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Abstract: The classification of urban functional areas is important for understanding the characteris-
tics of urban areas and optimizing the utilization of urban land resources. Existing related methods
have improved accuracy. However, they neglect cognitive differences amongst humans in the differ-
ent scales of regional functions. Moreover, how to build the correlations of cross-scale characteristics
is still unresolved when realizing the classification of multiscale urban functional zones. To resolve
these problems, a transportation analysis zone involving urban buildings as research units is created
and these units are described by geometric and functional characteristics using multiple data sources.
Then, a hierarchical clustering model is built for the recognition of urban functional areas at varying
scales with landmark semantic constraints. In the experiments, Shanghai served as the study area,
and multiscale zones were created using different levels of road networks considering the constraint
correlation of the significance between cross-scale maps. The experiential results show the proposed
method has excellent performance and optimizes the functional zone classification at different scales.
This study not only enriches the multiscale urban functional area-recognition methods but also can
be used in other aspects, like cartographic generalization or spatial analysis.

Keywords: urban landmark; functional zoning; spatial similar; geometric features; functional features

1. Introduction

The recognition of urban functional zones is significant for pervasive urban computing
and planning. Traditionally, the urban function classification is based on an index or
clustering method in which geoscience data are integrated to decipher functions of urban
zones [1,2]. However, these methods are time-consuming, labor-intensive, subjective, and
inefficient [3,4]. Considering the increasing urban development in many areas, the demand
for the classification of multiscale functional zones has risen in recent years. Owing to
continuous development, images from remote sensing technology have been utilized for
the classification of urban functional zones [5,6]. In general, these approaches are based on
hierarchical or semantic features. In certain methods, low [7–9], middle [10,11], high [12–15]
level, and global features [16,17] of a scene are considered, while the recognition of ground
objects is ignored. Conversely, methods based on semantic features [18–20] simply acquire
natural attributes, and thus further mining the functional information only based on the
semantic features is challenging.

To optimize the identification of urban functional areas, multi-source data [21] such
as remote sensing imagery and point of interesting (POI) data have been integrated in
some studies [22–27]. Despite the advances in the recognition of urban functional zones
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associated with these studies, deficiencies remain in the spatial recognition of multiscale
functional areas. These deficiencies are linked to the following: (1) owing to the cognitive
differences among humans, current association rules for geographical entities between
scales may lead to wrong understanding for function zones; (2) the extraction and associa-
tion rules for the significant spatiotemporal and semantic attributes of geographical entities
are fuzzy as the spatial scale changes.

The utilization of landmarks’ semantic constraints for urban functional area classifica-
tion can improve the recognition of special areas, such as communities and schools. In a
school, for example, the dormitory buildings, teaching areas, canteens and other buildings
are associated with different functional characteristics (Figure 1a). If the regional function
is recognized from single building attribution based on the association rules of classical
area restriction, it may be classified as residential zones because of the large number of dor-
mitories. Therefore, in the present study, the landmark concept is proposed when buildings
are considered basic research units, and their geometric and semantic characteristics are
integrated to produce the function zones (Figure 1b).

C canteen, supermarket, Express Center E Bus stop F Gate 

B Academic buildings, libraryA Dormitories

Area-restricted: Class A has the largest area and the region is constrained to class A

（a） （b）

Landmark-restricted: Class B has the highest recognition and the region is constrained to class B

Figure 1. Urban function classification of a certain area without (a) and with (b) the landmark
semantic constraints.

These landmarks, such as stores and hills, constitute reference points in the external
environment [28], which can prevent errors inherent to individual data sources. Accord-
ing to the development of related concepts [29,30], buildings characterized by a special
appearance or profound social meaning, for example, can be selected as landmarks. The
significance is a very critical attribute for landmarks [31–33]. Consequently, landmark
extraction based on significance calculation models have been proposed [34]. In the extrac-
tion of landmarks in urban environments, the identification in navigation maps of varying
scales, public cognition, urban centrality, and related attributes have been considered [35].

