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Abstract: Field-road mode classification (FRMC) that identifies “in-field” and “on-road” categories
for Global Navigation Satellite System (GNSS) trajectory points of agricultural machinery containing
geographic information is essential for effective crop improvement. Most previous studies utilize
local trajectory features (i.e., the relationships between a point and its neighboring points), but
they ignore global trajectory features (i.e., the relationships between the point and all points of the
trajectory), leading to difficulty in improving the overall classification performance. The global
trajectory features are useful for FRMC because they contain rich trajectory information (e.g., mode
switching and motion tendency). Therefore, a ConvTEBiLSTM network-based method is proposed
to improve the overall performance. Firstly, nine statistical features (e.g., speed and direction) are
extracted from the original data and fed into the ConvTEBiLSTM network. Then, the ConvTEBiLSTM
network combining the Bidirectional Long Short-Term Memory network, 1D Convolution network,
and Transformer-Encoder network is used to extract and fuse local and global trajectory features.
Finally, a linear classifier is applied to identify the “field” and “road” categories of GNSS points based
on the fused features. Experimental results show that compared with the baselines, our method
achieves the best accuracy and F1-score of 97.38% and 92.74% on our Harvester dataset, respectively.

Keywords: field-road mode classification; deep learning; local and global trajectory features; GNSS
trajectory data

1. Introduction

With the development of the Global Navigation Satellite System (GNSS), GNSS re-
ceivers have been widely applied in agricultural machinery. Numerous GNSS trajectory
data containing geographic information have been generated by the receivers, and these
data have a wide range of applications among many agricultural tasks [1–4]. Field-road
mode classification is a vital task in trajectory processing for precision agriculture [5]. This
task involves categorizing GNSS trajectory points of agricultural machinery into ’field’ and
’road’ categories, which plays a crucial role in crop improvement [6–9]. Accurate classifica-
tion results are essential for estimating the areas of agricultural fields precisely [10–14]. This
estimation contributes to efficiently budgeting the input amount of agricultural production
materials (e.g., seeds, fertilizers, and pesticides), which ultimately increases crop yield and
improves agricultural productivity [15]. Specifically, with precise field area measurements,
farmers can optimize the distribution of production materials, ensuring that each field gets
the resources needed for optimal growth. This targeted approach minimizes waste and
maximizes resource efficiency, ultimately improving the overall crop yield.

ISPRS Int. J. Geo-Inf. 2024, 13, 90. https://doi.org/10.3390/ijgi13030090 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13030090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0009-0009-2485-141X
https://orcid.org/0000-0003-4322-6598
https://orcid.org/0009-0002-3458-6567
https://orcid.org/0009-0001-7512-007X
https://doi.org/10.3390/ijgi13030090
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13030090?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2024, 13, 90 2 of 17

Previous studies on field-road mode classification focus on utilizing the motion fea-
tures of GNSS trajectory points (e.g., speed and direction) and the spatial–temporal re-
lationships between points (e.g., temporal, spatial, and spatiotemporal relationships).
For instance, Chen et al. [16] proposed a DBSCAN+Rules method. Specifically, based on
the relationships between each point and its spatial neighboring points, DBSCAN (an
unsupervised clustering algorithm) [17] was utilized for preliminary classification. Then,
two inference rules based on motion features (i.e., speed and direction) were used to cor-
rect the previous classification results. Poteko et al. [18] proposed a MotionDT method.
The method uses the relationships between each point and its temporal neighboring points
to extract 25 motion features of each point (e.g., speed, direction, acceleration, and angular
speed), and these features are fed into a Decision Tree (DT, a supervised machine learning
algorithm) for field-road classification. Chen et al. [19] proposed a GCN method. Specif-
ically, a spatiotemporal graph was constructed by using the relationships between each
point and its temporal and spatial neighboring points. Then, a Graph Convolutional Net-
work (GCN) [20] was used to propagate seven motion features (e.g., speed and direction)
along the spatiotemporal graph for aggregating the motion features and spatiotemporal
relationships for field-road mode classification. The results of these studies demonstrate
that using the motion features and spatial–temporal relationships is crucial for accurate
field-road classification. However, they primarily consider the local trajectory features
(i.e., the relationships between a point and its neighboring points), and ignore the global
trajectory features (i.e., the relationships between a point and all points of a given trajec-
tory), leading to difficulty in improving the overall classification performance. The global
trajectory features are useful for field-road classification because they contain rich trajectory
information (e.g., mode switching, and motion tendency).

Recently, Chen et al. [21] proposed a novel visual features-based method that leverages
the local and global image features for field-road mode classification. Specifically, a GNSS
trajectory was converted into a trajectory image with three color channels (RGB), where
each pixel corresponded to each GNSS point. Subsequently, two semantic segmentation
models [22,23] were used to extract local and global visual features from the trajectory
image. Finally, a Bidirectional Long Short-Term Memory Neural Network (BiLSTM) [24]
was used to fuse 25 motion features, the same as Poteko et al. [18], and the extracted visual
features for identifying the “field” and “road” categories of GNSS points. Their results
reveal that the local and global visual features extracted from trajectory images are useful in
improving the accuracy of field-road mode classification. However, they focus on using the
local and global features extracted from trajectory images and ignore the local and global
features extracted from GNSS trajectories. Although trajectory images provide rich visual
information, some challenges may arise due to the reliance on trajectory images, such as
higher computational resource consumption. Therefore, it is crucial to consider how to
maximize the utilization of GNSS trajectories. Moreover, they ignore the geographical
distribution features of GNSS points. The geographical distribution features are useful
for improving the overall performance of field-road classification because field points are
usually more densely distributed than road points.

