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Abstract: Studying driving factors of the urban heat island phenomenon is vital for enhancing
urban ecological environments. Urban functional zones (UFZs), key for planning and manage-
ment, have a substantial impact on the urban thermal environment through their two-dimensional
(2D)/three-dimensional (3D) morphology. Despite prior research on land use and landscape patterns,
understanding the effects of 2D/3D urban morphology in different UFZs is lacking. This study
employs Landsat-8 remote sensing data to retrieve the land surface temperature (LST). A method
combining supervised and unsupervised classification is proposed for UFZ mapping, utilizing multi-
source geospatial data. Subsequently, parameters defining the 2D/3D urban morphology of UFZs are
established. Finally, the Pearson correlation analysis and GeoDetector are used to analyze the driving
factors. The results indicate the following: (1) In the Fifth Ring Road area of Beijing, the residential
zones exhibit the highest LST, followed by the industrial zones. (2) In 2D urban morphology, the
percentage of built-up landscape (built-PLAND) and Shannon’s diversity index (SHDI) are the main
factors influencing LST. In 3D urban morphology, building density, the sky view factor (SVF), and
the area-weighted mean shape index (shape index) are the main factors influencing LST. Therefore,
low-density buildings with simple and dispersed shapes contribute to mitigating LST, while frag-
mented distributions of trees, grasslands, and water bodies also play important roles in alleviating
LST. (3) In the interactive detection results, all UFZs show the highest interaction detection results
with the built-PLAND. (4) Spatial variations are observed in the impact of different UFZs on LST.
For instance, in the residential zones, industrial zones, green space zones, and public service zones,
the SVF is negatively correlated with LST, while in the commercial zones, the SVF exhibits a positive
correlation with LST.

Keywords: urban heat island; land surface temperature; urban functional zone; urban morphology;
GeoDetector

1. Introduction

In the process of urbanization, large-scale urban land development has become one
of the primary ways in which human activities reshape the natural environment. One of
the environmental impacts of urbanization is the phenomenon known as the urban heat
island (UHI) effect, where the temperature in urban areas is higher than in the surrounding
regions [1]. This effect is exacerbated by the rapid urbanization and widespread transi-
tion from natural landscapes to impervious surfaces, leading to increased absorption of
solar radiation at the surface and reduced evapotranspiration from natural vegetation [2].
Furthermore, with the exacerbation of global warming, rapid urban expansion, and the
increasing occurrence of extreme weather conditions, the UHI effect has significantly af-
fected air quality, vegetation phenology, as well as the health and comfort of residents [3].
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Consequently, mitigating the UHI effect has become a focal point of research in various
related fields.

The UHI effect can be assessed through air temperature or land surface temperature
(LST). While air temperature is primarily measured by meteorological stations, the limited
and scattered nature of these stations provides only partial insights into urban temperature
variations. LST results from the energy flux and interactions between the Earth and the
atmosphere, playing a regulatory role in the lower atmospheric temperature of cities [4].
Scholars have conducted diverse studies on LST. For instance, Liu et al. utilized a three-step
method, blending MODIS LST products and Landsat data to generate surface temperature
for the summer months from 2003 to 2018. Their research revealed that the streets with high
UHI effects in Beijing were mainly concentrated in the city center, while the streets with
low UHI effects were predominantly in the suburbs [5]. Yang et al., using a single-window
algorithm in conjunction with Landsat 8 TM10 band, performed LST inversion and found
a close correlation between the surface temperature in Shanghai and the distribution of
buildings [6]. David et al. investigated the relationship between simulated surface UHI
(SUHI), thermal field variations, and land use indices. Their study identified the conversion
of natural and agricultural land to urban or bare land as the primary cause of increased
LST and SUHI [7]. With the continuous development of satellite remote sensing technology,
various satellite images (e.g., Landsat, MODIS) can rapidly and accurately reflect differences
in urban surface temperature and urban morphology, providing a foundational dataset for
local climate studies [8]. Consequently, LST is widely employed to explore the relationship
between the UHI effect and urban morphological indicators, such as land use/land cover
types and landscape patterns [9,10].

Urban areas represent complex dynamic systems characterized by both two-dimensional
(2D) and three-dimensional (3D) spatial features [11]. Previous research on factors influencing
LST has predominantly focused on 2D urban spatial morphology, examining the impact
of green spaces, water bodies, and impervious surfaces on LST [12]. Some studies have
found that the impact of urban spatial morphology on LST is not always linear, but rather
influenced by geographical location and seasonality [1,9,13]. This implies that there may
be variations in LST response among different regions and seasons. Additionally, research
indicates a positive correlation between building area, main road area, and the Normalized
Difference Built-up Index (NDBI) with LST. Conversely, water body area and Normalized
Difference Vegetation Index (NDVI) have been found to be negatively correlated with
LST [14,15]. This suggests that water bodies and vegetation play significant roles in re-
ducing LST. Although these studies have selected various indicators at different scales to
explore the relationship between urban spatial morphology and LST, they have predomi-
nantly focused on 2D spatial morphology. In contrast, 3D morphological information is a
crucial characteristic of urbanization, with buildings serving as key components of urban
structure and major influencers of the UHI effect. This is because buildings can alter the
reflection and absorption of solar radiation and the heat diffusion within urban areas [16].