In this study, a hierarchical clustering model is proposed for the recognition of urban
functional areas at varying scales with landmark semantic constraints. In detail, for building
function classification, a two-level clustering model is built for the buildings considering
their geometric and functional features. Moreover, a cognition-based landmark extraction
model is designed to constrain the mapping of features at cross scales during recognizing
urban functional zones. The findings of the present study enhance the identification of
urban functional zones at the spatial scale and optimize the urban function zone recognition
at multiple scales.

2. Materials and Methods

This paper recognizes multiscale urban functional zones based on landmark semantic
constraints (as shown in Figure 2). Firstly, in the process of clustering based on geomet-
ric features, the Delaunay triangle network is used to extract the contextual features of
buildings. The clusters I of buildings with similar geometric structures are obtained after
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clustering. Secondly, in the process of functional feature clustering, Delaunay triangulation
is used to describe the context features of spatial targets (building cluster I), and the func-
tional feature description of buildings is constructed by the attribute features and urban
centrality. Building cluster II is obtained via functional feature similarity clustering, so
that the building function can be recognized by the two-level clustering model. Next, this
study constructs the significance model of spatial objectives (building cluster I) through
geometric features, attribute features, urban centrality, and public cognition. After that,
the building cluster II area and the constructed building significance are combined to
achieve landmark extraction and functional area identification under a single scale. Finally,
landmarks’ semantics are correlated across scales, based on which the significance and area
of spatial targets are used to achieve mapping of urban functional areas at multiple scales.

Buildings footprints

Building cluster I

Geometric features Contextual featuresGeometric features Contextual features

Road 
networks

Multiscale urban function 
classification

Multi-scale 
zones 

Building cluster II

Significance model

Geometric Cluster

Functional 
Cluster

Contextual 
features

Urban 
centrality

Attribute 
features

Geometric 
features

Public 
recognition

POIs
Population 

data MatchMatch

Building function

Buildings footprints

Building cluster I

Geometric features Contextual features

Road 
networks

Multiscale urban function 
classification

Multi-scale 
zones 

Building cluster II

Significance model

Landmarks semantic

Contextual 
features

Urban 
centrality

Attribute 
features

Geometric 
features

Public 
recognition

Data source
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Figure 2. Technical flow chart.

2.1. Extracting Object Features

Buildings in urban zones of the same functional type exhibit similarities in geometric
characteristics, functional structure, and spatial relationships. In the present study, geo-
metric characteristics include shape, size, and orientation, while the functional structure is
reflected in the criteria employed for the classification of POIs, and spatial relationships
involve the topology, orientation, and distance.

2.1.1. Geometric Features

Different functional buildings often exhibit distinct geometric characteristics [21].
The parameters utilized for geometric characterization are height, perimeter, area, area
concavity, perimeter concavity, sphericity, shape parameter, aspect ratio, and orientation
angle (as shown in Table 1). These geometric features have been proven helpful for building
function recognition [6,21,36,37]. To eliminate the impact of extreme values and ensure
stability and sensitivity, data for all factors are normalized.

The geometric features of a spatial object can be described using an M-dimensional vector
expressed as follows:

Fgeo = [u1, u2, . . . uk, . . . , uM] (1)

where uk is the k-th normalized geometric characteristic factor of the spatial object. Hence-
forth, M = 9 indicates that all nine geometric factors are utilized.
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Table 1. Geometric factors, associated interpretation, and determination expression.

