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Abstract: Exploring spatial anisotropy features and capturing spatial interactions during urban
change simulation is of great significance to enhance the effectiveness of dynamic urban modeling
and improve simulation accuracy. Addressing the inadequacies of current cellular automaton-based
urban expansion models in exploring spatial anisotropy features, overlooking spatial interaction
forces, and the ineffective expansion of cells due to traditional neighborhood computation methods,
this study builds upon the machine learning-based urban expansion model. It introduces a spatial
anisotropy index into the comprehensive probability module and incorporates a gravity-guided
expansion neighborhood operator into the iterative module. Consequently, the RF-CNN-SAI-CA
model is developed. Focusing on the 21 districts of the main urban area in Chongqing, the study
conducts comparative analysis and ablation experiments using different models to simulate the land
use changes between 2010 and 2020. Different model comparison results show that the recommended
model in this study has a Kappa value of 0.8561 and an FOM value of 0.4596. Compared with the RF-
CA model and the FA-MLP-CA model, the Kappa values are higher by 0.0407 and 0.1577, respectively,
while the FOM values are improved by 0.0529 and 0.0654, respectively. Ablation experiment results
indicate that removing gravity, SAI, and expansion neighborhood operators leads to a decrease in
both Kappa and FOM values. These findings demonstrate that the RF-CNN-SAI-CA model, based
on the expanded neighborhood iteration algorithm, effectively integrates spatial anisotropy features,
captures spatial interaction forces, and resolves neighborhood cell failure issues, thereby significantly
improving simulation effectiveness.

Keywords: urban expansion; spatial anisotropy; expanding neighborhood; RF-CNN-SAI-CA model

1. Introduction

City over-expansion has brought substantial economic benefits to city governments.
However, it has also brought issues such as decreased arable land, declining land quality,
and environmental pollution [1]. Urban expansion models, due to their ability to rational-
ize land resources and effectively adjust urban-rural structures, provide decision-making
solutions for addressing societal issues like ecological environment and wastage of land
resources, making them significant tools and methods in urban-rural development plan-
ning [2,3]. Among the numerous urban expansion models, the Cellular Automata (CA)
model has emerged as a mainstream method for simulating urban expansion due to its
support for spatiotemporal characteristics, well-structured openness, and iterative support
for nonlinear computations [4–7]. This model focuses on rules governing the conversion of
non-urban cells to urban cells [8], which are influenced by various factors. Previous research
has combined neural networks [9,10], genetic algorithms [11], Logistic regression [12,13],
and other methods with CA to extract conversion rules from historical data, proving the
CA model’s flexible open structure and outstanding simulation performance.
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Random Forest (RF) is an ensemble learning algorithm based on decision trees. It ex-
cels in handling large databases, requiring less training time compared to other machine
learning classifiers. RF demonstrates robustness in dealing with outliers and noise, and it
quantifies the importance of each input variable [14]. Leveraging these advantages of RF,
this paper utilizes it to calculate the initial conversion probability for each cell point.

The origin of Convolutional Neural Networks (CNN) can be traced back to the early
exploration in the field of deep learning, drawing inspiration primarily from the simulation
of the biological visual system and the demands of pattern recognition. Its advantages
include local perception of images, parameter sharing to reduce learning parameters, con-
struction of spatial hierarchical structures, robustness to transformations like translation
and rotation, and automatic feature learning. Through multi-level convolution and pooling
operations, CNN gradually extracts abstract features from images, showcasing outstanding
performance in tasks such as image classification, object detection, and semantic segmenta-
tion. Its adaptability to large-scale data makes it the preferred method for handling complex
image data [15]. Leveraging these advantages of CNN, this paper considers its application
in solving neighborhood effect probabilities.

In the domain of urban dynamic simulation, spatial interaction is crucial for accurately
depicting urban development. Currently, researchers are focused on investigating three
primary aspects: spatial proximity, spatial connectivity, and spatial anisotropy [16]. Spatial
proximity considers the distance and correlation between different regions, where shorter
distances generally lead to greater mutual influences among features. A common method
when constructing Cellular Automata (CA) transition rules involves using inverse-distance
weighting to measure the mutual impact between adjacent areas and a central region [17].
Although spatial proximity provides the most fundamental and core driving force for CA
simulation rules, it often confines itself to specific neighborhoods, lacking an overall city
perception and disregarding spatial connectivity between cells and the external world. Spa-
tial connectivity usually refers to the spatial accessibility between cells and significant urban
facilities (such as city centers, important transportation hubs, green parks, and essential
service facilities). Presently, the predominant approach involves assigning different weight
coefficients to various road types and considering spatial connectivity in CA models by
computing the weighted accessibility distances of different roads [18,19]. Previous studies
have considered distances not only to roads but also to city centers, green areas, certain
crucial facilities, and overall cell accessibility reflected through different distance aggrega-
tions. However, current methodologies have not fully accounted for directional driving
force variations among cells with the same spatial accessibility during urban development.
Spatial anisotropy (SA) refers to the variation in the dependence (autocorrelation) of spatial
phenomena or processes (data attributes) concerning changes in distance and direction. It is
also an important characteristic of the spatial phenomenon of urban expansion. Modeling
spatial anisotropy in urban expansion has long been of interest, yet challenges persist in
its modeling. Current research on modeling spatial anisotropy in urban expansion mainly
focuses on directional characteristics of urban evolution through aspects such as planning
constraints [20], natural condition constraints [21], sector-based weighting [22], specific
directional geographic weighting [23], among others.

This paper, through a meticulous review, primarily focuses on the following three
limitations and proposes corresponding research questions: (1) Previous cellular automaton-
based urban expansion models exhibit shortcomings in exploring spatial anisotropic fea-
tures when considering spatial directionality. For instance, methods like sector zoning
weighting [24,25] and specific directional geographic weighting fail to quantitatively char-
acterize the directional probability of cells, overlooking the integration of spatial anisotropic
features into the overall conversion probability by assigning each cell a spatial directional
probability. (2) Urban development is a complex system with multiple facets, influenced
not only by internal factors but also closely related to the development of surrounding cities.
To understand the process of urban evolution, it is necessary to consider the interactions
between cities and their surrounding counterparts. Spatial anisotropy is influenced by a
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combination of various internal and external factors, requiring a balance between local and
global scales [26,27]. However, in previous studies, the modeling of anisotropic patterns in
urban expansion often overly focuses on internal driving factors, lacking in-depth analysis
of dynamic mechanisms, especially with minimal consideration for external driving factors.
While gravity models provide a more detailed analysis method to reveal the anisotropic ef-
fects of external factors on the internal evolution of cities [28–31], their application presents
challenges, such as the careful consideration of model parameters, data accuracy, and the
balancing of relative gravities. Therefore, the integration of gravity models (deductive
models) with other spatial interaction models, particularly in conjunction with machine
learning models, is an important direction in urban simulation research [32,33]. (3) Regard-
ing neighborhood effect modeling, early studies mainly focused on the spatial adjacency
relationships between cells, i.e., whether the conversion of a cell is influenced by the states
of its surrounding cells [34–36]. Traditional neighborhoods have some shortcomings in flexi-
bility, globality, and dynamism [37]. Firstly, they often adopt fixed neighborhood structures,
which may limit adaptability as certain issues might require more flexible neighborhood
definitions to better capture changes in the surrounding environment. Secondly, traditional
neighborhood effect methods usually focus on local cell neighborhoods, neglecting the
impact of cells at greater distances on simulations. This could result in the model inaccu-
rately predicting global phenomena in some cases. Another shortcoming arises because
this method requires considering the states of surrounding cells (such as land classes) to
define the transformation rules (transition probabilities) of central cells, leading to the
possibility of certain neighborhood probabilities becoming zero due to missing data (e.g.,
urban land classes) within a certain range (e.g., 3 × 3). Zero neighborhood probabilities
mean that despite some cells having high development potential and probabilities (p adapt)
under the influence of driving factors, the modeling approach’s neighborhood “veto power”
(p neighborhood) invalidates the overall cell transformation probability. Consequently, the
region perpetually loses development opportunities, resulting in simulation failure due to
the calculation method of traditional neighborhoods.