In this paper, a ConvTEBiSLTM network is proposed to obtain accurate results of field-
road mode classification by leveraging local and global trajectory features. Considering
that the BiLSTM [24] has been widely applied in temporal-related tasks, we thus chose the
BiLSTM to capture the temporal dependency of GNSS trajectory points. However, it is
difficult for the BiLSTM to extract global trajectory features among numerous GNSS points
due to the modeling of the single input [25]. Therefore, the ConvTEBiSLTM network was
developed to extract and fuse local and global trajectory features for field-road classification.
Specifically, a 1D Convolution Network (1D-CNN) and a Transformer-Encoder Network
(TE) [26] were respectively used to extract the local and global trajectory features. Then,
the local and global features were concatenated in the feature dimension. Subsequently,
the concatenated features were fed into the BiLSTM for fusing the local and global trajectory
features. Finally, a linear classifier was used to identify the “field” and “road” categories of
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GNSS points based on the fused features. We publicly released the GNSS trajectory dataset
used in this study, namely, Harvester. In addition, nine statistical features of each GNSS
point were designed to enrich the feature representation of original trajectory data and
were used as the input features of neural networks. The statistical features consist of eight
motion features (e.g., speed, direction, and acceleration) and a geographical distribution
feature (i.e., the number of points within a square around the current point). Experimental
results show that our method achieved the accuracy of 97.38% and the F1-score of 92.74%
on the Harvester dataset, respectively.

2. Dataset
2.1. Dataset Description

Our method is evaluated by using the GNSS trajectory data collected by Shandong’s
Agricultural Machinery Management Cloud Platform. The dataset is named Harvester,
and it consists of 100 GNSS trajectories which were acquired in Yanzhou District by the
GNSS receivers. Yanzhou District is located in the northeast of Jining City, Shandong
Province, China.

Each point of the 100 GNSS trajectories has five recorded parameters: timestamp
(YYYY:MM:DD-hh:mm:ss), coordinates (longitude and latitude, WGS84), speed (m/s),
and direction (°). The GNSS receivers have an accuracy of 5 m and record data at 2 s inter-
vals. In addition, each GNSS point is manually labeled as either the “field” category or the
“road” category. Table 1 provides detailed information about the Harvester dataset, which
is available at https://github.com/AgriMachineryBigData/Field-road_mode_mining (ac-
cessed on 5 March 2024).

Table 1. The information about the Harvester dataset.

Parameters Harvester

No. of GNSS trajectories 100
No. of total GNSS points 1,152,867

No. of field points 873,424
No. of road points 279,443

The ratio of “field” to “road” 0.7576:0.2424
Acquisition intervals 2 s

2.2. Data Cleaning

Effective GNSS points refer to the continuous points obtained from the normal opera-
tion of agricultural machinery. The duplicate points, scattered points, and drifting points
belong to abnormal GNSS points. In order to improve the data quality of GNSS trajectories,
removing duplicate points, scattered points, and drifting points is performed as follows:

• Removing duplicate points: The duplicate points mainly include temporal duplicate
points and spatial duplicate points. When consecutive GNSS trajectory points have
the same coordinates or the same timestamp, the first GNSS point is saved, and other
GNSS points are removed.

• Removing scattered points: When agricultural machinery is parked on the road or
entering/exiting a garage, the GNSS receiver records many scattered road points with
high density. These points are scattered within a small range around the actual position
of agricultural machinery and need to be removed. Therefore, a rule-based cleaning
method is proposed to effectively remove the scattered points and is formulated
as follows:

∆lonk = lonk − lonk−1, ∆latk = latk − latk−1 (1)

b = sin2
(

∆latk
2

)
+ cos(latk−1)× cos(latk)× sin2

(
∆lonk

2

)
(2)

c = 2× arctan 2(
√

b,
√

1− b), R = 6371000, ∆dk = R× c (3)

https://github.com/AgriMachineryBigData/Field-road_mode_mining


ISPRS Int. J. Geo-Inf. 2024, 13, 90 4 of 17

dAveragek =
1
t

k+t

∑
i=k

∆di (4)

if dAveragek ≤ l, remove(Pk) (5)

where ∆dk denotes the distance (m) feature of the kth point, lonk, latk, ∆lonk, and ∆latk
respectively denote the longitude, latitude, longitude variation, and latitude variation
features of the kth point, R represents the average radius of the Earth (m), l denotes the
threshold for determining whether to delete the scattered point, dAveragek denotes the
average value of distance variation from the point k to the point k + t, and remove(Pk) is
used to delete the scattered point Pk.