With the acceleration of urbanization, the quantity and height of buildings in urban
areas continue to rise, prompting researchers to focus on the relationship between the 3D
spatial morphology of cities and LST. Factors such as building height, volume, density,
and shape coefficient have been widely applied, and scholars have found significant
correlations between these factors and LST [17,18]. As remote sensing technology continues
to advance, an increasing number of scholars are contemplating the impact of both 2D and
3D urban morphology on LST. Research has found that both types of indicators influence
LST. However, there is some controversy regarding whether 2D indicators or 3D indicators
play a more significant role in shaping LST in urban areas. Alavipanah et al. argue that 3D
indicators are more important in shaping the LST of different urban structures compared to
2D indicators [19]. However, Huang et al. suggest that the influence of 2D morphology on
LST is superior to that of 3D morphology [20]. Therefore, empirical results regarding the
impact of 2D and 3D urban environments on LST require further investigation.
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In addition, many of these studies are based on entire cities, grids, or street units.
For example, Koko et al. explored the relationship between land use/land cover changes
and LST in Abuja, Nigeria. They found that LST is negatively correlated with NDVI and
positively correlated with NDBI, indicating that urban expansion and reduced vegetation
lead to increased LST [21]. Chen et al. investigated the relationship between LST and urban
morphology in the core area of Xi’an at different grid scales. They identified average build-
ing height as a seasonally stable factor with a cooling effect [22]. Zhang et al. explored the
relationship between LST and urban morphology in Beijing and Shanghai using streets as
spatial units. They found that building density is the most important factor influencing LST,
with 3D building forms being the most significant [1]. However, these approaches cannot
fully characterize the basic spatial units of a city, warranting further exploration, based on
finer spatial units, to investigate factors influencing the urban thermal environment.

In addition to land cover and surface geometry, urban morphology encompasses a
variety of functional zones associated with various human activities. Urban functional
zones (UFZs) are delineated based on different physical characteristics, as well as social
and economic functions, and they often serve as fundamental units in urban planning [23].
Therefore, studying the 2D/3D urban morphology based on spatial units of UFZs holds
greater practical significance for understanding the UHI effect. However, in the current
literature, scholars have extensively studied the factors influencing LST at large scales,
but there is a limited investigation into the influencing factors of LST at the finer scale of
UFZs. Moreover, the intricate relationship between 2D and 3D urban morphology and LST
requires a comparative analysis that considers 3D building features. This study aims to
utilize multi-source geospatial data to more effectively represent the physical characteristics,
as well as the social and economic functions within the study area, facilitating a fine-scale
examination of the 2D/3D urban morphology’s response to the UHI effect.

Due to rapid urbanization, Beijing, as a mega-city in China, experiences a significant
UHI effect. This study seeks to leverage multiple sources of geospatial data to retrieve the
LST in Beijing and create a map of UFZs. Using Pearson correlation analysis and GeoDetec-
tor, the study aims to investigate the relationship between 2D/3D urban morphology and
the UHI effect in different UFZs. The analysis results of Beijing have significant implica-
tions for other cities. The specific objectives of this study are as follows: (1) to retrieve and
analyze the distribution of LST in Beijing; (2) to investigate the distribution characteristics
of UFZs in Beijing; (3) to explore the relationship between different types of UFZs and LST;
and (4) to examine the relationship between the 2D and 3D urban morphology parameters
of UFZs and LST.

