundation.

2.1. Ship Trajectory Prediction Methods Based on Statistical or Physical Models

Methods for predicting ship trajectories based on statistical or physical models lever-
age mathematical and physical equations to statistically evaluate the movement of ships,
deriving maritime characteristics through mathematical calculations or physical laws.
Researchers typically estimate future positions using current locations and velocities, pre-
dicting future positions with constant speed and course values. Innovations in the field
include M. Üney’s development of a trajectory prediction algorithm using directed graphs
and Bayesian inference, combining historical and real-time data, particularly validated for
maritime dynamics [13]. Perera et al. [14] applied Extended Kalman Filters (EKF) to design
detection, tracking, and trajectory prediction methods for maritime surveillance systems,
demonstrating improved navigational safety. Jaskólski et al.’s [15] research introduced
a Fourier transform-based predictive model using AIS data. Li et al. [16] proposed an
enhanced fuzzy prediction algorithm, incorporating the degree of membership of errors
between predicted outputs and set points into the system’s fuzzy constraints, thereby
boosting the algorithm’s adaptability. Lian et al.’s [17] comparative analysis affirmed the
accuracy and timeliness of particle filter-based AIS data prediction, showing superiority
under nonlinear conditions. Liao et al. [18] designed a hybrid prediction model, combin-
ing empirical, data-driven, and physical methods to tackle complex system prediction
challenges, showcasing the potential advantages of hybrid predictive approaches. Mur-
ray et al. [19] evaluated historical AIS data to devise a single-point neighborhood search
method and a multi-trajectory extraction method for more accurate trajectory prediction.
Tan et al. [20] designed a variable direction rotation module, enhancing and normalizing
direction prediction by introducing additional directional feature inputs.

Predictive methods for ship trajectories based on statistics or physics have evolved
significantly over the years, underpinned by mature theories and robust mathematical
support, yielding highly interpretable results. Compared to complex machine learning
models, statistical methods are generally more stable, less susceptible to random fluctu-
ations. However, these approaches have limitations; statistical models often fall short in
handling complex data features, particularly in high-dimensional data. Additionally, for
nonlinear and non-stationary data series, the predictive capabilities of traditional statistical
methods may be constrained.

2.2. Methods for Predicting Ship Trajectories Using Machine Learning

Machine learning-based ship trajectory prediction methods, utilizing historical motion
data, estimate future ship positions probabilistically. These methods integrate data char-
acteristics of internal system states and various influencing factors into a unified model.
The effectiveness largely depends on the quality of data used and the model’s learning
capabilities. The current trend focuses on deep learning with extensive historical AIS data
to enhance the accuracy of trajectory prediction. Liu et al. [21] developed a ship trajectory
prediction model based on Support Vector Regression (SVR). This model employs a wavelet
threshold denoising method for processing AIS data and optimizes model parameters using
an Adaptive Chaotic Differential Evolution (ACDE) algorithm. This approach enhances
both the convergence speed and the accuracy of the predictions. Wang et al. [22] integrated
DP algorithm and DTW to cluster the AIS data of container ships and predict probabilistic
routes; this innovative approach aims to enhance the efficiency of decision support in
preventing ship collisions. Yang et al. [23] developed a novel ship trajectory prediction
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method that integrates data denoising with deep learning models, utilizing Bidirectional
Long Short-Term Memory Networks (Bi-LSTM) for trajectory forecasting. Liu et al. [24]
have innovated an improved LSTM model based on attention mechanisms. This model,
enriched by data preprocessing and time series analysis, facilitates predictions about the
dynamic navigation of ships. Yu et al. [25] utilized AIS data to compare the effectiveness of
BP and LSTM algorithms in predicting ship trajectories. They found that LSTM, enhanced
through data preprocessing and parameter optimization, outperformed BP in overall and
detailed performance. Gao et al. [26] proposed a multi-step prediction method for ship
trajectories based on physical assumptions, using cubic spline interpolation and historical
trajectory data, integrating the strengths of TPNet and LSTM for real-time analysis and
improved accuracy. Zhao et al. [27] employed a genetic algorithm to optimize the hidden
layer nodes, weights, and thresholds of BP neural networks, conducting real-time predic-
tive simulations of ship trajectories. Zhao et al. [9] developed an encoder–decoder learning
model for ship trajectory prediction based on AIS data, integrating LSTM and attention
mechanisms to enhance the feature fusion between input trajectory sequences, useful for
ship route planning and collision avoidance.

In summary, machine learning-based methods for predicting ship trajectories have
emerged as a focal point within this domain [28]. Deep learning models, particularly those
utilizing LSTM and attention mechanisms, are highly esteemed for their robust capabilities
in processing spatiotemporal data and automating feature extraction [29]. However, despite
the potential for traditional machine learning techniques and clustering algorithm-based
methods to forecast ship trajectories, these models often encounter significant challenges
in construction and tend to produce substantial predictive errors, revealing their limita-
tions. Moreover, there is a notable scarcity in the in-depth exploration of ship movement
patterns, making it challenging to underscore the correlations between ship positions and
velocities during the prediction process, and consequently, achieving satisfactory outcomes
in practical applications proves to be formidable.

In comparison to previous studies, the model proposed in this manuscript endeavors to
incorporate data encoding transformation techniques for feature fusion, thereby generating
novel representations of sequential features. This effort aims to explore the potential
for enhancing the extraction of advanced abstract characteristics from historical data.
Subsequently, with the introduction of the ACoAtt mechanism, there is an aspiration to
capture the long-term dependency correlations between attributes from historical trajectory
data. By amalgamating trajectory positions and states, the model seeks to unveil hidden
information within sequences, capturing the spatiotemporal correlations among sequential
feature data, thereby augmenting the accuracy of ship trajectory predictions.