Based on the aforementioned issues, this paper proceeds to investigate the following
aspects in order:

(1) Introducing the Spatial Anisotropy Index (SAI) to measure the anisotropic charac-
teristics of various land-use types, this study concurrently attempts to integrate this
index with traditional urban dynamic simulation models. The aim is to explore the
role and driving mechanisms of spatial anisotropy features in revealing patterns of
urban expansion.

(2) The integration of spatial interaction models (such as gravity models) with cellu-
lar automaton-based urban expansion models is aimed at providing a more com-
prehensive insight into the driving mechanisms and anisotropic characteristics of
urban expansion.

(3) Using the perspective of expansion neighborhoods to address the issue of cellular
invalidity caused by traditional neighborhood effects.

Based on this, analyzing the underlying causes of urban expansion to comprehensively
unveil the patterns of urban development, thereby offering robust support for urban
planning and sustainable development.

2. Materials and Methods
2.1. Study Area

This study selects the urban area of Chongqing as the research region, encompassing
the “Central Urban Area” and the “Main Urban New Area,” comprising a total of 21 districts
(refer to Figure 1). Being the sole direct-controlled municipality in the western region,
Chongqing is strategically located at the confluence of the central and western regions,
as well as at the intersection of the Yangtze River Economic Belt and the Belt and Road
Initiative, enjoying unique geographical advantages. Serving as a core part of the Chengdu-
Chongqing economic zone, Chongqing plays a pivotal role as a key gateway, facing west
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and south towards the Eurasian continent. In recent years, Chongqing has strategically
focused on the “Two Centers and Two Areas” (signifying important economic centers with
nationwide influence, centers for technological innovation, areas for reform and opening-
up, and high-quality living environments). This strategic positioning aims not only to
promote the city’s internal development but also to vigorously propel the coordinated
development plan within the Chengdu-Chongqing economic zone, marking a new strategic
opportunity for Chongqing.
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2.2. Data

This paper selects urban expansion driving factor data from two perspectives: natural
environment and socio-economic factors. The natural factors encompass elevation and
slope data. The socio-economic factors include data such as hospital density, shopping
center density, school density, tourist attraction density, nighttime light intensity, and ac-
cessibility factors like distances to the airport, town center, bus station, subway station,
train station, railway, highway, and water bodies. The research data (Table 1) for land
use originates from the Global Land Cover High-Resolution Observation and Monitoring
(FROM-GLC) dataset with a resolution of 30 m. Based on Chongqing’s land use character-
istics, the land use data was categorized into six types: grassland, impermeable surface,
cultivated land, woodland, water bodies, and unused land. The heterogeneous data un-
derwent the following procedures: (1) standardizing the research area, spatial coordinate
system, and resolution (100 m); (2) conducting Euclidean distance calculations on water
bodies and road networks using ArcMap 10.7 software; (3) calculating point density for
point-of-interest data. Eventually, a unified dataset for driving factors and land use change
was created (see Figure 2).

Table 1. Data used in the study.

Data Name Year Resolution Source

Land Use 2010–2020 30 m FROM-GLC (accessed on 20 December 2022)
Slope 100 m Calculated from DEM
DEM 100 m data.ess.tsinghua.edu.cn (accessed on 25 December 2022)

Night Light 2010 100 m www.worldpop.org (accessed on 8 November 2022)
Water 2010 OpenStreetMap (accessed on 10 November 2022)

Road Network 2010 www.openstreetmap.org (accessed on 6 April 2022)
Point of interest 2010–2020 web scraping (accessed on 20 April 2022)

data.ess.tsinghua.edu.cn
www.worldpop.org
www.openstreetmap.org
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2.3. Methods

The model mainly comprises four modules (see Figure 3): (1) Spatial Anisotropy
Extraction Analysis Module; (2) Neighborhood Probability Extraction Module based on
the Expansion Neighborhood-CNN Model; (3) Cellular Automata (CA) Dynamic Iteration
Module based on the Inter-city Gravity Model; (4) Model Validation Module.

The comprehensive transformation probability of a specific land-use class for each cell
in the traditional Cellular Automata (CA) model depends on the land development suit-
ability probability, neighborhood effect probability, constraint factors, and random effects.

In this article, to explore the impact of cell development in different spatial directions
on land use change, we introduced the Spatial Anisotropy Index (SAI) into the traditional
comprehensive transformation suitability module. The formula is as follows:

Pt
(i,j) = Pt

D(i,j) × Pt
N(i,j) × Pt

S(i,j) × R (1)

where, Pt
(i,j) represents the comprehensive conversion probability of the cell at position

(i, j); Pt
D(i,j) denotes the urban development suitability probability of the cell at position

(i, j), which in this paper is computed using the Random Forest (RF) module. It integrates
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15 driver factor layers’ data with the land-use data changing from 2010 to 2020, establishing
a unified spatial database. This suitability probability is derived by employing a random
forest model based on the influencing driver factors. Pt

N(i,j) signifies the neighborhood
effect probability of the cell at position (i, j), calculated in this paper by the expansion
neighborhood and CNN module. Pt

S(i,j) stands for the Spatial Anisotropy Index (SAI) of the
cell at position (i, j), representing the influence of forces from different directions on land-
use change. R represents the random effect during the land expansion and change process.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 6 of 25 
 

 

 
Figure 3. Module flow chart. 

The comprehensive transformation probability of a specific land-use class for each 
cell in the traditional Cellular Automata (CA) model depends on the land development 
suitability probability, neighborhood effect probability, constraint factors, and random ef-
fects. 

In this article, to explore the impact of cell development in different spatial directions 
on land use change, we introduced the Spatial Anisotropy Index (SAI) into the traditional 
comprehensive transformation suitability module. The formula is as follows: 𝑃( , ) = 𝑃 ( , ) × 𝑃 ( , ) × 𝑃 ( , ) × 𝑅  (1) 

where, 𝑃( , ) represents the comprehensive conversion probability of the cell at position (𝑖, 𝑗); 𝑃 ( , ) denotes the urban development suitability probability of the cell at position (𝑖, 𝑗), which in this paper is computed using the Random Forest (RF) module. It integrates 
15 driver factor layers’ data with the land-use data changing from 2010 to 2020, establish-
ing a unified spatial database. This suitability probability is derived by employing a ran-
dom forest model based on the influencing driver factors. 𝑃 ( , ) signifies the neighbor-
hood effect probability of the cell at position (𝑖, 𝑗), calculated in this paper by the expan-
sion neighborhood and CNN module. 𝑃 ( , )  stands for the Spatial Anisotropy Index 
(SAI) of the cell at position (𝑖, 𝑗), representing the influence of forces from different direc-
tions on land-use change. 𝑅 represents the random effect during the land expansion and 
change process. 

Figure 3. Module flow chart.

2.3.1. Spatial Anisotropy Module

Spatial Anisotropy (SA) is a significant feature in urban development, primarily
focusing on the extent to which spatial directionality influences simulation results in urban
expansion modeling. Specifically, it describes how different directions of urban expansion
affect simulation results. For instance, in simulations, there may be variations in the
evolution and changes of a non-urban cell in different spatial directions. In urban expansion
modeling, partitioning schemes are commonly employed to address this directional issue,
but this approach may lead to imbalances in simulation results in transition zones between
two sector regions.

To delve deeper into revealing the spatial anisotropic patterns in urban land expansion,
this paper introduces Spatial Anisotropy Index (SAI) on the basis of traditional urban ex-
pansion models. SAI quantifies the anisotropic probability of cells and integrates it into the
overall conversion probability of cells. This allows for a more accurate simulation of urban
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expansion changes and development trends in different directions, thereby enhancing the
accuracy and interpretability of simulation results.