In this paper, the t is 20, which is recommended by Poteko et al. [18]. The t refers
to the number of adjacent points, and it is used to calculate the average value of the
distance variation of each t point(s). This average value is named the average distance
feature dAveragek of the current point Pk, which reflects the clustering tendency of trajectory
segments. In addition, the l is set to 0.5. By comparing l with the dAveragek, it is determined
whether Pk is a scattered point.

• Removing drifting points: When the distance features from a GNSS point to both its
previous point and its next point are very large, the point is taken as a drifting point
(see Figure 1). In this case, the drifting point is removed, its previous point becomes
the ending point of the preceding trajectory segment, and its next point becomes the
starting point of the subsequent trajectory segment.

PK

PK-1PK-2 PK+1 PK+2PK-3 PK+3

dk dk+1

dk+2 dk+3dk-1dk-2

N：The number of points

k：The index of point P, between 0 and N-1

dk = d（Pk, PK-1）：The distance feature of point Pk

When dk >= m × dk-1 and dk+1 >= m × dk+2 ， Pk is drifting point 

Figure 1. The rationale of removing drifting points.

Specifically, the method of removing drifting points is formulated as follows:
d(Pk, Pk−1) ≥ m× d(Pk+1, Pk), k = 1, remove(Pk−1).
d(Pk, Pk−1) ≥ m× d(Pk−1, Pk−2) and d(Pk+1, Pk) ≥ m× d(Pk+2, Pk+1), 2 ≥ k ≥ N − 3, remove(Pk).
d(Pk+1, Pk) ≥ m× d(Pk, Pk−1), k = N − 2, remove(Pk+1).

(6)

where N denotes the point number of a given GNSS trajectory, k denotes the index between
0 and N − 1 of a GNSS point, d(Pk,Pk−1) is used to calculate the distance between the
point Pk and the point Pk−1, m denotes the threshold for determining whether to delete
the drifting point, Pk denotes the kth point, and remove(Pk−1) is used to delete the drifting
point Pk−1.

In this paper, the m is set to 6. Moreover, the drifting point is determined by utilizing
the distance and the distance multiplied by m (see Figure 1).
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As shown in Figure 2c,d, the scattered road points and the drifting points are removed
by our proposed cleaning method, which suggests that our method is effective in removing
the abnormal points.

(a) Scattered points (b) Drifting point

(c) After removing scattered points (d) After removing drifting point

Figure 2. Two types of abnormal points in two given GNSS trajectories, where (a) are scattered
points, and (b) is a drifting point. (c,d) are the GNSS trajectories after removing scattered points
and removing the drifting point, respectively. The field and road points are the green and blue
points, respectively.

In addition, some suggestions for the selection of the threshold l are as follows. When
the l is significantly larger than 0.5 (e.g., 5 and 50), a large number of field points will be
mistakenly deleted because the average distance features of field points are relatively small.
Therefore, it is recommended not to set the l too large. Moreover, if the l is significantly
smaller than 0.5 (e.g., 0.05 and 0.005), it will be difficult to identify scattered points.

Finally, the codes of our data-cleaning method are available at https://github.com/
AgriMachineryBigData/Field-road_mode_mining (accessed on 5 March 2024), ensuring
the comprehensive understanding of our proposed method.

3. Methodology

This section delivers the framework of our proposed ConvTEBiLSTM network (see
Figure 3). The framework can be divided into two main modules: input feature construction
and ConvTEBiLSTM network-based field-road classification. Firstly, statistical feature ex-
traction and positional encoding consist of the input feature construction. In addition, in the
ConvTEBiLSTM network-based field-road classification, there are four parts: Conv1d.5x
for extracting local trajectory features, Transformer-Encoder for extracting global trajectory
features, BiLSTM for fusing local and global trajectory features, and Linear Classifier for
field-road mode identification.

https://github.com/AgriMachineryBigData/Field-road_mode_mining
https://github.com/AgriMachineryBigData/Field-road_mode_mining
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1
2022/07/21 

11:23:47
116.617373 35.668324 1.73 283 road

2
2022/07/21 

11:23:49
116.617346 35.668327 1.5 278 road

…. …. …. …. …. …. ….

N
2022/07/21 

11:27:59
116.616263 35.667940 0.55 180 field

Statistical Rule

Feture Dimension 
Concatenate

Input feature construction ConvTEBiLSTM network-based field-road classification

Statistical features PE

Transformer-
Encoder

BiLSTM

Slicing

Conv1d.5X
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a GNSS point with nine statistical features 

N ×

(N, 9)

Positional
Encoding
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。。。。 。。。

Statistical features PE

Local Features

。。。。

Local Features

Global Features

。。。。

Global Features

(N, 9)

(N, 10)

(N, 19)

Fused Fetures

(N, 38)

Linear layer

Sigmoid layer

Probability 
Distribution

Pt

0/1

Result Visualization

Figure 3. The framework of our proposed ConvTEBiLSTM network.

3.1. Input Feature Construction
3.1.1. Statistical Feature Extraction

Previous studies focus on using statistical features (i.e., the recorded parameters of
GNSS trajectory data and derived parameters from the recorded parameters) as the input
features of algorithms, but they primarily utilize the motion features (e.g., speed, direction,
and acceleration) and ignore the geographical distribution features of GNSS points [18,19].
The geographical distribution features are useful for improving the overall performance of
field-road mode classification because field points are usually more densely distributed
than road points (see Figure 4).