3. Methodology
3.1. Problem Formulation

During maritime navigation, ships can observe the navigation status of surrounding
vessels via AIS. This paper utilizes the maritime mobile service identity (MMSI) as a unique
index for ship AIS data. It defines Tn as the entirety of a ship’s trajectory, thereby deriving
a discrete time series definition for ship trajectories, as indicated in Equation (1).

Tn = (St1t2 , . . . , Stn−1tn)
i = (Pt1 , Pt2 , . . . , Ptn)

i (1)

In this context, i signifies the MMSI number, Stitj denotes a segment of the trajectory,
and Ptn refers to the position point corresponding to the timestamp tn. It is composed of a
four-dimensional feature vector defined by Equation (2).

Ptn = [lon, lat, v, w]tn
(2)

Within this framework, lon represents longitude, lat denotes latitude, v signifies the
ship’s speed over ground, and w encapsulates the vessel’s course over ground.
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The schematic illustration of ship trajectory prediction, as depicted in Figure 1, entails
designating the vessel’s state information from time t1 to tn as the input for the prediction
model. The position data at moment tn+1 are then used as the model’s output, as delineated
in Equation (3).

Ytn+1 = F(Pt1:tn) (3)
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In this model, F represents the predictive function for the vessel’s trajectory obtained
through our model. Ytn+1 signifies the predicted ship state information at moment tn+1.

3.2. Design of the Vessel Trajectory Prediction Algorithm Model

Addressing the challenge of short-term vessel trajectory prediction, our research intro-
duces an innovative predictive model structure. This model harmoniously integrates binary
code representation, ACoAtt mechanism, and LSTM networks for processing AIS data to
accurately forecast future maritime trajectories. As depicted in Figure 2, the model consists
of three primary modules, each offering solutions to different challenges encountered in
the trajectory prediction process.

Initially, the AIS data processing module applies binary encoding to the raw AIS data,
transforming continuous numerical attributes into efficient binary formats. This not only
simplifies the data but also retains crucial information vital for model training, enhancing
the input format’s dimensionality and efficiency. The binary encoding retains key data
features and offers an effective format for deep learning models. The ACoAtt module,
utilizing multi-head attention mechanisms, captures complex relationships between dy-
namic navigational characteristics like speed and direction changes. The ACoAtt module
focuses on significant positional changes within the prediction sequence, greatly enhancing
the model’s understanding of latent temporal patterns. The model integrates multi-level
LSTM networks, effectively modeling dependencies in AIS data and excelling in processing
spatial semantics and temporal dependencies. The predictive output conversion module is
tasked with receiving the forecasted trajectory, transforming the binary representation of
the trajectory prediction through a decoding process into scalar attributes, aligning them
with real-world coordinates or the standard formats required by navigational systems. This
supports accurate short-term vessel trajectory prediction and optimizes model parameters
through backpropagation of the error calculated between predicted and actual values.
Finally, the model’s reliability and effectiveness are tested in practical applications.
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3.3. Preprocessing and Transformation of AIS Data

Data preprocessing aims to eliminate any anomalous data to mitigate their impact
on subsequent trajectory modeling. For AIS data of vessels uniquely identified by MMSI,
handling missing or aberrant data is crucial [30], as illustrated in Figure 3. This processing
ensures the accuracy of data fed into the trajectory prediction model. For mathematical
modeling and computational convenience, converting latitude and longitude into two-
dimensional plane coordinates simplifies the model’s handling of the Earth’s curvature
complexity. This simplification, particularly in short-range predictions, hardly affects the
predictive accuracy.
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3.3.1. Imputation Procedures for Missing AIS Data Values

Let ∆ti represent the time interval between two consecutive timestamps ti and ti+1. In
this study, if the interval ∆ti exceeds 20 min, it is inferred that a data gap exists between



ISPRS Int. J. Geo-Inf. 2024, 13, 85 8 of 24

points Pti and Pti+1 , necessitating missing value imputation. The number of missing values
n requiring imputation is defined as:

n = abs(∆ti/10)− 1 (4)

Upon determining the quantity of missing values requiring interpolation, this study
employs a bidirectional weighted-average interpolation method for latitude and longitude
imputation. This approach considers the vessel’s speed and direction during the missing
period, in conjunction with the current acceleration of the ship, to simulate its actual motion.
It calculates the distance traveled and the direction of travel over a short period, thereby
determining the position at the time of interpolation, which in turn yields the latitude and
longitude coordinates of the missing data.

Assuming a section of AIS data sequence with missing values, where endpoints are
designated as Pti and Ptj , and given that endpoint Pti ’s current ground speed, direction,
and acceleration are known, their latitude and longitude coordinates can be projected
onto a plane. In the bidirectional weighted interpolation for latitude and longitude, the
number of missing values to be interpolated is n. The Lagrange interpolation method
calculates interpolated speed and direction. Forward Lagrange interpolation yields the
ground speed sequence [v1, v2 . . . vn] and direction [w1, w2 . . . wn] from Pti to Ptj , while
interpolating missing values and speed to determine acceleration [a1, a2 . . . an]. Similarly,
from Ptj to Pti , ground speed sequence [vn, vn−1 . . . v1], direction [wn, wn−1 . . . w1], and
acceleration [an, an−1 . . . a1] are determined.