How to measure anisotropy is crucial in anisotropy modeling. In contrast to the urban
center, the proportion of pixels of a certain land use type in different directions compared
to the total number of pixels in that direction exhibits significant differences. We refer to
this proportion as the anisotropy index of a certain land type, as specified in Formula (2).

SAI(i,j) =
Upl

Tpl
(2)

SAI(i,j): The anisotropy index of a certain land type.
Upl : The number of cells of a certain type along the line connecting the central city cell and
the observation point.
Tpl : The total number of cells along the line connecting the central city cell and the observa-
tion point.

Specific Steps: (1) Load Land Use Layer Data: Load land use layer data for the
years 2010–2020, ensuring correct data formatting and the availability of land use type
information for each cell. (2) Select City Center Point: Choose the center point of the city
within the land use data layer, which can be either the geographic center of the city or a
representative location. (3) Establish Four Quadrants: Create four quadrants around the
city center point, dividing them according to the positive and negative directions of spatial
coordinate axes. (4) Determine Line Equations: For randomly selected cell points within
each quadrant and the city center point, calculate the line equations connecting them. This
can be achieved using methods like two-point form or slope-intercept form. (5) Calculate
Spatial Anisotropy Index (SAI): Utilize the aforementioned line equations to compute the
Spatial Anisotropy Index (SAI) for each research point based on the provided formula. This
index reflects the trends and differences of cells in different directions.

In this study, the spatial anisotropy index (SAI) for six types of land use in Chongqing
in 2010 was calculated based on Formula (2) and the land use data of Chongqing in 2010.
The results are presented in Figure 4.
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The spatial anisotropy index calculated earlier represents static observational (statisti-
cal) data at a specific point in time, which to some extent, expresses the directionality and
preference of cell expansion in space. We believe that the factors leading to the anisotropic
characteristics of land classes in spatial distribution stem from two forces: expansion forces
from within the city (referred to as internal forces) and interactions between cities from out-
side (referred to as external forces). Presently, urban land change models place significant
emphasis on internal forces but tend to overlook external forces due to several challenges
in modeling them. In the CA iteration module of this study, we aim to explore the impact
of external forces on urban expansion.

2.3.2. Neighborhood Effect Extraction Module

The traditional cellular neighborhood effect is a crucial mechanism used to describe the
interaction between cells and how they respond to changes in the surrounding environment.
Typically, the definition of neighborhood effect involves a fixed neighborhood structure
that determines the surrounding neighboring cells considered by each cell. Taking the
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classic Moore neighborhood as an example, it includes eight adjacent cells around a cell.
The fundamental idea of neighborhood effect is that the state update of a cell is influenced
by the states of its neighboring cells, simulating local interactions between cells. However,
traditional neighborhood effect methods have some limitations in certain situations. Firstly,
they often employ a fixed neighborhood structure, which may limit the adaptability of the
model, as some problems may require a more flexible neighborhood definition to better
capture changes in the surrounding environment. Secondly, traditional neighborhood effect
methods usually focus on the local neighborhood of cells, neglecting the influence of cells at
greater distances on the simulation. This may lead to the model being unable to accurately
predict global phenomena in some cases. Another limitation is that neighborhood effects
may result in zero probabilities for some cell neighborhoods. This implies that, in certain
situations, the state of a cell cannot change according to the current rules, leading to
the abandonment of some cells with development potential and potentially inaccurate
simulation results. In summary, although traditional neighborhood effects play a crucial
role in cellular automaton models, they have some shortcomings in terms of flexibility,
globality, and dynamics, which may limit the accuracy and applicability of the model.

Taking the neighborhood calculation of urban land as an example, the traditional math-
ematical expression of neighborhood calculation is: the density of urban cells within the
n× n neighborhood of the central cell. The mathematical expression of the neighborhood
effect of cell i at time t is:

Ωt
i =

∑n2 con
(
St

i = Urban
)

n2 − 1
(3)

In the formula, Ωt
i is the neighborhood effect of cell i at time t, n is the Moore neigh-

borhood side length, con(.) is the conditional function, the value is 1 when the cell state is
city, otherwise the value is 0, St

i is the state of cell i at time t.
This article addresses the limitations of traditional neighborhoods in terms of flexibility,

globality, and dynamics, particularly focusing on the issue of cell expansion failure in
traditional neighborhood effect computations. It introduces the concept of an expanded
neighborhood construction. The basic approach involves gradually increasing the side
length of the neighborhood from 3, extending up to a maximum value of N (in this
paper, through experimentation, N is chosen as 11), ensuring computational effectiveness
and efficiency (refer to Figure 5). If the expansion up to N still fails to obtain effective
neighborhood probability values, a Convolutional Neural Network (CNN) is utilized to
extract spatial features from the perspective of the driving factors, further resolving the
neighborhood effect.
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The yellow color in Figure 5 represents woodland, green denotes grassland, gray indi-
cates arable land, black represents water bodies, red denotes built-up areas, and dark blue
stands for unused land. In the first 3× 3 Moore neighborhood, the calculated neighborhood
effect for built-up areas is 0. When the Moore neighborhood expands to 5 × 5, the neighbor-
hood effect for built-up areas remains 0. However, as the Moore neighborhood expands to
7 × 7, the neighborhood effect probability for built-up areas becomes 12/49. The concept of
expanded neighborhoods proposed in this paper aims to address situations where there is a
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developmental trend, but the fixed neighborhood constraints lead to a neighborhood effect
probability of 0 for cell points. Starting with the 3 × 3 Moore neighborhood is because
this traditional neighborhood effect focuses more on the spatial correlation and explores
the interaction between adjacent areas, capturing the characteristics and changes in local
land use.

The traditional neighborhood calculation method, employing statistical techniques,
is suitable for the spread and expansion of old areas but becomes ineffective in expressing
the expansion of new areas. This is because, with the traditional method, there are cases
where the probability is 0. If the traditional neighborhood calculation method continues,
it objectively results in a lack of seed points for the expansion of new areas. Although
expanded neighborhoods can reduce the occurrence of probability being 0 to some extent, it
cannot completely eliminate this phenomenon. To address this issue, this paper introduces
an alternative approach by leveraging convolutional neural networks (CNN) to extract
the neighborhood effect at the driver factor level (see Figure 6). This is because the driver
factors surrounding the cell’s neighboring points, to some extent, can also reflect the
transformation trend of that cell point.
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The first step involves preprocessing the land-use data for the year 2020 to obtain the
dataset. Subsequently, with each label sample as the center, the neighborhood was estab-
lished with a range set to N. This procedure led to the segmentation of the 15 driver factor
layers into images of size N × N. According to the research of He Jialv, and considering
the practical research conducted in this paper [8], the optimal value for N was found to
be 51 for the model’s accuracy. Therefore, N was set to 51 in this study. Following this,
the 51 × 51 × 15 image data was fed into the CNN model, undergoing convolution and
pooling operations to ultimately output the neighborhood effect of the cell.

The CNN model mainly consists of 5 convolutional layers, 2 pooling layers and 2 fully
connected layers. The activation function uses ReLu, the loss function uses CrossEntropy,
and the stochastic gradient descent method is used during the training process.