Field points

Figure 4. The geographical distribution features of field and road points in a given GNSS trajectory.
The field points and road points are the green points and blue points, respectively. Compared with
road points, field points are usually more densely distributed.

Therefore, a statistical rule is designed to extract nine statistical features of each point
from GNSS trajectory data: eight motion features and a geographical distribution feature.
The motion features consist of speed, speed variation, acceleration, direction, direction
variation, angular velocity, angular velocity variation, and distance. The geographical
distribution feature represents the number of points within a square around the current
point. Firstly, the extraction of eight motion features is defined as follows:

∆vk = vk − vk−1, ak =
∆vk

tk − tk−1
(7)
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∆dirk = (dirk − dirk−1 + θ1) mod θ1, θ1 = 360◦ (8)

ωk =
∆dirk

tk − tk−1
, ∆ωk = ωk −ωk−1 (9)

∆lonk = lonk − lonk−1, ∆latk = latk − latk−1 (10)

b = sin2
(

∆latk
2

)
+ cos(latk−1)× cos(latk)× sin2

(
∆lonk

2

)
(11)

c = 2× arctan 2(
√

b,
√

1− b), R = 6371000, ∆dk = R× c (12)

where vk, tk, dirk, ∆vk, ak, ∆dirk, ωk, ∆ωk, and ∆dk respectively denote the speed, timestamp,
direction, speed variation (m/s), acceleration (m/s2), direction variation (°), angular velocity
(°/s), angular velocity variation (°/s), and distance (m) features of the kth point; lonk,
latk, ∆lonk, and ∆latk respectively denote the longitude, latitude, longitude variation,
and latitude variation features of the kth point; R represents the average radius of the Earth
(m); and mod denotes the modulo operation.

Subsequently, the geographical distribution features are calculated by Algorithm 1:

Algorithm 1 Calculate Geographical Distribution Features

1: function CONVERTTOPLANECOORDINATES(lon_WGS, lat_WGS)
2: in_proj← CRS(“EPSG:4326”) ▷ WGS84
3: out_proj← CRS(“EPSG:32633”) ▷ UTM Zone 33N
4: transformer← Transformer.from_crs(in_proj, out_proj, always_xy=True)
5: lon_UTM, lat_UTM← transformer.transform(lon_WGS, lat_WGS)
6: return lon_UTM, lat_UTM
7: end function
8: function GEODISTRIBUTIONFEATURES(current_point, gnss_data, square_width)
9: square_left← current_point[’lon_UTM’] - square_width / 2

10: square_right← current_point[’lon_UTM’] + square_width / 2
11: square_bottom← current_point[’lat_UTM’] - square_width / 2
12: square_top← current_point[’lat_UTM’] + square_width / 2
13: lon_UTM, lat_UTM← CONVERTTOPLANECOORDINATES(
14: [point[’lon_WGS’] for point in gnss_data],
15: [point[’lat_WGS’] for point in gnss_data] )
16: count ← np.sum((lon_UTM ≥ square_left) & (lon_UTM ≤ square_right) &

(lat_UTM ≥ square_bottom) & (lat_UTM ≤ square_top))
17: return count
18: end function

where lon_WGS and lat_WGS denote the geographical coordinates (WGS84), lon_UTM
and lat_UTM denote the plane coordinates (UTM), ConvertToPlaneCoordinates function
is used to convert geographical coordinates to plane coordinates, gnss_data denotes all
points of a given trajectory, square_width denotes the width of the square region around the
point current_point, and GeoDistributionFeatures function is used to calculate the number
of points within the specified square region.

In this paper, the square_width is 10. The average value of the geographical distribution
features of the field points on each GNSS trajectory is larger than the road points because
of the lower driving speed of agricultural machinery and the closer distance between
consecutive GNSS points (see Figure 5).
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Figure 5. The statistical information of the geographical distribution features on 100 GNSS trajectories.
The average value of the geographical distribution features of the field points on each GNSS trajectory
is larger than the road points.

3.1.2. Positional Encoding

When dealing with temporal-related tasks, the order of each input feature vector is es-
sential for the Transformer-Encoder network to capture the temporal dependencies among
feature vectors [26]. Therefore, by using positional encoding, the positional information is
introduced to each point in a given GNSS trajectory. The positional encoding is defined
as follows:

PE(pos) = sin(pos), 0 ≤ pos ≤ N − 1 (13)

where PE(pos) is used to obtain the positional encoding for the posth point, and N denotes
the number of points in a given GNSS trajectory.

After the statistical feature extraction and positional encoding processes, each GNSS
point has nine statistical features and a positional encoding and then is used as the final
input feature vector of neural networks.

3.2. ConvTEBiLSTM Network-Based Field-Road Classification

In this paper, we set the output feature dimension of each neural network module to
be the same as the input feature dimension (see Figure 3) rather than being a multiple of it
to improve training and inference efficiency, minimize redundant latent features, enhance
model interpretability, and mitigate the risk of overfitting.