At this juncture, it is presumed that the vessel progresses along its current ground
course wti , advancing at speed vti for a duration ∆ti, arriving at the initial interpolation
point. Consequently, the plane coordinates for the first missing value are:

xti+1 = xti +
(

vti ∆ti +
1
2 ati ∆t2

i

)
sin(wti )

yti+1 = yti +
(

vti ∆ti +
1
2 ati ∆t2

i

)
cos(wti )

(5)

Once the initial missing value is determined by this method, it can be treated as a
new endpoint to recursively determine the coordinates of the next missing value. This
process is repeated to calculate all missing values. The formula for recursively solving the
coordinates of missing values is as follows, where k = 1, 2, . . . , n.

xk = xk−1 +
(

vk−1∆tk−1 +
1
2 ak−1∆t2

k−1

)
sin(wk−1)

yk = yk−1 +
(

vk−1∆tk−1 +
1
2 ak−1∆t2

k−1

)
cos(wk−1)

(6)

Concurrently, it is imperative to correct for missing values in reverse order. The plane
coordinates for these missing values are as follows, where m = n, n − 1, . . . , 1.

xm = xm+1 +
(

vm+1(−∆tm+1) +
1
2 am+1∆t2

m+1

)
sin(wm+1)

ym = ym+1 +
(

vm+1(−∆tm+1) +
1
2 am+1∆t2

m+1

)
cos(wm+1)

(7)

By employing a bidirectional calculation, the method obtains different sequences of
missing values from varying starting points. These sequences are then merged, assigning
distinct weights to them. The bidirectional weighted interpolation assigns varying weights
based on the time difference between the missing values and endpoints Pti and Ptj . Greater
weight is allocated when the time difference with an endpoint is smaller. The formula for
the distribution of weights α and β is as follows:{

α = tk−ti
tj−ti

β = tm−ti
tj−ti

(8)
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The coordinates calculated through the weighted average method are the longitudi-
nal and latitudinal values sought for the missing data, xn and yn. The values for these
coordinates are as follows: {

xn = αxk + βxm
yn = αyk + βym

(9)

3.3.2. AIS Data Deviations

For significantly deviated trajectory points, they are considered as missing values,
and methods for missing value imputation are employed to address these anomalies. By
comparing a ship’s trajectory point with its adjacent points, the deviated trajectory points
are identified. If the distance between the current trajectory point Pti and its neighboring
points Pti−1 and Pti+1 is substantially different, exceeding a predefined threshold, then point
Pti is deemed a trajectory deviation point.

Moreover, by calculating the average speed between a drift point and its adjacent
trajectory points, based on their distance and time interval, erroneous data can be detected.
If the computed average speed exceeds the vessel’s maximum speed, the trajectory point is
deemed erroneous. The specific formula for this determination is outlined in Equation (10).

√(
xti − xti−1

)2
+

(
yti − yti−1

)2

ti − ti−1
+

√(
xti+1 − xti

)2
+

(
yti+1 − yti

)2

ti+1 − ti

/2 > vmax (10)

where vmax represents the maximum speed of the target vessel, drift point Pti is determined
and subjected to mean value interpolation. The interpolated data point P′

ti
at time ti,

calculated using the trajectory points adjacent to the drift point, is computed as shown in
Equation (11).

P′
ti
= Pti−1 +

Pti+1 − Pti−1

ti+1 − ti−1
(ti − ti−1) (11)

3.3.3. Vector Transformation

Transforming a ship’s AIS data (lon, lat, v, w) into position and velocity coordinates
(x, y, vx, vy) within a two-dimensional plane is a crucial process for trajectory prediction
models. This transformation geometrizes geographical location data, making them more
suitable for mathematical manipulation and model application. Such conversions aid in
intuitively representing and analyzing trajectories on a two-dimensional plane, allowing
prediction models to uncover and learn the intricate dynamics of ship behavior from exten-
sive data. This approach significantly enhances the precision and efficiency of forecasting
future ship positions.

Given the Earth’s approximation as an oblate spheroid, for the sake of simplicity in
calculations, it is conventionally regarded as a sphere. We typically employ cartographic
projection techniques to transform latitude and longitude into a planar coordinate sys-
tem. A prevalent method utilized is the Mercator projection [31], particularly suitable for
navigation within smaller regions, the equations of which are as follows:

x = R · (lon − lon0) · π
180

y = R · ln
(

tan
(

π
4 + lat−lat0

2 · π
180

))
vx = v · cos(w)
vy = v · sin(w)

(12)

where R represents the Earth’s radius, lon0 is the reference longitude, and lat0 is the
reference latitude, both measured in degrees. To reduce the data bit length and thereby
simplify computational complexity, this paper selects the latitude and longitude of the first
position point in the test data as the reference coordinates.
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3.4. AIS Data Encoding Process

In contemporary ship trajectory prediction methods, a five-dimensional vector typi-
cally represents a ship’s position and state, including longitude, latitude, speed, direction,
and time. The high dimensionality and complexity of raw AIS data make processing and
analysis challenging, especially without appropriate feature engineering. This complexity
can obscure the temporal and spatial relationships in the data, making it difficult to extract
implicit semantic features of trajectory points and sequences from low-dimensional neural
network representations during model training. Therefore, proper data preprocessing and
transformation techniques in AIS data-based trajectory prediction research are crucial.

Against this backdrop, this paper innovatively proposes binary encoding of AIS
data. This method’s essence lies in transforming complex ship trajectory data into a more
manageable and analyzable format. It aims to mitigate the influence of varying attributes
and enhance the information capacity for data mining tasks, thereby effectively boosting
the performance and accuracy of trajectory prediction models.