2.3.3. CA Dynamic Iteration Module Based on Urban Inter-City Gravity Model

(1) Comprehensive Suitability Extraction

The operational process of the RF-CNN-SAI-CA model (Figure 7) is as follows:
(1) Urban land use change data were obtained by detecting changes in land use clas-
sification data in the two periods before and after. After unifying the spatial reference
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system and resolution with the 15 driving factor layer data, a spatial database of dependent
variables and independent variables in the study area was established; (2) To conduct
stratified random sampling on a preprocessed unified dataset, the following steps are
undertaken: Initially, label data for six types of land within the study area are quantified,
resulting in 1,844,778 instances of label 1, 552,571 of label 2, 216,804 of label 3, 65,238 of
label 4, 193,713 of label 5, and 40 of label 6. Subsequently, a random selection of 70% from
each label category is extracted to form the training and testing dataset: 1,200,000 from
label 1, 380,000 from label 2, 150,000 from label 3, 40,000 from label 4, 130,000 from label 5,
and 30 from label 6. These datasets are then amalgamated and shuffled to create a com-
prehensive dataset containing 1,900,030 instances across six land use types. This dataset is
further segmented into a training set, constituting 70%, and a testing set, accounting for
30%. Ultimately, this dataset is fed into a random forest model for training and testing.
Subsequently, the comprehensive land use data from 2010 were applied to the trained RF
model to obtain the initial conversion probability (urban development suitability) PD for
each cell; (3) Subsequently, the neighborhood effect was determined based on the expansion
neighborhood algorithm. If the neighborhood boundary expands to 11 × 11 and the proba-
bility remains zero, the next step involves training a Convolutional Neural Network (CNN)
model using the preprocessed driving factor data. Based on the trained CNN model com-
bined with the comprehensive driving factor dataset, the neighborhood effect probability
PN based on the driving factors for the cells can be obtained; (4) According to the formula
for Spatial Anisotropy Index (SAI) calculation, the spatial anisotropy probability PS for
each cell point is computed; (5) According to the preliminary urban conversion probability,
neighborhood effects, spatial anisotropy, and random factors, the overall transformation
probability is calculated; (6) Using ARCGIS to calculate the total urban expansion based on
land use data from 2010 and 2020, serving as the global constraint condition for the Cellular
Automata (CA) model; (7) Incorporating the overall transformation probability into the CA
model, selecting the next cell in the neighborhood based on the gravity model, iterating
continuously to eventually obtain the simulation results.
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(2) Gravity-Guided Iteration Module

Another method introduced in this article is the gravity model to determine the mag-
nitude of attraction between cities, assisting in analyzing the impact of intercity attraction
on urban expansion. The formula is as follows:

Tij =
k×Qα

i ×Qβ
j

dλ
ij

(4)

Among them: Tij is the attractiveness of city i to city j; dij is the distance from city i
to city j; Qi represents the quality of city i, Qj represents the quality of city j; k, α, β, λ are
coefficients, Delphi method Determine: k = 1, α = 1, β = 1, λ = 2 (The Delphi method
is a technique for expert surveys, typically achieving consensus through iterative rounds
of opinion collection and feedback. In this context, the Delphi method is employed to
determine the coefficient values in the gravity model). For the gravity model formula
between two cities, it can be written directly as Tij = QiQj/d2

ij.
Urban quality indicators: Urban quality indicators refer to indicators that can reflect

the comprehensive strength of a city, or can reflect the comprehensive energy indicators of
a city. In urban socio-economic development, four indicators, including population, gross
regional product, total retail sales of consumer goods, and total import and export, are
significant criteria for judging whether a city is developed. The urban quality index can be
expressed as:

Q = 4
√

G× P×C× E (5)

Among them, Q is the quality of the city, G is the regional GDP, P is the population,
C is the total retail sales of consumer goods, and E is the total import and export volume.

Distance indicators involve geographical distance as well as subjective factors such
as social, psychological, political, and cultural aspects. However, due to the difficulty in
measuring subjective factors like social, psychological, political, and cultural distances,
this paper employs geographical distance indicators to measure distances between cities.
This choice is made because geographical distance is a relatively easy-to-measure objective
indicator that can provide actual spatial gap information between cities, without being
influenced by subjective factors.

Based on land transportation, this paper utilizes the geometric mean of three indicators—
road distance, railway distance, and spatial latitude and longitude distance—to depict the
distance between Chongqing and various cities, namely:

d = 3
√

H× R× L (6)

Among them, d is the distance, H is the highway mileage, R is the railway mileage,
and L is the spatial longitude and latitude distance.

This article explores the 21 districts in the main city of Chongqing (Yuzhong District,
Dadukou District, Jiangbei District, Shapingba District, Jiulongpo District, Nan’an District,
Beibei District, Yubei District, Banan District, Fuling District, Changshou District, Jiangjin
District, Hechuan District District, Yongchuan District, Nanchuan District, Qijiang District,
Dazu District, Bishan District, Tongliang District, Tongnan District, Rongchang District) and
the relationship between the development of the city and the gravitational force between
cities, respectively, with the main city of Chongqing as the center point, from Qianjiang,
Zunyi, Neijiang, Guang’an, Tongren, Luzhou, Chengdu and Dazhou were selected as
research cities in 8 directions: east, south, west, north, southeast, southwest, northwest
and northeast, and the 21 districts of Chongqing’s main city and 8 surrounding cities were
explored gravitational relationship between them. Integrate gravity into the CA iteration
module to create a CA dynamic iteration model based on gravity (Figure 8).
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According to Formula (5), the comprehensive quality of each city is calculated (Table A1);
based on Formula (6), the comprehensive distance from each research area in the main
city of Chongqing to the surrounding cities is calculated (Table A2); using the data from
Tables A1 and A2 in conjunction with Formula (4), this paper computed the magnitude
of gravitational pull between the 21 main districts of Chongqing and the surrounding
8 cities (refer to Table A3). To better analyze the impact of these gravitational values,
we normalized these data. Normalization transforms the data into a distribution with a
mean of 0 and a standard deviation of 1. In this paper, the gravitational value of cells
at position (i, j) concerning surrounding cities is denoted as Pt

w(i,j), which is integrated

into the overall conversion probability as follows: Pt
(i,j)=Pt

D(i,j) × Pt
N(i,j)×Pt

S(i,j) × Pt
w(i,j) × R,

where Pt
w(i,j) = (Xnew + 1). It reflects the external directional probability brought by the size

of gravitational forces, contributing to the external directionality of cells. It is worth noting
that the computation parameters for gravitational size are related to the population and
economic factors of construction land. Hence, this paper only introduces this module on
simulating construction land (non-permeable surface) to explore the impact of gravitational
forces from surrounding cities on the simulated urban development results.

The specific calculation process begins by using the ArcMap tool to process the admin-
istrative boundary vector map of the 21 main urban districts in Chongqing (Figure 9a). The
vector map is converted into raster data by uniformly setting the resolution to 100. In this
process, rasterization is performed based on the NAME attribute of the main urban districts,
ensuring that each region has a unique corresponding label in the obtained raster data layer
of the 21 main urban districts in Chongqing (Figure 9b), with labels ranging from 1 to 21.
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Next, based on the land-use data layer of the base year, a starting cell point is randomly
selected, serving as the starting point for the Cellular Automaton (CA) dynamic simulation.
Using this cell as the center, a 3 × 3 Moore neighborhood is constructed as the foundational
structure for iteration. For each iteration, the corresponding region label for the current
cell is identified by its coordinates in Figure 9b, thereby determining the specific area to
which the cell belongs. Subsequently, using the precomputed area-specific gravitational
values from Table A3, an assessment and comparison of the gravitational values for each
direction within the 3 × 3 Moore neighborhood are performed (8 grid positions represent
8 directions). Among the gravitational values in the eight directions, the direction with the
highest gravitational value is chosen as the target for the next iteration. Simultaneously, the
probability of construction land at the selected iteration point is multiplied by Pt

w(i,j), the
specific land type conversion at that iteration point is jointly determined by the conversion
probabilities of the other five land types and the enhanced probability of transforming
into construction land. Among all possible land type conversions, the type with the high-
est probability is selected for conversion. After completing these steps, the count of this
land type is incremented by 1, and the iteration continues. This process continues until
the count of the six planned land use types for 2020 is reached. If the count of a certain
land type reaches the planned value during the iteration, in the subsequent iterations, the
comprehensive conversion probability of that land type will no longer be considered.
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In Figure 8, the red color represents seed cell elements, while the brown area represents
the 3× 3 Moore neighborhood constructed around the seed cell. The numbers 1–8 represent
the magnitude of gravitational force between Chengdu, Guang’an, Dazhou, Neijiang,
Qianjiang, Luzhou, Zunyi, and Tongren, respectively, and the central seed cell element. The
point with the maximum gravitational force is chosen as the next iteration’s seed cell, and
the overall transformation probability of the construction land type at this iteration point is
multiplied by the normalized gravitational force value Pt

w(i,j). Then, based on the overall
conversion probability of the six land use types at that cell point, the conversion status of
that cell is determined. The process continues by constructing a 3 × 3 Moore neighborhood
for iteration until the land quantity reaches the land demand of the current year, at which
point the iteration stops.