3.2.1. Conv1d.5x for Extracting Local Trajectory Features

The Conv1d.5x network consists of a 1D convolution kernel (input_channel = 9,
output_channel = 9, kernel_size = 5, stride = 1, padding = 2) and a Relu activation
function (see Figure 3). The 1D convolution kernel is used to extract nine local trajectory
features of a point from five temporal neighboring input feature vectors. Specifically,
the kernel_size, stride, and padding of the Conv1d.5x network are respectively set to 5,
1, and 2 to preserve the temporal structure of the input features during the convolution
operation. Firstly, the kernel_size is set to 5, which indicates that each convolution operation
considers continuous 5 GNSS points from a given trajectory, to capture local latent features.
Secondly, the stride is set to 1, meaning that the convolution operation computes at every
position of a given trajectory to ensure comprehensive feature extraction across the entire
trajectory. Finally, the padding is set to 2 for padding the 2 zero values at both ends of
the input trajectory, which ensures that convolution operations are correctly computed at
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the edges while maintaining the same size for the output sequence as the input sequence.
The Conv1d.5x network is formulated as follows:

Y(c)
i =

k−1

∑
j=0

X(c)
i+j · K

(c)
j (14)

where k denotes the size of the convolution kernel, c denotes the channel index of the input
feature vector, j denotes the offset position of the convolution kernel, i denotes the position
in the output sequence, K(c)

j denotes the jth weight of the convolution kernel in the cth

channel, X(c)
i+j denotes the i + jth vector in the input sequence of the cth channel, and Y(c)

i
denotes the ith element in the output sequence of the cth channel.

3.2.2. Transformer-Encoder for Extracting Global Trajectory Features

Most previous studies have proved that the Transformer neural network with en-
coder and decoder modules [26] is effective in extracting global features from original
data by using the self-attention mechanism [27]. In this paper, the Transformer-Encoder
(d_model = 10, nhead = 10, activation = relu, dim_ f eed f orward = 256, num_layers = 4)
is used to extract 10 global trajectory features of a point from all input feature vectors.
The input sequence is denoted as X= [x1, x2, . . . , xT ], where T is the number of input feature
vectors, and each xi is a vector containing ten input features. The Transformer-Encoder
mainly consists of self-attention layers and feed-forward neural networks. The self-attention
layer of the Transformer-Encoder is formulated as follows:

Q(h)
i = xi ·W

(h)
Qi , K(h)

j = xj ·W
(h)
Ki , V(h)

j = xj ·W
(h)
Vi (15)

where i and j denote the position indices in the input sequence X, h represents the index
of the attention head in the self-attention mechanism, xi and xj are the feature vectors of

the input sequence, Q(h)
i represents the query vector at position i in attention head h, K(h)

j

represents the key vector at position j in attention head h, V(h)
j represents the value vector

at position j in attention head h, and W(h)
Qi , W(h)

Ki , and W(h)
Vi are learned weight matrices.

Attention(Q(h)
i , K(h)

j , V(h)
j ) =

exp(Q(h)
i · K

(h)
j /
√

dhead)

∑T
j=1 exp(Q(h)

i · K
(h)
j /
√

dhead)
·V(h)

j (16)

where Attention(Q(h)
i ,K(h)

j ,V(h)
j ) is used to compute the attention scores for each position

in the input sequence by using a scaled dot-product attention formula, determining the
importance of different positions for a given position i in the self-attention mechanism,
Q(h)

i · K
(h)
j calculates the dot product between the query Q(h)

i and key K(h)
j vectors for

positions i and j:

MultiHead(X) = Concat(Attention(Q(h)
i , K(h)

j , V(h)
j ) ∀ h) ·WO (17)

where MultiHead(X) is multi-head attention and is used to apply the self-attention mecha-
nism on each attention head h and obtain the output sequence, Concat function is used to
concatenate the outputs from each head along a certain dimension, and WO is the weight
matrix and is used to linearly transform the concatenated output from the multi-head
attention for producing the final output.

The feed-forward neural network of the Transformer-Encoder is formulated as follows:

FFN(X) = ReLU(X ·W1 + b1) ·W2 + b2 (18)
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where FFN(X) is used to capture complex and non-linear relationships in the input se-
quence, Relu function applies an element-wise rectification for setting all negative values to
zero, W1 is the weight matrix for the first linear transformation in the feed-forward network,
W2 is the weight matrix for the second linear transformation, and b1 and b2 are bias vectors
added to the respective linear transformations.

Finally, the layer normalization and residual connection are applied to obtain the
final output:

Output = LayerNorm(FFN(MultiHead(X)) + X) (19)

where LayerNorm function is a normalization technique that standardizes the output of a
neural network layer, FFN(MultiHead(X) + X) performs a residual connection operation
for adding the output of the feed-forward network to the input sequence, and Output is
the final output with global trajectory features of the Transformer-encoder.