Initially, it is necessary to quantify each continuous attribute in AIS data. Quantization
is a process of mapping continuous values to a finite set of symbols. In AIS data, continuous
attributes like a ship’s position coordinates (x and y) and speed (velocity components vx,
vy) need to be converted into the values within a suitable numerical range. This can be
achieved using a predefined quantization factor q, which is represented as:

Q(P′
tn) =

⌊
(x, y, vx, vy)

q

⌋
(13)

where Q( ) signifies the quantification process equation. ⌊·⌋ signifies the floor function. The
choice of quantization factor q depends on the desired level of decimal precision retention.
Subsequently, the quantized values are converted into binary representation. Given a
quantized attribute range of [−M, M], where M is the maximum absolute value of the
quantized values, the number of binary encoding bits N for each attribute is set as:

N = ⌈log2(2M + 1)⌉ (14)

where ⌈·⌉ represents the ceiling function. Due to the possibility of negative values in AIS
data attributes, it is crucial to consider the sign while converting to binary representation. If
an element value is negative, its leading bit is set to 1 to signify the negative sign, while the
subsequent bits represent the binary depiction of the element’s absolute value, resulting in
the binary-encoded representation of AIS data, denoted as B

(
Q(P′

tn
)
)
:

B
(
Q(P′

tn)
)
= (a1B, a2B, a3B, a4B) (15)

where a1B, a2B, a3B, and a4B correspond to the encoded data of x, y, vx, and vy, respec-
tively. By assembling the binary representations of each element, it can be viewed as an
n-hot vector.

This method converts the continuous attribute values of AIS data into a format suitable
for machine learning models. The binary encoding not only reduces the dimensions of the
original data but also captures the significant features of the data more precisely, providing
a more robust data representation for ship trajectory prediction.

3.5. The Design of Correlation Attention Mechanism

To further enhance the correlation between position and speed in ship trajectory
prediction, we have delved into the design of an ACoAtt module, as depicted in Figure 4.
We hypothesize that this module possesses the potential to transpose encoded data into a
more condensed and highly abstracted embedding space, thereby unearthing the profound
interrelations among attributes [32]. To corroborate this hypothesis, the ACoAtt design
integrates a multidimensional correlation attention mechanism, dedicated to elevating the
model’s proficiency in deciphering complex behavioral patterns of vessels within maritime
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environments. By employing several fully connected layers to funnel trajectory attributes
into the model, and through the implementation of a multi-head attention mechanism,
ACoAtt aspires to perform a detailed analysis and learning of the interplay among diverse
attributes. Specifically, each attention head is engineered to detect the interactions among
different types of attributes, with each interaction having a distinct impact on trajectory
prediction. For instance, certain heads may concentrate more on dissecting the influence
of velocity fluctuations on future positions, while others investigate the repercussions of
temporal intervals on speed and directional alterations. This strategic approach enables
the model to contemplate multiple factors in forecasting future trajectories, theoretically
advancing the precision of predictions.
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In practical applications, the ACoAtt module initially calculates the self-attention
weights for each attribute embedding, subsequently leveraging these weights to augment
the embeddings, thereby accentuating the attributes most pertinent to the current moment.
Notably, distinct CoAtt modules are designed to recalibrate the embeddings of each ship
trajectory attribute independently. The interplay between x and vx, as well as y and vy,
is orchestrated in a manner that fosters mutual influence, with each module addressing
different dimensions of attribute relationships and data characteristics.

Initially, the binary-encoded data B
(
Q(P′

tn
)
)

are transformed into attribute-embedding
vectors ea by mapping them through a fully connected layer into the embedding space.
This transformation can be articulated using the following equation:

ea = We · aB + be (16)

where We represents the weight matrix of the fully connected layer, and be signifies the
bias element.

Subsequently, in the embedding space, the attribute-embedding vectors are processed
through a multi-head attention mechanism, involving three primary steps: initially, the
generation of Query (Q), Key (K), and Value (V) vectors.

Q = Wq · ea
K = Wk · ea
V = Wv · ea

(17)

where Wq, Wk, and Wv represent respective weight matrices. Following this, the attention
weights are calculated.

A = so f tmax
(

QKT
√

dk

)
(18)

In the formula, dk represents the dimension of the key vector, and the so f tmax function
is utilized to normalize the weights. Finally, these weights are applied to the value V to
obtain the final output.

e′a = AV (19)
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The CoAtt module is ingeniously designed to intricately parse the interrelations
between different navigational attributes, particularly between the ship’s position and
speed. Leveraging the dynamics of prior knowledge, it is presumed that changes in
position are closely linked to the preceding velocity. This module enables the model to
not only capture the unique features of each attribute but also to comprehend how these
attributes evolve over time in unison, thereby enhancing the accuracy of future position
predictions for the ship.

3.6. LSTM Prediction Network

Building upon the encoding and ACoAtt module discussed in previous chapters,
the LSTM Prediction Network section is dedicated to employing the capabilities of Long
Short-Term Memory networks for processing and predicting time series in AIS data of ships.
Renowned for its proficiency in handling sequential data, the LSTM network is ideally
suited for the task of predicting ship trajectories. This section focuses on the implementation
of a multi-layered LSTM structure to model temporal dependencies in ship trajectories,
thereby forecasting their future positions.