2.3.4. Model Validation Module

Overall Accuracy (OA) and Kappa coefficient are commonly used as metrics for model
accuracy assessment. Overall Accuracy represents the ratio of correctly classified samples
to the total number of samples in the simulation results, calculated by the formula:

OA =
a
A
× 100% (7)

a: The anisotropy index of a certain land type.
A: The total number of samples or grid cells.
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The Kappa coefficient is calculated based on the confusion matrix and is commonly
used to measure classification accuracy and conduct consistency checks. The Kappa
coefficient takes into account the possibility of chance agreement, making it more reliable
than simple percentage calculations. The formula for calculating the Kappa coefficient is:

P =
Po − Pe

1− Pe
(8)

P: Kappa coefficient.
Po: The sum of correctly classified samples for each class divided by the total number of
samples, i.e., overall classification accuracy.
Pe: The sum of the products of actual and predicted quantities for each category, divided
by the square of the total number of samples.

The value range of the Kappa coefficient is [−1, 1], and usually the value range of the
actual result is [0, 1]. The closer the Kappa coefficient is to 1, the higher the consistency
between the model simulation results and the actual results.

In actual urban expansion, the area of unchanged area is usually much larger than
the area of changed area. R. G. Pontius [38] proposed the (Figure of Merit, FOM) based on
the difference in changes between actual results and simulated results. Compared with
OA and Kappa coefficient, FOM more accurately reflects the consistency and accuracy of
simulation of complex geographical systems. FOM is calculated as follows:

FOM =
B

A + B + C + D
(9)

A represents the number of grids that actually changed but were predicted as un-
changed, B is the number of grids that actually changed and were predicted to change,
C is the number of grids that actually changed but were incorrectly predicted in terms of
land use category, and D is the number of grids that did not change but were predicted
to change.

3. Results
3.1. Model Training and Prediction
3.1.1. Training Model and Key Steps

Enter the 15 driving factor layer data, use the 2010 and 2020 land use data through
ARCGIS operations to obtain the changing land use data, merge the changing land use data
and the 15 driving factor data, remove duplicates, and randomly sample. The sampled
data was divided into a test set and a training set and fed into the random forest model for
training and testing. The accuracy of the random forest was determined to be 0.9576, and
the impact of each driving factor on urban expansion was obtained (Figure 10). Randomly
select a cutting point on the 2010 layer, center the 15 driving factor layers on the coordinates
of the cutting point, cut the matrix into a size of 51 × 51, and input the labels into the CNN
model for iterative training. The accuracy obtained for the CNN model is 0.8677.

Figure 10 shows the calculation results of the importance of driving factors. From
the results, it can be seen that nighttime light data and distance from train station data
have the greatest impact on urban expansion, which are 0.1521 and 0.1462, respectively.
Distance to water bodies, school density, and attraction density data have a weak impact
on urban expansion.

The maximum impact of nighttime lighting is likely due to the illumination reflect-
ing the economic development, population density, and human activity intensity in the
corresponding area. The primary driving force behind urban expansion is derived from
these factors. The significant influence near a train station is probably because train stations
typically serve as crucial hubs in urban transportation, with high population mobility
and commercial activities in their vicinity, making them potential hotspots for urban ex-
pansion. This is related to the usual promotion of urban expansion through convenient
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transportation and economic activities. In contrast, the impact of proximity to water bodies
and school density is relatively minor, possibly because these factors play a secondary
role in urban expansion. Water bodies may be subject to restrictions in planning and
environmental considerations, limiting urban expansion around them. School density
may not be a primary driving factor in urban planning, as school distribution is typically
influenced by educational planning and population density considerations. Overall, the
magnitude of these factors’ impact may depend on the specific circumstances of urban
planning, including urban development strategies and policy planning.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 15 of 25 
 

 

3. Results 
3.1. Model Training and Prediction 
3.1.1. Training Model and Key Steps 

Enter the 15 driving factor layer data, use the 2010 and 2020 land use data through 
ARCGIS operations to obtain the changing land use data, merge the changing land use 
data and the 15 driving factor data, remove duplicates, and randomly sample. The sam-
pled data was divided into a test set and a training set and fed into the random forest 
model for training and testing. The accuracy of the random forest was determined to be 
0.9576, and the impact of each driving factor on urban expansion was obtained (Figure 
10). Randomly select a cutting point on the 2010 layer, center the 15 driving factor layers 
on the coordinates of the cutting point, cut the matrix into a size of 51 × 51, and input the 
labels into the CNN model for iterative training. The accuracy obtained for the CNN 
model is 0.8677. 

 
Figure 10. Importance of driving factors. 

Figure 10 shows the calculation results of the importance of driving factors. From the 
results, it can be seen that nighttime light data and distance from train station data have 
the greatest impact on urban expansion, which are 0.1521 and 0.1462, respectively. Dis-
tance to water bodies, school density, and attraction density data have a weak impact on 
urban expansion. 

The maximum impact of nighttime lighting is likely due to the illumination reflecting 
the economic development, population density, and human activity intensity in the cor-
responding area. The primary driving force behind urban expansion is derived from these 
factors. The significant influence near a train station is probably because train stations 

Figure 10. Importance of driving factors.

3.1.2. Analysis of Spatial Anisotropy Results

Algorithm 1 is the algorithm for calculating the spatial anisotropy index of cells whose
label is 0, indicating the land type as grassland. Based on the algorithm provided in
Algorithm 1, the spatial anisotropy probability layer for the remaining five land use types
can be calculated similarly (as depicted in Figure 11). This study computes the spatial
anisotropy probabilities for six land use categories using the 2010 land use data and incor-
porates them into the comprehensive transformation probability for forecasting land use
changes in 2020. The visualization in Figure 11 indicates that grassland, construction land
(impervious surface), forestland, and cultivated land exhibit stronger spatial anisotropy
compared to water bodies and unused land (where darker colors represent weaker spatial
anisotropy). Specifically, forestland tends to have stronger spatial anisotropy in the south-
east direction, water bodies display stronger spatial anisotropy in the northeast direction,
while cultivated land shows stronger spatial anisotropy in the north direction. Unused
land, on the other hand, demonstrates weaker overall spatial anisotropy, primarily due to
its smaller area coverage. As per the 2020 land use legend, the trends in the development of
various land use types predicted by the spatial anisotropy module align well with the actual
changes observed in 2020. Notably, the development trends for grassland and woodland
exhibit the strongest correlation with the observed changes.
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Algorithm 1 Get spatial anisotropic probability layer pseudocode.