Geometric Factor Implication Symbols and Formulas

Height Height of a building H
Perimeter Perimeter of a building footprint P

Area Area of a building footprint A

Area concavity Ratio of area for a building footprint (A) and its responding convex
hull (Acon) ConA = A

Acon

Perimeter concavity (ConP) Ratio of perimeter for a building footprint (P) and its responding convex
hull (Pcon) ConP = P

Pcon

Spherical shape (Flatshp) Flattening ratio of a building footprint Flatshp = Pcon

2∗
√

π∗A
Shape Shape of a building footprint Shp = P

2∗
√

π∗A

Aspect ratio (Ar) Ratio of the long side (LMAB) to the short side (WMAB) of the minimum
area rectangle for a building footprint Ar =

LMAB
WMAB

Orientation angle The orientation for long side of the minimum area rectangle for a
building footprint αMAB

2.1.2. Functional Structure Features

POIs have been wildly used in geospatial data mining; in this study, they are used to
describe the functional features of buildings. Considering that some positions associated
with the POI data involve some deviation compared with reality, this study intends to
conduct matching between POIs and buildings using a multi-stage buffer. The first stage
involved the creation of a buffer involving constructed buildings, and this is followed by
the matching of POIs within the buffer. Regarding areas around buildings without POIs, a
secondary buffer is constructed and the associated POIs are then matched. If parts of the
secondary buffer also lack POIs, matching of buildings and POIs is performed based on
proximity. This research describes the functional structure features by attribute scores and
urban centrality.

In the extraction of attribute scores, a rating criterion is introduced in the present study.
Considering that the focus is on urban functional areas, the rating scores for community and
living-related services are improved based on previous studies [35]. Concurrently, attributes
of the POI types are categorized according to the report [38], including residential, public
service, business services and facilities, green space and tourist attractions, traffic facilities,
and others. Moreover, the attribute scores are also influenced by the number of buffers, and
this can be calculated as follows:

Fatt =
xa

Nb
(2)

where xa is the value of an attribute of various POIs as Table 2, which is set according
to the previous studies [35]; Nb is the number of buffers when the POI is matched with
the building.

Table 2. Summary of ratings for the attributes of POIs and reclassification.

Functional Type Attribute Type Attribute Value

Residential
Neighborhood 0.6548
Living services 0.2

Public service
Cultural education 0.6706

Hospital 0.5069
Important institutions 0.355

Business services and facilities

Shopping malls 0.8146
High-class hotel 0.5562
Leisure venues 0.501

Mansions 0.3057
Green space and tourist attractions Famous places 0.8245

Traffic facilities Transportation hub 1
Others Other 0
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In the present study, the urban centrality is calculated using the Ordering Point to Identify
the Cluster Structure (OPTICS), a multi-density spatial clustering algorithm [39]. Based on
the OPTICS algorithm, the urban centrality is determined primarily via transformation of the
reachable distance. Accordingly, the urban centrality (Fcen) is obtained as follows:

Fcen =
(1/dr)a − (1/dmax)a

(1/dmin)a − (1/dmax)a /Nb (3)

where dr is the reachable distance for a POI while clustering, dmax and dmin are the maximum
and minimum reachable distances for all POIs, respectively; a is the exponent involved in the
transformation and Nb is the number of buffers when the POI is matched with the building.

Thus, the value of the functional characteristic for building based on attribute scores
Fatt and an urban centrality Fcen can be calculated as follows:

Ff un = [F1, F2, . . . Fk, . . . , FN ] (4)

where N is set to 6 considering that six types of functional areas are identified in the present
study (Table 2). Fk is the maximum value of the functional characteristic of the k-th type of
POI that matches the building, and it can be calculated as follows:

Fk = w × (w1 × Fatt
k + w2 × Fcen

k ) (5)

where w is a Gaussian function, and w1 and w2 are weights; Fatt
k and Fcen

k are the attribute
scores and urban centrality for the k-th type of POI, calculated via Equations (2) and (3).

2.1.3. Spatial Relationship Features

A spatial relationship highlights the constraint between spatial data [40], and this
is an important feature for the description of a spatial object. In the present study, the
direction and topography relationships of a building are used to describe the spatial
relationships. The direction relationship is characterized by the orientation of the long side
for the minimum area rectangle of the building. The spatial topography relationships are
described via the construction of a Delaunay triangulation network (DTN), as shown in
Figure 3. The DTN was generated using the central points of the building footprints, and
the road network was employed to constrain it through the deletion of unqualified edges.
In this research, the Euclidean distance between two buildings is used to express the edge
of the DTN.