LSTM is a specialized form of RNN and excels at learning long-term dependencies
within sequence data. A typical LSTM unit, as depicted in Figure 5, comprises a storage
cell that maintains its state over time and three nonlinear “regulators” or gates that control
the flow of information within the unit.
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In this diagram, ht and Ct represent the hidden state and cell state at time step t, re-
spectively. The cell state retains information learned from previous time steps. Information
can be added to or removed from the cell state using these gates: the input gate (i), the
forget gate (f ), and the output gate (o). At each time step t, the module uses the past state of
the network (Ct−1 and ht−1) and the input xt to compute the output ht and the updated cell
state Ct. The hidden state and cell state are recurrently connected back to the block input.
All gates are controlled by the hidden state from the previous cycle and the input vector x.
Most modern research incorporates many improvements made since the initial proposal of
the LSTM architecture. The mathematical expressions for each gate of the LSTM can be
formulated as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
it = σ(Wi · [ht−1, xt] + bi)

ot = σ(Wo · [ht−1, xt] + bo)

(20)

where W and b represent the weight matrices and bias terms, respectively. σ denotes the
sigmoid function. ht−1 is the hidden state from the previous time step, while xt is the
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input at the current time step. The newly generated information C̃t and the cell state at the
current time step Ct are given by:

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft × Ct−1 + it × C̃t
(21)

In the formula, tanh represents the hyperbolic tangent function. Based on the math-
ematical expressions for each gate of the LSTM unit as per Equations (19) and (20), the
output function of the LSTM unit can be represented as follows:

ht = ot × tanh(Ct) (22)

4. Experimental Validation

In this study, we developed an innovative method for predicting ship trajectories
by combining data encoding transformation, the ACoAtt module, and LSTM networks.
This approach aimed to validate the effectiveness, reliability, and real-time capabilities of
the proposed algorithm through various simulation experiments, followed by in-depth
discussion and analysis of the results.

4.1. Description of Experimental Data

The study utilized publicly available AIS data from the Marinecadastre website,
focusing on segments of ship trajectories from 2022 for experimental analysis. We conducted
a comprehensive analysis using the navigational trajectory data of 42 vessels, with the
dataset featuring an average of 874 AIS data points per vessel. These trajectories span
multiple maritime areas and encompass a broad spectrum of environmental conditions,
aiming to thoroughly evaluate the performance of our proposed model across diverse
scenarios. The trajectories of six ships in six different regions, as depicted in Table 1,
represent merely a fraction of our experimental dataset.

Table 1. Experimental data of ship trajectories.

Area MMSI Date Number of Track Points

Pacific Coast Gulf of California 636014430 9 December 2022 433
Atlantic Coast Chesapeake Bay 368172430 11 January 2023 764

Atlantic Coast Narragansett Bay 316026694 6 November 2022 1406
Northern Gulf of Mexico 368052580 17 December 2022 1244

Atlantic Coast East Coast of US 311015600 1 February 2023 719
Pacific Coast Gulf of California 3695801480 17 December 2022 847

The selected AIS data encompassed details like ship identification numbers (MMSI),
longitude, latitude, speed over ground (SOG), and course over ground (COG). To ensure
precise experimental prediction outcomes, longitude and latitude were recorded to five
decimal places, equating to roughly 1 m accuracy. Speed was measured in knots with one
decimal place accuracy, while the course was recorded in degrees, also with one decimal
place precision. A sample of these trajectories is presented in Table 2.

Table 2. Sample AIS data for ship trajectories.

MMSI Base Date Time LON (deg) LAT (deg) SOG (kn) COG (deg)

636014430 9 December 2022 T02:08:05 −118.28719 33.60199 10.2 89.8
636014430 9 December 2022 T02:10:24 −118.27936 33.60204 10.2 89.9
636014430 9 December 2022 T02:11:36 −118.27527 33.60208 10.0 89.7
636014430 9 December 2022 T02:12:45 −118.27138 33.60209 10.1 89.0
636014430 9 December 2022 T02:13:55 −118.26748 33.60213 10.1 90.1
636014430 9 December 2022 T02:16:14 −118.25954 33.60225 10.4 89.2
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To thoroughly evaluate the performance of the proposed model, we segmented the
trajectory prediction dataset, adopting an 8:2 ratio to bifurcate the dataset into a training
set and a testing set. Specifically, 80% of the data were designated as the training set,
dedicated to the model’s learning and optimization processes, while the remaining 20%
were allocated to the testing set, intended for subsequent performance evaluation and
verification. Within the testing set, we deliberately selected data encompassing linear and
maneuvering trajectory patterns, to conduct an in-depth analysis of the model’s accuracy
and robustness in handling diverse navigational behaviors.

4.2. Design of Experimental Evaluation Indicators

When evaluating the accuracy of the predictive model used, it is essential to con-
sider the discrepancy between the predicted results and the actual values due to various
factors. The study employs three metrics for assessing the model’s performance: mean
absolute error (MAE), root-mean-square error (RMSE), and hit rate. These metrics provide
a comprehensive evaluation of the model’s predictive accuracy and reliability.

MAE =
1
N

N

∑
i=1

∣∣Yi − Ŷi
∣∣ (23)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Yi − Ŷi

)2 (24)

where Yi represents the actual values of the ship’s navigational data, while Ŷ denotes the
predicted estimates of the ship’s trajectory data. N refers to the number of AIS data samples
used for testing purposes.

In this study, the prediction of a ship’s navigational trajectory is conducted by forecast-
ing individual trajectory points. The hit rate serves as an intuitive indicator of the model’s
precision in predicting these trajectory points. A prediction is considered accurate when
the distance between the forecasted and actual points is relatively close. To calculate the hit
rate, the first step involves computing the straight-line distance di between the actual and
predicted trajectory points.

di = 2arcsin

√
sin2 lâti − lati

2
+ coslâti × coslati × sin2

ˆloni − loni
2

× R × 1000 (25)

In this context, ˆloni and lâti denote the predicted latitude and longitude coordinates,
respectively, while loni and lati represent the actual latitude and longitude coordinates. R
signifies the Earth’s radius, measured in kilometers.