Input: 2010 land use raster data LandUse (2290 × 2438), coordinates of the first quadrant research
point in point1.txt
Output: SA_pro (spatial anisotropy probability)
Process:

1: cen_row = 1145, cen_clo = 1219← Use the center point of the landuse layer as the city center
point and establish four quadrants;

2: count1 = 0← Start traversing the research point data from the first line of point1.txt;
3: row = point1[count1][0] clo =point1[count1][1]← (row, clo) is the coordinate of the research

point;
4: count1 = count1 + 1← next research point;
5: total_num = math.ceil(math.sqrt((cen_row − row) × (cen_row − row) + (cen_clo − clo) ×

(cen_clo − clo)))← The number of all cells on the straight line from the research point to the
city center point;

6: k = (clo − cen_clo)/(row − cen_row) len_count0 = 0← k is the slope of the straight line from
the research point to the city center point, len_count0 is the number of cells labeled 0 on the
straight line;

7: while cen_row < row← Count the number of cells with a label of 0 between the city center
point and the research point

8: x = int(row)
9: row = row − 1← next point
10: y = int(math.ceil(k×(x − cen_row) + cen_clo))
11: (x, y) is the coordinate on the straight line
12: if y < 2438 and landuse[x][y] == 0:
13: len_count0++
14: SA_pro0 = len_count/total_num← Spatial anisotropy probability of research points

converted into land use type 0
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3.1.3. Expanded Neighborhood Result Analysis

In order to depict the impact of varied upper limits of the expanded neighborhood (N)
on model accuracy more accurately, this paper examines the correlation between different
upper limits of the expanded neighborhood and FOM (Figure 12). Within the range of 3
to 9 for the expanded neighborhood (N), there is a noticeable upward trend observed in
FOM. At N = 11, FOM peaks at 0.4486, indicating the highest accuracy in model simulation.
However, as N increases to 15, there’s a sharp decline in FOM. Further, within the range of
13 to 19, FOM generally demonstrates a downward trend. Consequently, this study opts for
N = 11 as the upper limit for the expanded neighborhood, as it exhibits the highest model
accuracy among the considered values.
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From Table 2, it is evident that the Kappa value of the RF-CNN-SAI-CA model derived
from expanded neighborhoods is 0.8457, and the FOM stands at 0.4486. Comparatively,
this FOM value is 0.0060 higher than the Kappa of the RF-CNN-SAI-CA model that was
based on driving factors for assessing neighborhood effects. With an FOM exceeding 0.0055,
it suggests that the neighborhood effect computed using expanded neighborhoods more
accurately captures the pattern of urban expansion, thereby enhancing the model’s accuracy.

3.1.4. Analysis of Urban Gravity Results

According to Formula (5), the comprehensive quality of the 21 districts in Chongqing’s
main city and the eight surrounding cities can be calculated (Table A1, see Appendix A).

According to Formula (6), the comprehensive distance between the 21 districts in
Chongqing’s main city and the eight surrounding cities can be calculated (Table A2,
see Appendix A).

According to Formula (4) and the data in Tables A1 and A2, the mutual attraction size
between the main urban area of Chongqing and the surrounding cities can be calculated
(Table A3, see Appendix A). Incorporating the gravitational values from Table A3 into the
CA dynamic iteration module, the impact of external urban attraction on the simulation
of urban expansion is explored. From Table A3, it can be observed that Guang’an has a
greater attraction size towards Yubei District and Hechuan District, while Luzhou has a
stronger attraction size towards Yongchuan District compared to other areas in the main
urban zone of Chongqing. Due to smaller urban qualities in Tongren and Qianjiang and
larger comprehensive distances, the attraction towards the 21 districts of Chongqing’s main
urban area is relatively smaller. The gravitational values in the table can reflect to some
extent the development trends of various regions in the main urban area of Chongqing.

By analyzing and visualizing the data in Table A3, Figure 13 has been obtained, which
clearly illustrates the magnitude of gravitational strength between the main urban area
of Chongqing (21 districts) and the surrounding eight cities. Taking Yuzhong District as
an example, Figure 13 depicts its gravitational strength distribution in different directions.
It shows that the greatest gravitational strength exists in the north and southwest directions,
while the weakest gravitational strength is in the east and southeast directions.
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To further explore the impact of integrating the gravity model on simulating con-
struction land, this study conducted experimental comparisons by calculating the F1-score
of construction land simulation before and after integrating the gravity model, resulting
in 0.8932 and 0.9317, respectively. The experimental results indicate that integrating the
gravity model significantly enhances the accuracy of construction land simulation, thereby
improving the overall model precision. This enhancement might stem from the gravity
model’s consideration of various factors such as economy, population, and spatial distance
in predicting future development trends of construction land. Consequently, cells with
the highest gravity values have a higher probability of transformation, thus improving the
simulation accuracy.

3.1.5. Model Simulation Results

The RF-CNN-SAI module, combined with random factors, generated the overall trans-
formation probability layer. Subsequently, based on the change data, the global expansion
total constraint conditions were calculated. Then, the gravity formula was applied to the
final Cellular Automata (CA) model for CA dynamic simulation. This process yielded the
comparison between the simulated 2020 urban expansion results (initiated with Chongqing’s
main city data from 2010) and the actual 2020 results (Figure 14). Tables 2 and 3 demonstrate
that considering both the spatial anisotropy within urban cells and the mutual gravity
between cities improves the precision of urban expansion simulation.
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3.2. Simulation Result Evaluation
Accuracy Comparison

To further verify the reliability and efficiency of the experimental results in this paper,
a series of ablation experiments were designed. The results of these experiments are shown
in Table 2. Additionally, a series of comparative experiments were conducted, with the
results presented in Table 3.

Table 2. Ablation experiment of simulation accuracy.

Parameter RF-CNN-SAI-CA
(Dynamic Neighborhood-Gravitational Model)

RF-CNN-SAI-CA
(Dynamic Neighborhood) RF-CNN-SAI-CA

Kappa 0.8561 0.8457 0.8397
FOM 0.4596 0.4486 0.4431
OA 0.9896 0.9862 0.9798
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Table 3. Comparison of simulation accuracy.

Parameter RF-CNN-CA RF-CA FA-MLP-CA RF-SNSCNN-CA

Kappa 0.8376 0.8154 0.6984 0.7683
FOM 0.4322 0.4067 0.3942 0.3836
OA 0.9766 0.9742 0.9789 0.9782

4. Discussion

According to the ablation experiment in Table 2, it can be seen that the Kappa and
FOM of the RF-CNN-SAI-CA model based on gravity and expanded neighborhoods are
improved by 0.0104 and 0.0110, respectively, compared with the RF-CNN-SAI-CA model
based on expanded neighborhoods. Considering the gravitational relationship between
cities in the basic model of this article is helpful to explore the intrinsic mechanism of
urban expansion. According to Table 3, The RF-CNN-SAI-CA model, based on expanded
neighborhoods, has shown an improvement in Kappa, FOM, and OA coefficients by 0.0303,
0.0419, and 0.0120, respectively, compared to the traditional RF-CA model, demonstrating
that incorporating spatial anisotropy and expanding the neighborhood effectively enhances
the model’s simulation accuracy. To further validate the model’s accuracy, this article’s
RF-CNN-SAI-CA model, based on the expanded neighborhood, is compared with RF-CNN-
SAI-CA, RF-CNN-CA, and FA-MLP-CA models. The first two models aim to mitigate the
impact of expanded neighborhoods and spatial anisotropy. Results indicate that the Kappa,
FOM, and OA values of this model surpass those of the other two models. The Kappa
coefficients have improved by 0.0060 and 0.0081, respectively, and FOM has increased by
0.0055 and 0.0164. The third model represents an alternative solution to address spatial
directionality. The outcomes reveal that this model’s accuracy is superior, highlighting
that the RF-CNN-SAI-CA model, utilizing expanded neighborhoods, is more conducive
to exploring rules governing urban expansion. The fourth RF-SNSCNN-CA model is a
relatively new urban expansion simulation model. According to experimental results, it
can be observed that the accuracy of the proposed model in this paper is higher, further
highlighting the advantages of the model proposed in this study.