3.2.3. BiLSTM for Fusing Local and Global Trajectory Features

Firstly, the local features extracted by Conv1d.5x and the global features extracted
by the Transformer-Encoder are concatenated in the feature dimension. Subsequently,
the concatenated features are fed into a BiLSTM [28] (input_size = 19, hidden_size =19, and
number_layers=2) for fusing the local and global trajectory features. The BiLSTM contains
two LSTM modules, and the LSTM module is formulated as follows:

hi = LSTM(xi, hi−1) (20)

where xi is the local and global feature vector of the ith point, and hi is the hidden state.

−→
hi = LSTM(xi,

−−→
hi−1),

←
hi= LSTM(xi,

←−−
hi+1), hi = [

−→
hi ,
←−
hi ] (21)

where
−→
hi can capture the temporal relationships from past points, and

←−
hi can learn the

temporal dependencies from future points.
By using a trajectory and its reverse, the BiLSTM learns ht, which combines the past

temporal with future temporal information and fuses the local and global trajectory features.

3.2.4. Linear Classifier for Field-Road Mode Identification

Based on hi, the ith point is classified by a fully connected layer (in_ f eatures = 38,
and ou_ f eatures = 2). Then, its predicted probability distribution pi on “field” and “road”
categories is obtained by using a sigmoid activation function [29]. The sigmoid activation
function is formulated as follows:

f (x) =
1

1 + e−x (22)

where e refers to the mathematical constant known as Euler’s number, which is approxi-
mately equal to 2.71828, and the x represents the input to the sigmoid function.

4. Experiments
4.1. Experimental Settings
4.1.1. Comparison Methods

To evaluate the classification performance of our method, five famous temporal-
related networks are used as the baselines: 1D Convolutional Neural Network (1D-CNN),
Transformer-Encoder Neural Network (TE), Bidirectional Long Short-Term Memory Neural
Network (BiLSTM), Convolutional Bidirectional Long Short-Term Memory Neural Network
(ConvBiLSTM), and Transformer+BiLSTM Neural Network (TE-BiLSTM). The operation
environment used for training and testing has an Intel Xeon Processor (Icelake) CPU and
three NVIDIA A100 (40G) GPUs, and all neural networks are performed in Python language
on Ubuntu 20.04 LTS (GNU/Linux 5.4.0-139-generic x86_64) using PyTorch API [30].
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4.1.2. Model Training Process

In this paper, there are 200 epochs for model training. In addition, there is a field-road
class imbalance problem (i.e., the number of field points is much higher than road points)
on the Harvester. In order to tackle the imbalance problem, the focal loss (FC) [31] is used
in this paper. The focal loss can decrease the weight of easily distinguishable points by a
dynamic scaling factor so that more attention is given to those indistinguishable points
during the model training [21]. The focal loss is formulated as follows:

FC = −α(1− p̃t)
γ log( p̃t) (23)

where p̃t refers to the probability of the t-th point with the predicted category (i.e., field or
road), and α and γ are pre-defined parameters. The α is used to deal with the field-road
class imbalance, and γ is utilized to reduce the contribution of easily predicted points to the
final loss. The α is set to 0.25, and γ is set to 2, which are recommended by Lin et al. [31].

In addition, the popular AdamW optimizer [32] is used to optimize our models and
enhance the generalization ability of the models by refining the weight decay mechanism.
In this paper, the weight decay is set to 0.00001, and the learning rate is set to 0.0001 in the
AdamW optimizer, which are recommended by Loshchilov et al. [33]. Finally, considering
the overfitting, arising when a machine learning model performs well on the training
dataset but poorly on the unseen testing dataset, we utilize the early stopping technique
to mitigate this overfitting. Early stopping involves monitoring the performance of the
model on a validation dataset during training and stopping the training process when the
performance on the validation dataset stops improving or starts to degrade. This prevents
the model from overfitting to the training data, thereby improving its generalization ability.

4.1.3. Performance Metrics

Firstly, precision (P), recall (R), F1-score (F1), and accuracy (Acc) are utilized for
performance evaluation. The four metrics are defined by using the confusion matrix,
including true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) [34]. For instance, the “field” category is regarded as the “positive” category, and the
“road” category is regarded as the “negative” category. Therefore, TP represents the field
points correctly classified as “field”, TN represents the road points correctly classified as
“road”, FP represents the road points incorrectly classified as “field”, and FN represents the
field points incorrectly classified as “road”. Furthermore, for “positive” category, P reflects
the ability of the neural network to correctly identify the GNSS points with “positive”
category in the predicted data, R shows the ability of the neural network to detect the GNSS
points with “positive” category in the ground-truth data, and F1 is a harmonic means of the
P and R. Acc is the ratio of the number of correctly predicted points to the total number of
input points. In addition, model size and inference time are utilized for the full evaluation.
Specifically, the inference time refers to the average time it takes for the model to predict all
test trajectories, and the model size refers to the amount of space occupied by the model on
storage devices:

P =
TP

TP + FP
(24)

R =
TP

TP + FN
(25)

F1 = 2× P× R
P + R

(26)

Acc =
TP + TN

TP + TN + FP + FN
(27)

4.1.4. Model Testing

K-fold cross-validation [35] is used for evaluating the classification performance of
various methods. In this paper, K = 10 is taken, which is recommended by Stone et al. [36],
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Westerhuis et al. [37] and Neunhoeffer et al. [38], allowing to fully test the model perfor-
mance. Firstly, the Harvester dataset is randomly divided into K equivalent parts (C1,
C2,. . . , CK) with n trajectories in each part. Then, the Ci data are utilized as the validation
dataset (i ∈ (1, 2, . . . , k)), and the remaining parts are used as the training dataset for K
iterations until the cross-validation is completed.