（a） （b）

Figure 3. The description of topography relationships via DTN. (a) Original buildings and
(b) buildings associated with the DTN.

2.2. Recognizing Building Function Based on Hierarchical Clustering

To optimize urban building function recognition, a two-layer clustering model based
on geometric and functional features is created (as Figure 4). First, buildings are clus-
tered based on geometric features and contextual features. Then, the functional features
are constructed using the matching relationships between POIs and buildings. The first
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layer for building clustering is achieved using the geometric similarities and contextual
relationships, which can be executed using Algorithm 1.

Algorithm 1 Clustering of buildings

Require: Central points of the building footprints N = {n1, n2, . . . , n5} and the contextual
relationships e = {e1, e2, . . . , e7}

Ensure: The cluster to which each building belongs C
k = 0;
Set ∀ni ∈ {n1, n2, . . . nN} and ∀ei ∈ {e1, e2, . . . eM} as unmarked;
for ∀ni ∈ {n1, n2, . . . nN} and ni is unmarked do

Set new clustering Ck = {ni};
Search all unmarked edges connected in Ck and add them to the neighborhood set NE;
for ∀ei ∈ NE do

if np in Ck connected with nq outside Ck by ej, Sim(np, nq) > λ1 and Sim(Ck, nq) > λ2,
where Sim() is defined as the cosine similarity; then

Merge the nq into Ck and recompute the geometric features of Ck;
Mark all edges of connected nodes in Ck;
Search for edges between nodes inside and outside Ck and add these to the
neighborhood edge NE;
Delete the marked edges in the edge neighborhood NE

else
Delete edge ej in NE

end if
end for
k = k + 1

end for

Buildings

Building 
cluster I

Building 
cluster II

Geometric feature-based cluster

Functional feature-based cluster

Figure 4. Clustering model based on geometric and functional features.

2.3. Classifying Urban Functional Zones Based on the Landmark Semantic Constrictions
2.3.1. Extracting Landmarks via Significance Model

In the present study, a building significance model is defined to extract landmarks
based on the following factors: geometric features, attribute scores, urban centrality, and
public cognition. The determination of geometric features, attribute scores, and urban
centrality is described in Section 2.1. Public cognition is defined to describe the awareness
or impacts of an object for the public. This research hypothesis that the population is a
display of the public cognition and public cognition (Fcogn) for a building can be calculated
using the following formulas:

Fcogn =
Xa

cogn − Ca
max

Ca
max − Ca

min
(6)

and
Xcogn =

1
2
× (

sumweekday

Sb
+

sumweekend
Sb

) (7)
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where sumweekday is the sum of thermal values for all working days associated with the
building groups; sumweekend represents the sum of thermal values for all non-working days
in the building groups. All of them are cumulative over a certain period. Sb denotes the
area occupied by the building groups, and a is the transformation coefficient; Cmax and
Cmin are the maximum and minimum public cognition for all buildings, respectively.

The significance model for the landmarks can then be constructed via the summation
of weights of all influencing factors as follows:

Sign = w1 × Fgeo + w2 × Ff un + w3 × Fuc + w4 × Fcogn. (8)

The weights of factors utilized in the present study can be set as in [35], where w1 = 1.25,
w2 = 1.5, w3 = 0.75, and w4 = 1.5.

2.3.2. Classifying Urban Functional Zones in Multiple Scales

Multiscale zones are examined in the present study using varying levels of road net-
works. The urban function classification model in multiscale based on landmark semantic
constraints can be expressed as follows:

Fi = wl
j × max(Sign) + wa

j × ai (9)

where Sign is the normalized description of the significance calculated using Equation (7),
max(sign) denotes the maximum significance of all the objects, that is, the extracted land-
mark; ai corresponds to the normalized value of the total area occupied by function type
i, w is the weight, i = {1, 2, 3, 4, 5, 6} represents the six types of functional zones, and
j = {1, 2, 3} reflects the three road network levels. Thus, the hierarchical semantic cogni-
tion for urban functional zones can be expressed as F = max(Fi).