Investigating the influence of spatial directionality on urban expansion simulation, this
study focuses on Chongqing’s main urban area, constructing an RF-CNN-SAI-CA model
grounded on expanded neighborhoods and gravitational effects. The model comprises
four modules. The initial module utilizes the robustness of random forest to compute
urban suitability probabilities based on driving factors, establishing preliminary conversion
probabilities. The second module addresses neighborhood effects, proposing a model
combining expanded neighborhoods and CNN for handling cell neighborhood limitations.
The third module supplements traditional overall conversion probabilities with cell direc-
tional probabilities, and the fourth module introduces the gravity formula into Cellular
Automata (CA) simulation to explore inter-city gravitational impacts on urban expansion.
Additionally, this paper conducts comparative analyses with other models. Tables 2 and 3
illustrate that the simulation accuracy of the RF-CNN-SAI-CA model, based on gravity and
expanding neighborhood, is slightly higher than that of other models. This constructed
model not only enhances the accuracy of land use change simulation to a certain extent but
also introduces a novel approach for studying similar spatiotemporal simulation issues.
The key conclusions drawn in this study are as follows:

(1) The conventional urban expansion simulations often lack the probability trend of cells
converting to specific land use types in particular directions, resulting in inaccurate
simulation outcomes. This paper successfully enhances the precision of urban expan-
sion simulation by introducing Cellular Directional Probability (SAI). This innovative
approach allows the model to more accurately mirror the genuine patterns of urban
expansion and offers fresh insights into analogous spatiotemporal simulation issues.
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(2) In addition to accounting for directional probability within the city, this study also
incorporates the gravity model formula to investigate the influence of intercity at-
traction on urban expansion simulation. Through an analysis of the gravitational
relationship between Chongqing and eight surrounding cities, this research reveals
that the urban expansion process is impacted not solely by internal factors but also
by the mutual attraction among cities. This discovery underscores the significance of
intercity interactions in urban expansion simulations.

(3) Neighborhood effects are crucial considerations in urban expansion simulations. How-
ever, traditional methods face an issue of cellular neighborhood failure. To address this
problem, this paper proposes a solution by integrating the expanded neighborhood
and a CNN-based neighborhood effect model. Through this innovative approach, this
paper successfully enhanced simulation accuracy, effectively remedying the issue of
cell loss in the neighborhood effect, thus rendering the simulation results more precise.

The study of urban expansion plays a crucial role in modern urban planning and land
use decisions, as it pertains to the future sustainable development of cities. However, prior
research on simulating urban expansion has had some limitations, including overlooking
the directional trend of cell land use changes, neglecting intercity mutual attraction, and
encountering issues with cell loss in neighborhood effects. This paper introduces the RF-
CNN-SAI-CA model based on gravity and expanded neighborhoods, marking significant
advancements in urban expansion simulation. By incorporating cell directional probability
and expanded neighborhoods, this model enhances simulation accuracy and addresses
prior research gaps. Nevertheless, there remain areas for further enhancement within this
model. One critical aspect is the model’s lack of consideration for the influence of govern-
ment factors on urban expansion. Government policies and planning significantly shape a
city’s land use and development trajectory. Future research could involve integrating gov-
ernment policy factors into the model to achieve more precise urban expansion simulations.
Additionally, in the gravity module, this study only selected eight cities around Chongqing
as research objects. However, urban development is generally influenced by the interaction
forces among cities over a broader geographical area. The development of Chongqing may
also be influenced by urban clusters formed by the interaction forces among other cities.
Still, this paper only considered the forces between Chongqing and each individual city.
Future research could consider expanding the study scope, incorporating more potentially
interrelated cities, to gain a more comprehensive understanding of the dynamic processes
of urban expansion. The challenge faced by the SAI index module lies in its dependence on
linear equations to count the number of cells on the corresponding line. In experiments,
situations where the slope of the line is zero led to equation failure, causing the SAI index
values for certain points to become ineffective, thereby affecting the accuracy and precision
of the simulation results. In the future, the model can be further refined to achieve more
accurate and detailed simulations of urban expansion, providing more forward-looking
support for urban planning and land-use decision-making. This would aid in promoting
sustainable urban development and addressing the increasing needs of urban populations
and resource utilization.
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Appendix A

Table A1. Comprehensive quality of the Chongqing region and surrounding cities.

Area Quality Area Quality Cities Quality

Yuzhong 754.46 Fuling 640.81 Chengdu 2226.51

Dadukou 324.54 Changshou 394.89 Guangan 1466.94

Jiangbei 599.88 Jiangjin 573.23 Dazhou 2002.38

Shapingba 664.42 Hechuan 538.25 Luzhou 2159.32

Jiulongpo 952.44 Yongchuan 556.59 Zunyi 2229.54

Nanan 503.21 Nanchuan 229.28 Neijiang 1337.84

Beibei 426.18 Qijiang 428.95 Tongren 1203.35

Yubei 902.79 Dazu 374.76 Qianjiang 1053.71

Banan 618.84 Bishan 399.94

Tongnan 366.43 Tongliang 334.21

Rongchang 245.75

Table A2. Comprehensive distance from the Chongqing main region to surrounding cities.

City Chengdu Guangan Dazhou Luzhou Zunyi Neijiang Tongren Qianjiang

Yuzhong 315.05 145.22 228.87 170.90 237.60 180.10 534.88 277.25

Dadukou 314.97 164.04 247.69 169.64 231.28 172.60 496.67 272.71

Jiangbei 294.50 114.60 220.10 182.59 250.60 188.28 538.93 281.53

Shapingba 286.50 127.50 234.76 161.10 248.30 171.21 506.49 281.17

Jiulongpo 295.90 152.82 240.17 158.80 241.30 162.60 529.59 274.20

Nanan 324.40 151.27 242.70 170.50 239.20 191.52 450.10 269.95

Beibei 282.42 123.24 231.91 180.20 284.71 183.00 495.62 316.70

Yubei 310.60 106.80 209.50 193.61 257.59 198.52 554.91 297.71

Banan 304.50 164.69 240.87 196.20 258.10 184.43 486.45 266.00

Tongnan 209.36 151.57 309.97 233.18 339.42 151.38 606.14 380.34

Rongchang 253.40 225.09 333.75 96.48 329.8 76.00 710.20 370.46

Fuling 394.90 177.32 261.20 251.40 299.63 278.31 435.10 215.51

Changshou 369.40 137.38 221.30 233.38 292.07 251.17 472.62 235.85

Jiangjin 317.70 175.28 279.20 123.30 227.58 174.32 470.80 290.21

Hechuan 278.75 86.60 257.28 144.70 307.92 198.82 598.00 343.73

Yongchuan 288.75 193.10 297.54 104.60 294.11 112.11 514.50 334.55

Nanchuan 381.30 226.84 304.30 207.70 237.71 250.98 434.72 196.02

Qijiang 366.30 212.56 296.21 157.10 181.71 228.30 470.58 260.18

Dazu 220.50 182.39 311.30 125.90 331.20 108.80 542.10 442.90

Bishan 269.10 143.81 263.87 165.51 269.50 158.08 566.93 303.30

Tongliang 255.60 126.70 272.00 166.40 305.20 149.20 560.64 335.32
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Table A3. Gravitation from the Chongqing main region to surrounding cities.