A threshold for maximum prediction error ∆, measured in meters, is established. If
the distance di between the predicted and actual points is less than ∆, the prediction is
considered accurate, a “hit”. If di exceeds ∆, it is a “miss”, indicating a failed prediction. The
hit rate, representing the success rate of accurate predictions, is calculated as the number of
hits hits divided by the total number of predictions N.

Hit Rate =
hits
N

(26)

In the ship trajectory prediction experiments of this section, a larger value of Hit Rate
indicates a smaller difference between the predicted value and the actual value, signify-
ing higher prediction accuracy. Conversely, smaller values of RMSE and MAE indicate
that the predictions are closer to the actual data, further illustrating the precision of the
predictive model.
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4.3. Comparison of Experimental Prediction Methods

To evaluate the proposed ship trajectory prediction framework, three comparative
prediction methods were designed for the experiments:

(1) Kalman Filter prediction model: The Kalman Filter (KF) algorithm involves two pro-
cesses: time updating (prediction) and measurement updating (correction). The prediction
process uses the values determined at any given moment for prior estimation, and then
estimates the next moment. The measurement update process corrects the model using
measured values, offering a posterior estimate improved from the current state. To ensure
the accuracy and effectiveness of the KF algorithm, it has been extended in this study
to adapt to the dynamic characteristics of ship movement. The state vector is defined to
include position (longitude and latitude), speed, acceleration, and rate of turn.

(2) LSTM network-based prediction model: The ability of LSTM networks is particularly
suitable for processing time series in ship AIS data, as these often contain complex spa-
tiotemporal patterns and dynamics. Through training, LSTM networks can learn patterns
extracted from historical data and use these to accurately predict future ship positions and
behaviors. Furthermore, comparing the LSTM network with the prediction framework
proposed in this study allows for the validation of the effectiveness of the associative
attention mechanism introduced in the paper.

(3) Transformer-based time series forecasting: Since its inception, the surge in Transformer-
based solutions for time series forecasting tasks has been noteworthy [33]. Transformers,
with their adeptness at extracting semantic correlations among elements within extensive
sequences, boast remarkable capabilities in parallel sequence processing, rendering them
highly suitable for modeling time series characterized by pronounced periodicity and
elongated sequence lengths. This model, reliant on the parallel processing of self-attention
mechanisms, facilitates the effortless extraction of relationships between temporally distant
steps within a sequence.

The proposed prediction model in the paper is configured as follows: After vector
transformation of AIS data elements, 18-bit binary encoding is used to represent positions in
the x and y directions, and 10-bit binary encoding is used for speeds in these directions, with
the highest bit indicating the sign of the value. The correlation attention mechanism module
uses four multi-head attention operators. In the LSTM main prediction network part, six
stacked LSTM networks are set as the main model, with each LSTM layer having a count of
three. The number of hidden units per layer ranges from 32 to 256. The training simulation
is run for 500 iterations using the Adam adaptive learning rate optimization algorithm, with
an initial learning rate of 0.2. To prevent model overfitting, L2 regularization is adjusted
with a coefficient set at 0.01.

4.4. Results and Analysis

For the test experiments of the model, the following hardware conditions were used:
The operating system was Windows 10, the CPU was an Intel® i7-11700F, which produced
by Intel Corporation in Santa Clara, CA, USA, and the GPU was an NVIDIA GeForce
GTX 1080Ti, manufactured by NVIDIA Corporation located in Santa Clara, CA, USA. The
programming language used was Python 3.8, and the deep learning framework utilized
was PyTorch 2.0.

4.4.1. Comparison of Different Types of Trajectory Predictions

This experiment compares various trajectory prediction models, including the Kalman
Filter prediction model, LSTM-based prediction model, Transformer prediction model, and
the model proposed in this study, for different types of trajectories such as straight-line
navigation and turning maneuvers. The first 30 moments of ship navigation trajectory
points are used as inputs for the models, predicting the trajectories for the subsequent 10
sampling time points, which corresponds to approximately 12 min of trajectory prediction.
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(1) Straight-line navigation

In the case of straight-line navigation, the real trajectory involved sailing in a nearly
straight line with a course of about 89.7◦ and a speed of around 10 knots. The target ship
started sailing along a planned route, maintaining relatively stable direction and speed.
Trajectory predictions were made using different methods starting from the 7th point in
the trajectory. A comparison of the predictions from these various methods is illustrated in
Figure 6. An error analysis was performed on the latitude and longitude predictions from
different methods at the same forecast point. This analysis provided a comparison of the
latitudinal and longitudinal predictions and their errors for each method, as depicted in
Figure 7.

(2) Curved maneuver navigation
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The real trajectory involved curved maneuvering, starting at a course of approximately
175◦ and ending at about 262◦. The initial speed was around 9 knots, slowing down and
then speeding up during the turn, ending at approximately 12 knots. Similar to the previous
case, at the 7th point in the chart, different methods were used to predict the trajectory.
The comparative results of these different prediction methods are illustrated in Figure 8.
The study also conducted an error analysis on the latitude and longitude predictions for
different prediction points, comparing the results and errors of each prediction method.
This comparison and error analysis are depicted in Figure 9.

The paper conducted a comprehensive analysis of simulation results, comparing the
longitude and latitude prediction errors of four models. It also calculated key performance
metrics for each model, including average absolute error, root-mean-square error, and
prediction hit rate. The performance analysis of the proposed model and the other three
models is detailed in Table 3. We set a maximum prediction error of 150 m as a benchmark
to assess the prediction hit rates of the various algorithms.
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Table 3. Results of various prediction algorithms under different scenarios.