3. Results
3.1. Study Area and Data Processing

In this research, Shanghai is treated as the study area. Shanghai is a municipality in
the People’s Republic of China which covers approximately 6340.5 km2 and comprises
16 districts, with a population of approximately 24.3 million. The study area is surrounded
by suburban and outer ring roads. The geodata utilized in the present study included POIs,
population, building footprints, and road network.

POI data: The POI dataset involved 622,627 points, and these are differentiated based
on the following attributes: name, address, category, latitude, and longitude. To enhance
the understanding of features for the identification of urban functional zones, the POIs are
reclassified, and the results are presented in Table 3.

Table 3. Categories of POIs and reclassification results.

ID POI Categories Reclassified Results

1 Transportation hub

Terminal, (Airport) Departure, (Airport) Arrival, (Train Station) Entrance, Exit (Train Station)
Transportation facilities services: port terminals, ferry stations, bus stations, subway stations, train

stations, airport related, airports, terminals

2 Famous places
Scenic spots

Place name address information: natural place names, hotspot names, landmarks
3 Shopping malls Shopping services: shopping malls, special shopping streets
4 Cultural education Science, education and culture services

5 Neighborhood
Business residence

Place name address information: house number information, common place name
6 High-class hotel Accommodation services
7 Hospital Health care services

8 Leisure venues Sports leisure service, catering service
Shopping service: Supermarket
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Table 3. Cont.

ID POI Categories Reclassified Results

9 Important institutions Government agencies and social organizations, financial and insurance services
Life service: business hall, post office

10 Mansions
Company and enterprise

Business residence: building, industrial park
Life service: talent market, intermediary agency, firm

11 Living services Automobile maintenance, automobile sales, automobile service, motorcycle service, shopping
service, life service

12 Other
Access facilities, road ancillary facilities, place names and address information, transportation

facilities, public facilities, parking lots, ticket offices, doors
Financial and insurance services: ATM

Road network data: These data were provided by the OpenStreetMap (OSM) in 2019.
Moreover, the Huangpu and Suzhou rivers, which are two major rivers in Shanghai, are
incorporated into the road network data to generate the study unit. The road network data
are divided into three levels. Road network level 1 mainly included elevated roads and
expressways, the Huangpu River, and the Suzhou River. Road network level 2 involved
urban trunk roads, and road network 3 represented urban secondary trunk roads and
branches. The types and levels of roads are listed in Table 4, while the road levels are also
shown in Figure 5.

Table 4. The types and levels of roads utilized.

Level Type Class Description

1 Elevated roads, expressways and river

Motorway Expressway, river crossing tunnel
Motorway_link Expressways, ramps

Trunk Elevated expressways, airport approach expressways,
river crossings, over-bridge expressways

Trunk_link Interchanges, ramps, approach roads on bridges, airport
inbound expressways, national highway diversions

River Rivers

2 Urban trunk roads

Secondary Urban secondary roadways, airport
peripheral roadways

Secondary_link Urban secondary carriageway interchanges, ramps, and
a few other roads

Primary Major urban carriageway

Primary_link Major urban carriageway interchanges, ramps, and a
few other roads

3 Urban secondary trunk, roads and branches

Tertiary Urban feeder roads
Tertiary_link Airport collector roads and a few other roads
Residential Residential area carriageway

Unclassified Residential carriageways, waterfront carriageways,
airport carriageways

Population data: The population data were provided by Tencent in May 2019. They
are utilized to display the spatial distribution of the population with a spatial resolution
of 25 m. The population data are characterized based on the following: count (thermal
intensity of population), longitude, latitude, and acquisition time.

Building footprints: Building footprints are obtained based on the Baidu maps of
2019. Building footprints involves the coordinates and building height, where height is
represented by the number of floors. These amounted to 558,567 building footprints.
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0 10 205 km

±

Level 1 road 
network

Level 2 road 
network

Level 3 road 
network

Figure 5. Map displaying the levels of roads in the study area.