4.2. Results and Discussion
4.2.1. Method Comparisons and Analysis

Table 2 shows the overall classification performance of our proposed method and the
baselines. Although the model size and inference time are not the smallest and fastest
of all methods, our method (ConvTEBiLSTM+MF+GDF) achieves superior performance
in accurately classifying field-road modes. Specifically, compared with the baselines, our
method (ConvTEBiLSTM+MF+GDF) achieves the best accuracy of 97.38% and the highest
F1-score of 92.74%. In addition, the results demonstrate that our method (ConvTEBiL-
STM+MF+GDF) achieves a 0.79% accuracy increase and a 0.95% F1-score improvement
over the best method (TE-BiLSTM+MF+GDF). The above results suggest that our method
(ConvTEBiLSTM+MF+GDF) is effective in differentiating field points from road points and
viable for real-world applications. The different performance results of the six field-road
mode classification methods can be attributed to the feature extraction abilities of the used
neural networks and the strategy of feature fusion. Specifically, the 1D-CNN+MF+GDF
method uses the 1D-CNN to extract the local trajectory features from temporal neighboring
points in a GNSS trajectory but ignores the feature fusion. The TE+MF+GDF method uses
the TE to extract the global trajectory features from all GNSS points and also ignores the
feature fusion. The BiLSTM+MF+GDF method captures the past and future temporal rela-
tionships between the current point and its last-next points but ignores the local and global
trajectory features. In addition, the ConvBiLSTM+MF+GDF and TE-BiLSTM+MF+GDF
methods consider feature fusion but ignore either global trajectory features or local trajec-
tory features.

Different from the baselines, our method (ConvBiLSTM+MF+GDF) extracts and fuses
the local and global trajectory features by combining multiple neural networks. Specifically,
we use the 1D-CNN and TE to extract the local and global trajectory features, respectively.
Subsequently, the global trajectory features extracted by TE and the local trajectory features
extracted by 1D-CNN are concatenated in the feature dimension. Finally, the concatenated
features are fed into the BiLSTM and are effectively fused by the BiLSTM. The success
of our ConvTEBiLSTM network highlights the importance of combining different neural
networks for field-road mode classification to take advantage of their strengths.

Table 2. The overall classification performances of the six methods on the Harvester dataset.

Method P R F1 Acc Model Size /kb Inference Time /s

1D-CNN+MF+GDF 45.11 49.97 45.88 85.09 20.6 0.828824
TE+MF+GDF 91.07 82.55 85.34 94.29 112 0.798763

ConvBiLSTM+MF+GDF 46.91 50.33 47.80 84.13 20.7 0.925290
TE-BiLSTM+MF+GDF 94.01 91.52 91.79 96.59 132 0.968573

BiLSTM+MF+GDF 93.38 91.17 91.14 96.32 17.7 0.981394
ConvTEBiLSTM+MF+GDF 95.60 91.60 92.74 97.38 179 0.998893

MF: motion features; GDF: geographical distribution feature; P: Precision; R: Recall; F1: F1-score; Acc: Accuracy.

Figures 6 and 7 show the classification results and confusion matrices of the six meth-
ods in a a harvester trajectory with multiple fields. In addition, Figures 8 and 9 show the
classification results and confusion matrices of the six methods in a trajectory with a field. It
can be intuitively seen that compared with two ground-truth harvester trajectories, our Con-
vTEBiLSTM network performs the best in terms of classification performance. For instance,
the confusion matrix (see Figure 7) shows that our method (ConvTEBiLSTM+MF+GDF)
achieves the largest number of correctly classified points and outperforms the baseline
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(TE-BiLSTM+MF+GDF) by 66 points in the Harvester trajectory with multiple fields, sig-
nificantly alleviating incorrectly classified points. However, compared with the harvester
trajectory with multiple fields, the classification performance of our method (ConvTEBiL-
STM+MF+GDF) on the harvester trajectory with a field is much better. This is because
there are a few field points with low density similar to the road points on the harvester
trajectory with multiple fields. This suggests that our method (ConvTEBiLSTM+MF+GDF)
is more effective in the GNSS trajectory with high-density fields.

(a) Ground Truth (b) 1D-CNN+MF+GDF (c) TE+MF+GDF (d) BiLSTM+MF+GDF

(e) ConvBiLSTM+MF+GDF (f) TE-BiLSTM+MF+GDF (g) ConvTEBiLSTM+MF+GDF

Figure 6. The visual images of a harvester trajectory with multiple fields. The field and road points are
the green and blue points, respectively. (a) is a ground-truth harvester trajectory; (b–g) are classified
results by 1D-CNN, TE, BiLSTM, ConvBiLSTM, TE-BiLSTM, and ConvTEBiLSTM, respectively.