Trajectory
Situation Model Position MAE RMSE Hit Rate

Straight-line
routes

Our model
LON 0.00032 0.000356

0.90LAT 0.00006 0.000061

LSTM
LON 0.00174 0.002140

0.70LAT 0.00018 0.000187

Transformer
LON 0.00090 0.001130

0.90LAT 0.00006 0.000069

KF
LON 0.00271 0.003118

0.20LAT 0.00036 0.000427

Curved
maneuver

route

Our model
LON 0.00034 0.000437

0.90LAT 0.00032 0.000411

LSTM
LON 0.00073 0.000808

0.60LAT 0.00378 0.005525

Transformer
LON 0.00056 0.000631

0.70LAT 0.00169 0.002518

KF
LON 0.00175 0.001846

0.60LAT 0.00548 0.006690

The study’s model exhibited superior predictive performance in both linear and
curvilinear ship trajectory prediction compared to the KF model, LSTM-based model, and
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Transformer model. It achieved the lowest root-mean-square error, average absolute error,
and hit rate across different scenarios, outperforming other models, especially in linear
prediction scenarios where the KF model showed significant errors. The Transformer
model followed in effectiveness, with the multi-layer LSTM model next in line. This
highlights the advanced predictive capability of the proposed model over traditional and
other intelligent prediction methods. Furthermore, the study’s model, alongside LSTM-
based and Transformer models, showed similar patterns of increasing prediction errors
with longer prediction steps. While the initial prediction errors were marginally different,
the root-mean-square errors varied significantly among the models. In curvilinear motion
prediction, the study’s model exhibited markedly lower root-mean-square errors in both
latitude and longitude (0.000437 and 0.000411, respectively) compared to other methods.
This indicates the model’s superior predictive performance over traditional KF predictions
and other intelligent algorithms.

On the other hand, by contrasting the predictive outcomes and statistics of our model
with those of the multi-layer LSTM network, our approach demonstrates superior accuracy
in predicting various feature attributes in both scenarios. Specifically, in straight-line
navigation, there is a notable reduction in the mean absolute error (MAE) for latitude
and longitude predictions, and a similar trend is observed in curvilinear motion scenarios.
Additionally, our model shows greater stability for longer prediction intervals compared
to the multi-layer LSTM model. The results validate the efficacy of the proposed ACoAtt,
effectively integrating historical trajectory and current state information to uncover hidden
inter-sequential information. This approach distinctly captures the feature interrelations
post binary encoding, demonstrating that the proposed model architecture significantly
enhances the accuracy of ship trajectory prediction.

4.4.2. Comparison of Multi-Step Trajectory Prediction

To assess the robustness and stability of the proposed method across varying prediction
lengths, this section opts for a test set comprising navigational trajectories under curvilinear
maneuvering conditions. Predictions are made for ship trajectory points at 5, 10, and
20 moments in time, corresponding to approximate durations of 6 min 30 s, 13 min, and
26 min, respectively. This approach serves to validate the testing model’s performance in
short-to-medium-term ship trajectory forecasting.

The real trajectory of the ship involved curve maneuvering, starting at an initial
course of about 83◦, ending around 27◦, with an initial speed of about 11 knots, decreasing
during the turn, and ending at about 9 knots. Predictions began from the seventh point in
the trajectory, and the comparative results of different prediction methods are shown in
Figure 10.

To further assess the impact of step length on ship trajectory prediction tasks, the
MAE of different prediction methods at 5, 10, and 20 moments was statistically analyzed.
Box plots were used to display the MAE of latitude and longitude attributes, as shown
in Figure 11. Additionally, the average RMSE of the four models at different prediction
lengths is depicted in Table 4.

The statistical analysis of the experimental simulation results for predicting ship
trajectories over consecutive 5, 10, and 20 moments is outlined in Table 4.

Commencing with an analysis grounded in the visualization outcomes, an exami-
nation of predictive accuracy is undertaken. The model introduced herein achieves the
pinnacle of predictive performance. Furthermore, as the prediction horizon extends, vari-
ous forecasting methodologies tend to incur greater predictive discrepancies. When the
trajectory point prediction length is minimal, each model can accurately forecast future
trajectories within the initial four prediction steps (approximately 5 min), with the average
absolute error and root-mean-square error of the four models being comparably close. This
suggests that the current methodologies can adequately meet the demands for ultra-short-
term trajectory forecasting, with the model presented in this paper exhibiting superior
performance. However, as the number of prediction steps increases, some predicted tra-
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jectories gradually diverge from the actual scenarios, leading to a decline in trajectory
forecasting precision across all four models. Yet, the rate of decline in predictive accuracy
for the model discussed in this paper is significantly lower than that of the Kalman Filter
prediction model, LSTM network-based prediction model, and Transformer prediction
model. At a prediction length of 20 trajectory points, the average root-mean-square error is
substantially lower than the other three comparative methods. This indicates that for the
problem of longer continuous ship trajectory prediction, the model designed in this paper
is capable of achieving commendable predictive outcomes.
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Table 4. Statistics on the predictions of the four models at different prediction lengths.