City Chengdu Guangan Dazhou Luzhou Zunyi Neijiang Tongren Qianjiang

Yuzhong 16.92 52.48 28.84 55.77 29.79 31.11 3.17 10.34

Dadukou 7.28 17.69 10.59 24.35 13.52 14.57 1.58 4.59

Jiangbei 15.39 67.00 24.79 38.85 21.29 22.63 2.48 7.97

Shapingba 18.02 59.95 24.14 55.28 24.02 30.32 3.11 8.85

Jiulongpo 24.21 59.82 33.06 81.55 36.47 48.19 4.08 13.34

Nanan 10.64 32.25 17.10 37.37 19.60 18.35 2.98 7.27

Beibei 11.89 41.16 15.86 28.34 11.72 17.02 2.08 4.47

Yubei 20.83 116.10 41.18 52.00 30.33 30.64 3.52 10.73

Banan 14.86 33.47 21.35 34.71 20.71 24.33 3.14 9.21

Tongnan 18.61 23.39 7.63 14.55 7.09 21.39 1.20 2.66

Rongchang 8.52 5.54 4.41 57.00 5.03 56.92 0.58 1.88

Fuling 9.14 29.89 18.80 21.89 15.91 11.06 4.07 14.53

Changshou 6.44 30.69 16.14 15.65 10.32 8.37 2.12 7.48

Jiangjin 12.64 27.37 14.72 81.41 24.67 25.23 3.11 7.17

Hechuan 15.42 105.28 16.28 55.50 12.65 18.21 1.81 4.8

Yongchuan 14.86 21.89 12.58 109.84 14.34 59.24 2.53 5.24

Nanchuan 3.51 6.53 4.95 11.47 9.04 4.86 1.45 6.28

Qijiang 7.11 13.92 9.78 37.52 28.96 11.01 2.33 6.67

Dazu 17.16 16.52 7.74 51.05 7.61 42.35 1.53 2.01

Bishan 12.29 28.36 11.50 31.52 12.27 21.41 1.49 4.58

Tongliang 11.38 30.54 9.04 26.06 7.99 20.08 1.27 3.13

References
1. Chettry, V. A Critical Review of Urban Sprawl Studies. J. Geovisualization Spat. Anal. 2023, 7, 28. [CrossRef]
2. Junliang, D.; Xiaolu, G.; Shoushuai, D. Expansion of Urban Space and Land Use Control in the Process of Urbanization: An

Overview. Chin. J. Popul. Resour. Environ. 2010, 8, 73–82. [CrossRef]
3. Bai, X.; McPhearson, T.; Cleugh, H.; Nagendra, H.; Tong, X.; Zhu, T.; Zhu, Y.-G. Linking Urbanization and the Environment:

Conceptual and Empirical Advances. Annu. Rev. Environ. Resour. 2017, 42, 215–240. [CrossRef]
4. Lau, K.H.; Kam, B.H. A Cellular Automata Model for Urban Land-Use Simulation. Environ. Plan. B Plan. Des. 2005, 32, 247–263.

[CrossRef]
5. Tong, X.; Feng, Y. A Review of Assessment Methods for Cellular Automata Models of Land-Use Change and Urban Growth. Int.

J. Geogr. Inf. Sci. 2020, 34, 866–898. [CrossRef]
6. Grinblat, Y.; Gilichinsky, M.; Benenson, I. Cellular Automata Modeling of Land-Use/Land-Cover Dynamics: Questioning the

Reliability of Data Sources and Classification Methods. Ann. Am. Assoc. Geogr. 2016, 106, 1299–1320. [CrossRef]
7. Rimal, B.; Zhang, L.; Keshtkar, H.; Haack, B.; Rijal, S.; Zhang, P. Land Use/Land Cover Dynamics and Modeling of Urban Land

Expansion by the Integration of Cellular Automata and Markov Chain. ISPRS Int. J. Geo-Inf. 2018, 7, 154. [CrossRef]
8. Li, X.; Liu, X.; Yu, L. A Systematic Sensitivity Analysis of Constrained Cellular Automata Model for Urban Growth Simulation

Based on Different Transition Rules. Int. J. Geogr. Inf. Sci. 2014, 28, 1317–1335. [CrossRef]
9. He, J.; Li, X.; Yao, Y.; Hong, Y.; Jinbao, Z. Mining Transition Rules of Cellular Automata for Simulating Urban Expansion by Using

the Deep Learning Techniques. Int. J. Geogr. Inf. Sci. 2018, 32, 2076–2097. [CrossRef]
10. Xiao, B.; Liu, J.; Jiao, J.; Li, Y.; Liu, X.; Zhu, W. Modeling Dynamic Land Use Changes in the Eastern Portion of the Hexi Corridor,

China by Cnn-Gru Hybrid Model. GIScience Remote Sens. 2022, 59, 501–519. [CrossRef]
11. Li, X.; Yang, Q.; Liu, X. Genetic Algorithms for Determining the Parameters of Cellular Automata in Urban Simulation. Sci. China

Ser. D-Earth Sci. 2007, 50, 1857–1866. [CrossRef]
12. Guan, D.; Zhao, Z.; Tan, J. Dynamic Simulation of Land Use Change Based on Logistic-CA-Markov and WLC-CA-Markov Models:

A Case Study in Three Gorges Reservoir Area of Chongqing, China. Environ. Sci. Pollut. Res. 2019, 26, 20669–20688. [CrossRef]
13. Wu, L.; Zhu, M.; Zhang, G.; Yang, R. Simulation of Land Use Changes in Jiaodong Peninsular Based on the Logistic-CA-Markov

Model. J. Phys. Conf. Ser. 2020, 1622, 012092. [CrossRef]
14. Kamusoko, C.; Gamba, J. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model. ISPRS Int. J.

Geo-Inf. 2015, 4, 447–470. [CrossRef]

https://doi.org/10.1007/s41651-023-00158-w
https://doi.org/10.1080/10042857.2010.10684994
https://doi.org/10.1146/annurev-environ-102016-061128
https://doi.org/10.1068/b31110
https://doi.org/10.1080/13658816.2019.1684499
https://doi.org/10.1080/24694452.2016.1213154
https://doi.org/10.3390/ijgi7040154
https://doi.org/10.1080/13658816.2014.883079
https://doi.org/10.1080/13658816.2018.1480783
https://doi.org/10.1080/15481603.2022.2037888
https://doi.org/10.1007/s11430-007-0127-4
https://doi.org/10.1007/s11356-019-05127-9
https://doi.org/10.1088/1742-6596/1622/1/012092
https://doi.org/10.3390/ijgi4020447


ISPRS Int. J. Geo-Inf. 2024, 13, 91 24 of 24

15. Pan, X.; Liu, Z.; He, C.; Huang, Q. Modeling Urban Expansion by Integrating a Convolutional Neural Network and a Recurrent
Neural Network. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102977. [CrossRef]

16. Yan, Y.; Jiang, L.; He, X.; Hu, Y.; Li, J. Spatio-Temporal Evolution and Influencing Factors of Scientific and Technological Innovation
Level: A Multidimensional Proximity Perspective. Front. Psychol. 2022, 13, 920033. [CrossRef] [PubMed]

17. Raheem, A.M.; Naser, I.J.; Ibrahim, M.O.; Omar, N.Q. Inverse Distance Weighted (IDW) and Kriging Approaches Integrated with
Linear Single and Multi-Regression Models to Assess Particular Physico-Consolidation Soil Properties for Kirkuk City. Model.
Earth Syst. Environ. 2023, 9, 3999–4021. [CrossRef]

18. Zhang, X.; Lu, H.; Holt, J.B. Modeling Spatial Accessibility to Parks: A National Study. Int. J. Health Geogr. 2011, 10, 31. [CrossRef]
19. Feng, Y.; Liu, Y.; Batty, M. Modeling Urban Growth with GIS Based Cellular Automata and Least Squares SVM Rules: A Case

Study in Qingpu–Songjiang Area of Shanghai, China. Stoch. Environ. Res. Risk Assess. 2016, 30, 1387–1400. [CrossRef]
20. Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban Growth Simulation by Incorporating Planning Policies into a CA-Based Future

Land-Use Simulation Model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [CrossRef]
21. Nie, W.; Xu, B.; Ma, S.; Yang, F.; Shi, Y.; Liu, B.; Hao, N.; Wu, R.; Lin, W.; Bao, Z. Coupling an Ecological Network with

Multi-Scenario Land Use Simulation: An Ecological Spatial Constraint Approach. Remote Sens. 2022, 14, 6099. [CrossRef]
22. Shen, Z.; Kawakami, M.; Kawamura, I. Geosimulation Model Using Geographic Automata for Simulating Land-Use Patterns in

Urban Partitions. Environ. Plann. B 2009, 36, 802–823. [CrossRef]
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