(a) 1D-CNN+MF+GDF (b) TE+MF+GDF (c) BiLSTM+MF+GDF

(d) ConvBiLSTM+MF+GDF (e) TE-BiLSTM+MF+GDF (f) ConvTEBiLSTM+MF+GDF

Figure 7. The confusion matrix of a harvester trajectory with multiple fields. (a–f) are the classified
results by 1D-CNN, TE, BiLSTM, ConvBiLSTM, TE-BiLSTM, and ConvTEBiLSTM, respectively.
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(a) Ground Truth (b) 1D-CNN+MF+GDF (c) TE+MF+GDF (d) BiLSTM+MF+GDF

(e) ConvBiLSTM+MF+GDF (f) TE-BiLSTM+MF+GDF (g) ConvTEBiLSTM+MF+GDF

Figure 8. The visual images of a harvester trajectory with a field. The field and road points are the
green and blue points, respectively. (a) is a ground-truth harvester trajectory; (b–g) are classified
results by 1D-CNN, TE, BiLSTM, ConvBiLSTM, TE-BiLSTM, and ConvTEBiLSTM, respectively.

(a) 1D-CNN+MF+GDF (b) TE+MF+GDF (c) BiLSTM+MF+GDF

(d) ConvBiLSTM+MF+GDF (e) TE-BiLSTM+MF+GDF (f) ConvTEBiLSTM+MF+GDF

Figure 9. The confusion matrix of a harvester trajectory with a field. (a–f) are classified results by
1D-CNN, TE, BiLSTM, ConvBiLSTM, TE-BiLSTM, and ConvTEBiLSTM, respectively.

4.2.2. Effective of Geographical Distribution Feature

To investigate the impact of the geographical distribution feature (GDF), ablation
studies are performed, and the results are shown in Table 3. The results show that the
overall performances of the two networks (i.e., BiLSTM and ConvTEBiLSTM) increase
greatly by adding GDF to motion features (MF) on the Harvester. For instance, after adding
the GDF to MF, the F1-score and accuracy of the ConvTEBiLSTM network respectively
increase by 43.34% and 12.97%, and this suggests that the geographical distribution features
are greatly useful to enhance the overall classification performance of neural networks.
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Table 3. The overall classification performance results of the four methods on the Harvester dataset.

Method P R F1 Acc

BiLSTM+MF 83.45 72.35 72.74 88.60
BiLSTM+MF+GDF 93.38 91.17 91.14 96.32

ConvTEBiLSTM+MF 51.79 52.23 49.40 84.41
ConvTEBiLSTM+MF+GDF 95.60 91.60 92.74 97.38

MF: motion features; GDF: geographical distribution feature; P: Precision; R: Recall; F1: F1-score; Acc: Accuracy.

Figure 10 shows visual results of a harvester trajectory, and Figure 11 shows the
confusion matrix corresponding to the trajectory. The visual results suggest that compared
with ConvTEBiLSTM+MF, ConvTEBiLSTM+MF+GDF significantly alleviates incorrectly
classified points.

(a) Ground Truth (b) ConvTEBiLSTM+MF+GDF (c) ConvTEBiLSTM+MF

Figure 10. The visual images of a harvester trajectory. The field and road points are the green and
blue points, respectively. (a) is a ground-truth harvester trajectory; (b,c) are classified results by
ConvTEBiLSTM+MF+GDF and ConvTEBiLSTM+MF, respectively.

(a) ConvTEBiLSTM+MF+GDF (b) ConvTEBiLSTM+MF

Figure 11. The confusion matrix of a harvester trajectory. (a,b) are classified results by ConvTEBiL-
STM+MF+GDF and ConvTEBiLSTM+MF, respectively.

5. Conclusions

In this paper, a ConvTEBiLSTM network fusing local and global trajectory features is
proposed to improve the accuracy of field-road mode classification. Firstly, a statistical rule
is designed to extract eight motion features and a geographical distribution feature from
the original trajectory data to enrich the feature representation of each point. Our method
combines multiple neural networks to extract and fuse the local and global trajectory
features for field-road classification. Experimental results demonstrate that the ConvTE-
BiLSTM network-based method respectively achieves the best accuracy and the highest
F1-score of 97.38% and 92.74% on the Harvester dataset, outperforming the baselines. This
suggests that fusing the local and global trajectory features is useful for improving the
overall performance of field-road classification. By utilizing the accurate classification
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results, the field boundaries can be determined accurately, thereby effectively estimating
the field area. This has important implications for agricultural production planning, land
use planning, and the formulation of agricultural subsidy policies.

In the future, considering the potential for the shared bias of 10-fold cross-validation
to exaggerate the model’s predictive performance, we will utilize more advanced strategies
(e.g., stratified K-fold cross-validation, and repeated cross-validation) to further mitigate
the impact of shared bias for achieving more effective classification performance evaluation.
In addition, considering the suboptimality of the current threshold selection, in the future,
we will conduct further research on threshold selection (e.g., l, t, and m) on our Harvester
dataset and apply this method to other public trajectory datasets. Finally, we plan to design
a robust field-road classification method that can effectively handle the problem of difficulty
in improving the identification accuracy of fields with low density.
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