Prediction Length Model Position MAE RMSE Hit Rate

5

Our model LON 0.00078 0.00088 1.00LAT 0.00058 0.00063

LSTM LON 0.00242 0.00258 1.00LAT 0.00108 0.00111

Transformer LON 0.00152 0.00168 1.00LAT 0.00082 0.00085

KF LON 0.00118 0.00121 1.00LAT 0.00228 0.00233

10

Our model LON 0.00132 0.00149 1.00LAT 0.00077 0.00084

LSTM LON 0.00406 0.00445 0.70LAT 0.00109 0.00112

Transformer LON 0.00287 0.00328 0.90LAT 0.00111 0.00116

KF LON 0.00187 0.00204 0.80LAT 0.00339 0.00365

20

Our model LON 0.00258 0.00293 0.85LAT 0.00114 0.00122

LSTM LON 0.00853 0.01015 0.40LAT 0.00184 0.00203

Transformer LON 0.00502 0.00558 0.50LAT 0.00193 0.00222

KF LON 0.00454 0.00323 0.35LAT 0.00907 0.01140
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Figure 11. Box plots of errors for different prediction step sizes. (a) Prediction error in longitude for
length of 5 steps. (b) Prediction error in latitude for length of 5 steps. (c) Prediction error in longitude
for length of 10 steps. (d) Prediction error in latitude for length of 10 steps. (e) Prediction error in
longitude for length of 20 steps. (f) Prediction error in latitude for length of 20 steps.

Subsequently, an analysis focused on the trend-following aspect of predictions was
conducted. The method proposed in this manuscript, in comparison to other models,
can swiftly forecast future motion trends within several prediction steps, as depicted
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in Figure 10. The model presented here is capable of stably and accurately predicting
ships’ curvilinear maneuvering navigation. In contrast, the Transformer model, due to
its attention mechanism, can correctly predict trajectory change trends, yet its predictive
accuracy falls short. The LSTM-based prediction model, on the other hand, erroneously
estimates the ships’ maneuvering intent, gradually diverging from the true course in
subsequent prediction steps. Kalman Filter predictions made more accurate forecasts
regarding future trajectory trends in this round of testing, but the deviation between
predicted points and actual trajectory points was too significant, resulting in subpar overall
predictive performance.

Lastly, an analysis focusing on the stability of prediction lengths was undertaken.
According to the test outcomes, the method proposed in this manuscript, alongside the
Transformer model, exhibited commendable performance within the initial ten prediction
steps. However, as the prediction length extended, the predictive trend gradually deviated,
rendering the results unreliable. Consequently, in the realm of short-term ship trajectory
prediction applications, the method introduced herein demonstrates superior stability and
outperforms other comparative forecasting techniques, albeit its efficacy wanes in mid-term
predictive applications.

To further evaluate the predictive capabilities of the model, we selectively extracted
data from the test set, which constitutes 20% of the navigational trajectory data of 42 vessels,
resulting in a total of 64 linear navigation test trajectories and 12 curvilinear maneuvering
trajectories. These were subjected to tests using various predictive methods, with a predic-
tion length set at 10 steps. The model’s forecasts were assessed based on the error between
predicted and actual latitude and longitude, with a comparative statistical analysis of the
outcomes from different predictive approaches, as illustrated in Table 5.

Table 5. Repetitive verification results statistics.

Trajectory Situation Model Position MAE RMSE Hit Rate

Straight-line routes

Our model
LON 0.00094 0.000612

0.92LAT 0.00091 0.000554

LSTM
LON 0.00254 0.002845

0.82LAT 0.00268 0.002920

Transformer
LON 0.00125 0.001843

0.89LAT 0.00146 0.002154

KF
LON 0.00362 0.005264

0.74LAT 0.00402 0.004631

Curved maneuver
route

Our model
LON 0.00122 0.001057

0.81LAT 0.00114 0.001270

LSTM
LON 0.00332 0.004751

0.54LAT 0.00367 0.004868

Transformer
LON 0.00186 0.002681

0.68LAT 0.00209 0.003173

KF
LON 0.00518 0.006436

0.42LAT 0.00475 0.006104

As evidenced by Table 5, our model demonstrates a general improvement across three
performance evaluation metrics, both in terms of accuracy and stability. Quantitatively
speaking, it achieved the best results in longitude prediction across all evaluative indicators,
showcasing the highest accuracy and commendable predictive performance. The test
outcomes affirm that the predictive framework proposed in this paper can effectively
unearth the correlations between target feature attributes, producing highly confident
predictive trajectory outcomes. It supports an extended short-term prediction process,
contributing to the enhancement of maritime performance and presenting a significant
advantage in trajectory prediction.
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5. Conclusions

This paper introduces an innovative method for predicting ship trajectories based
on AIS data. The approach combines data encoding transformation, the ACoAtt module,
and LSTM networks. Data encoding effectively represents AIS data, reducing complex-
ity while retaining key information. The ACoAtt module, using a multi-head attention
mechanism, captures complex relationships between dynamic ship features, enhancing
understanding of hidden time series patterns in the data. Finally, the LSTM network
accurately predicts future ship trajectories by processing time series data. By testing with
historical AIS datasets, the proposed method in this article has been proven to outperform
classical prediction models and other latest models with attention mechanisms in trajectory
prediction accuracy. It significantly enhances the performance of existing models, offering
superior accuracy and stability in trajectory prediction. This research addresses challenges
in ship trajectory prediction due to the complexity of ship movements, providing notable
improvements in data representation efficiency, time series data processing, and dynamic
feature correlation analysis. Moreover, this algorithm can also be adapted for applications
in other geospatial applications.

In our future work, we intend to focus on the application of this method for ship colli-
sion avoidance, aiming to establish a new paradigm in maritime safety and further enhance
the security of ship navigation. Additionally, we are exploring more effective ways to utilize
historical trajectory data to predict longer step lengths in accurate trajectory distributions.
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