3.2. Analysis and Evaluation of Results

In the present study, the urban function classification was conducted at multiple scale
units and the results are displayed in Figure 6, where multiple scale units were built via dif-
ferent levels of road networks. Moreover, to the show the proportion of types of functional
zones in different scales, functional zone distribution of regional units at different scales is
shown in Figure 7. In detail, in a classification at the finest levels (considering each building
as a unit), the proportion of residential land to individual buildings is approximately 1:2,
while that of business services to facilities is nearly 1:4. Therefore, although these two
components are associated with low recognition, these can affect classification at multiple
scales because of their occupying a large area. However, if urban function classification at
multiple scales is conducted using the proposed method, the interference associated with
the overall spatial cognition decreases because of the feature association and landmark
constraints rules. It is a coincidence that as urbanization continues, concentrated communi-
ties are increasingly becoming multi-core and decentralized, and thus people require short
displacements within core areas to obtain daily services.

5 Traffic facilities

1 Residential land

3 Business services 
   and facilities

2 Public service land

6 Other types

4 Green space and 
   tourist attractions

Figure 6. Urban function classification of the study area under different scales. (a) for level 1, (b) for
level 2, and (c) for level 3.

As living circles expand, the cognition of individuals for the building functional classifi-
cation can evolve. Therefore, considering the introduction of the multiscale spatial feature
association rules (association and transmission of features) and landmark constraints, the
interferences of the poorly recognized and widely distributed functional type components
on the overall spatial cognition decreases. This explains the significant increases in the pro-
portion of transportation facilities at all road network levels in different areas, followed by
public service land and green space and touristic attractions. However, among the needs of
people, transportation is the most important avenue to enhance the social circle, followed by
education and medical treatment. Therefore, in urban areas, as the social circles of inhabitants
expand, awareness concerning transportation facilities is the highest, followed by public
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service lands, while awareness concerning residential lands and business services and
facilities decreases.

Building

Area of level 1 road network
Area of level 2 road network
Area of level 3 road network

Fr
eq

ue
nc

y

2 Public 
service land

5 Traffic 
facilities

1 Residential
land

6 Other
types

3 Business services 
and facilities

4 Green space and
tourist attractions

Figure 7. The functional distribution of regional units at different levels.

To enhance the utility of the proposed approach for classification involving multiscale
urban functional zones, five regions representing different functional types were inves-
tigated (as marked in Figure 6). From the results (as shown in Figure 8), we can see the
residential land and business services and facilities (zones 1 and 3) are characterized by
features which facilitate classification. Conversely, for the public service land, for example,
the college town in Songjiang District, Shanghai (zone 2), involves many residential build-
ings. Thus, relying simply on quantity or area constraint can cause misclassification of this
zone as residential land. The green space and touristic attraction unit (zone 4) is similar
to the public service land, and this caused its incorrect classification as a residential land.
The most significant landmark among transportation facilities is the Hongqiao Airport
(zone 5), but its classification based on the multiscale urban zone is affected by nearby
functional types because the large area hosting it contains few buildings. However, after
introducing the landmark semantic constraints, the identification results are consistent
with the cognition of people. Moreover, it enables the mapping of functions from the
buildings to the level 3 road network scale, which optimize urban function classification in
multiple scales.

Figure 8. Maps exhibiting the landmark extraction and functional area classification associated
with the multiscales. (a,d,g,j,m) Urban function classification maps based on single buildings;
(b,e,h,k,n) results derived from the level 2 road network. (c,f,i,l,o) Urban function classification
associated with the level 1 road network.
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To verify the effectiveness of the landmark semantic constraints approach for multi-
lscale urban function classification, comparative experiments have were conducted in five
different functional areas with the area-based method. From the results (Figure 9), we can
see these areas were recognized as public service, residential, business service, and facilities
bia the area-based method, while they were recognized as residential, business service
and facilities, business service, green space and tourist attractions, traffic facilities via the
proposed method. In detail, for example, zones 1 and 5, the functional radiation energy
values of residential land, and transportation facilities in this region were significantly
enhanced, benefiting from the landmarks, including the Huaxuanli and Madang Road
subway stations. Moreover, for zones 2 to 4, Shanghai University, the shopping district of
Shanghai old street, and St. Joseph’s Church in Yangjingbin were extracted as landmarks.
In these zones, it is more reasonable for classification as public service land, business
services and facilities, and green space and touristic attractions because the extraction
of the three landmark buildings differentiated the residential land. Therefore, compared
with the area-based method, the proposed landmark-constraint method incorporates the
cognitive differences between humans in the identification of special regions. This approach
improves the availability and transmission efficiency of geographic information, enhances
spatial identification and decision-making, and is consistent with human spatial cognition.

（a）

zone1 zone1

（b）

Huaxuanli community

（c）

zone2 zone2

（d）

Shanghai University 
of retired workers

（e）

zone3 zone3

（f）

Shanghai
Old Street

（g）

zone4 zone4

（h）

Yangjingbin St. Joseph's church, 
Catholic Shanghai diocese

（i）

zone5 zone5

（j）

Madang Road 
subway station

2 Public service land

5 Traffic facilities1 Residential land

6 Other types

3 Business services and facilities

4 Green space and tourist attractions

Level 1 road network Level 3 road network

Landmark: type2 type5type4type1 type3

Figure 9. Illustration of the comparison of functions recognized based on the area-based
sub-figures (a,c,e,g,i) and the proposed landmark constraints method sub-figures (b,d,f,h,j).

4. Discussion

Thanks to the POIs and building footprints being obtained from different sources, there
is some offset between POIs and building footprints. Matching POIs and building footprints
for extracting the functional features is an important steps. To rationally and accurately
match the buildings and POIs, buildings were initially clustered based on geometric
features to produce building cluster I. Subsequently, the multi-stage buffer was utilized to
resolve the offset and uneven distribution of POIs. To validate this approach, the results
obtained were compared with those associated with the kernel density matching (KDM) and
frequency density matching (FDM) methods. A quantitative indicator requires labeling all
the functional types at all scale regions. It is subjective except for obtaining the official data.
Therefore, qualitative compared results were executed. Differences are obvious between the
adequacy of the three methods for the matching from the results (Figure 10). In detail, the
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KDM method produced a patchy distribution characterized by poor heterogeneity because
of its proneness to agglomeration. In particular, the identification of residential land (zone 1
in Figure 10) and other types (zone 6 in Figure 10) misses patchy areas, whereas the green
space and tourist attractions (Zone 4 in Figure 10) are hyper-clustered, with a poor contrast
between building types in the central area of the cluster. Conversely, the FDM method
inadequately distinguishes building types characterized by significant cognitive differences,
and thus the abundance of other types of matches associated with low cognitive buildings
can largely interfere with matches for types 1–5. Evidently, the proposed method produced
the best results for the matching of residential land and other types, and these results are
significantly better relative to those linked to the KDM and FDM methods. Therefore,
groups of buildings in residential lands can be accurately identified. Simultaneously, the
matching of buildings relative to data for neighboring areas displays a potential order
because of the inclusion of a functional feature for rating POIs, and this is valuable for the
recognition of insignificant data. The matching performance for public service land (zone
2 in Figure 10) and green space and touristic attractions (zone 4 in Figure 10) is second.
Prominent schools, hospitals, and other groups of buildings are adequately matched (the
Fudan University and Shanghai Foreign Studies University marked in the middle and the
lower left corner of Zone 2 in Figure 10). The performances for the matching of business
services and facilities (zone 3 in Figure 10) and transportation facilities (zone 5 in Figure 10)
were subordinate.

zone1 zone1zone1

（a） （c）（b）

zone2 zone2zone2

（d） （f）（e）

zone3 zone3zone3

（g） （i）（h）

zone4 zone4zone4

（j） （l）（k）

zone5zone5 zone5

（m） （o）（n）

zone6 zone6zone6

（p） （r）（q）

2 Public service land

1 Residential land 5 Traffic facilities

6 Other types

3 Business services and facilities

4 Green space and tourist attractions

Level 1 road network

Level 3 road network

Figure 10. The matching performances for the KDM as sub-figures (a,d,g,j,m,p), FDM as
sub-figures (b,e,h,k,n,q), and the proposed multi-stage buffer as sub-figures (c,f,i,l,o,r).

From the results (Figure 10), we can see there are obvious differences between these
methods. The comparison of the three methods revealed that spatial heterogeneity is poorly
considered in the KDM method, while the distance between the two matched data points
and characteristics of the data are neglected in the FDM method. Therefore, in these two
methods, buildings in an organization can be matched to different functional features or
POIs with low semantic cognition and a high density may match most buildings. This
eventually affects the functional type recognition results of buildings and scene areas.
According to the comparison results, the proposed matching method eliminates these
limitations, and thus the matching performance is significantly improved. Here, only
qualitatively compared results were executed. It may be difficult to have a deep impression
of these areas for readers who are not familiar with Shanghai. Quantitative indicators
and deep learning models will be introduced to the research, making the process more
intelligent and efficient.
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The thresholds (the λ1 and λ2 mentioned in Algorithm 1) of the functional similarity
during clustering are critical for the classification results. In the present study, the silhouette
coefficient (SC) and Calinski–Harabaz (CH) were employed to evaluate the performance of
clusters. The SC can be obtained from the following expression:

SCi =
bi − ai

max(ai, bi)
(10)

where ai is the average distance from sample i to another sample in the cluster, bi represents
the average distance from sample i to another sample in the nearest cluster, and SCi denotes
the contour coefficient of sample i, with the average contour coefficient based on all samples
taking the values [−1,1]. Relatedly, the CH index can be calculated as follows:

CHk =
Bk
Wk

× N − k
k − 1

(11)

where Bk is the variance for intra-clusters and Wk the variance for inter-cluster, N indicates
the number of samples, and k is the number of clusters.

Both evaluation metrics combine separation and tightness, and in the present investi-
gation, the thresholds for λ1 and λ2 were identical and between 0.8 and 0.99. According
to the results shown in Figure 11, SC displays a linear increase, while CH exhibits local
maxima at 0.82, 0.86, 0.88, 0.91, with 0.91 as the global maximum. Therefore, considering
the results from both metrics, 0.91 was set as the threshold for the functional clustering of
building groups.

Silhouette coefficient
Calinski-Harabaz Index

St
an

da
rd

iz
at

io
n

Similarity threshold

Figure 11. The evaluation of the functional clustering of building groups.

5. Conclusions

Classification of urban functional areas is vital for the establishment of smart cities.
The expression of urban functions conveys urban information at varying scales. How-
ever, some methods that neglect cognitive differences amongst humans produce errors
in the characterization of multiple scale regional function zones. Moreover, overcoming
constraints and correlations of cross-scale characteristics in urban functional zones are also
unresolved issues. To solve these problems, the multiscale urban function classification
based on landmark constraints proposed in the present study integrated data from multiple
sources to extract significant features of spatial objects, and designed a significance model
for the extraction of landmarks to perform urban zones functional classification. The model
incorporated visual, semantic, and spatial characteristics of geographic entities, and these
improved the recognition of functional regions and prevented misidentification caused by
single data sources. For the proposed model, different landmarks play the same roles in
urban function classification, which may be inappropriate in some situations. The concept
of a timescale can be introduced subsequently, such as the analysis of trajectory data for
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human and related activities. In the future, the time-based perspective will be researched to
minimize the misclassification of buildings and to enhance assessment of the significance
of different categories of landmarks. POIs are biased and their types are always biased
toward commercial types. With the development of deep learning in urban functional zone
recognition, future work will focus on how to solve this problem by learning the functions
of a single building.
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