2. Study Area and Dataset
2.1. Study Area

As the capital of China, Beijing stands as one of China’s mega-cities, boasting the
most developed and dynamic economy in the northern region. Characterized by a typical
continental monsoon climate, Beijing experiences an average temperature of 12 ◦C, with
annual precipitation ranging between 400–800 mm, unevenly distributed across seasons,
with nearly 80% of rainfall concentrated in the summer. Since the late 1980s, Beijing has
undergone significant urbanization, witnessing a remarkable demographic shift, from
9.043 million residents to 21.84 million as of 2022, as well as an expansion of the urban area
from 346 square kilometers to 1469 square kilometers by 2022 [24]. The rapid expansion of
the city has led to an increasingly prominent UHI effect in Beijing. The local climate and air
quality further exacerbate the impact of this UHI effect. The central area within the Fifth
Ring Road in Beijing, characterized by high levels of urbanization, encompasses a diverse
range of commercial, residential, industrial, and public service zones. There are large rural
areas surrounding the Fifth Ring Road of Beijing (Figure 1d). Different regions within this
area exhibit distinct 2D and 3D urban morphologies, making it an ideal region for studying
the UHI effect (Figure 1). Due to the relatively consistent climate and terrain within the
study area, their impact on LST is not considered.
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Figure 1. Study Area. (a) Beijing-Tianjin-Hebei region; (b) Fifth Ring Road of Beijing; (c) land cover
map of the area within the Beijing Fifth Ring Road (data sourced from the European Space Agency:
https://dataspace.copernicus.eu/ (accessed on 15 July 2023); (d) Sentinel-2 image.

2.2. Dataset

The data used in this study are mainly used to achieve LST inversion, UFZ mapping,
and 2D/3D urban morphology calculations, as shown in Table 1.

The Operational Land Imager (OLI) carried by the Landsat 8 satellite comprises
nine bands with a spatial resolution of up to 30 m, including a 15 m panchromatic band.
The Landsat 8 OLI image, selected as the remote sensing data source, was employed for
retrieving LST. Considering the collection time of urban Point of Interest (POI) data and
the quality of remote sensing image, we obtained a total of two satellite images for the area
within the Fifth Ring Road of Beijing from 1 August 2021 to 15 August 2021, using Google
Earth Engine. One of the images was captured on 6 August 2021, with a cloud coverage
of 3.06%. The other image was taken on 13 August, with a cloud coverage exceeding 5%,
but the clouds did not cover the study area. All captures were during daylight hours.
Subsequently, we processed the two images using Google Earth Engine to remove clouds,
then merged them into a single image.

Luojia 1-01 successfully launched into orbit on 2 June 2018. With a ground resolution
accuracy of 130 m, under ideal conditions, it can complete global nighttime image mapping
within 15 days. Compared to earlier DMSP-OLS and NPP-VIIRS nighttime light data,
the data from the Luojia 1-01 satellite offers higher spatial resolution advantageous for
small-scale studies [25]. This study will utilize imagery from 23 November 2018.

https://dataspace.copernicus.eu/
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Table 1. Data sources and descriptions.

Purpose Data Resolution Time Data Source

LST retrieval Landsat-8 30 m 1 August 2021–15
August 2021

https://earthexplorer.usgs.gov/
(accessed on 15 July 2023)

UFZ mapping

Luojia 1-01 130 m 2018
http://59.175.109.173:
8888/app/login.html (accessed on
27 February 2024)

Sentinel-2 10 m 2022 https://dataspace.copernicus.eu/
(accessed on 17 July 2023)

OSM shp 2021 https://www.openstreetmap.org/
(accessed on 15 July 2023)

POI shp 2022 https://www.amap.com/ (accessed on
15 July 2023)

Accuracy
assessment Baidu Satellite Map / / https://map.baidu.com/ (accessed on

15 July 2023)

2D factors calculation WorldCover v200 10 m 2021.08.10 https://dataspace.copernicus.eu/
(accessed on 15 July 2023)

3D factors calculation Building vectors shp 2019 https://mp.weixin.qq.com/s/kCLLrSI7
aPu7sSqi-Fuvhg (accessed on 14 July 2023)

Sentinel-2 is a high-resolution multispectral imaging mission under the European
Space Agency’s Copernicus program. This mission consists of two identical satellites,
namely Sentinel-2A and Sentinel-2B, with a revisit period of 10 days for each satellite. The
two satellites complement each other, resulting in a combined revisit period of 5 days [26].
In this study, Sentinel-2 images are utilized to calculate the NDVI (Normalized Difference
Vegetation Index) and NDWI (Normalized Difference Water Index) within the Beijing Fifth
Ring Road.

In this study, OpenStreetMap (OSM) road network and POI data were utilized to
identify UFZs. Road network data were obtained from the official OSM website (https:
//www.openstreetmap.org/, accessed on 15 July 2023) [27]. The road network data include
basic spatial information, such as latitude and longitude, as well as attribute information,
such as road names, road types, maximum driving speeds, and one-way indicators. The
study primarily retained the main road network, comprising highways, main roads, first-
level roads, second-level roads, and third-level roads, to divide the study area into irregular
units for UFZ mapping.

POI data were sourced from the Amap API open data platform (accessed in February
2022), including attributes such as POI names, geographic information, locations, and
categories. The original POI data were intricate and contained redundancies. Some data did
not effectively represent certain urban features, leading to low public acceptance. Therefore,
facilities such as public toilets, ATMs, and cemeteries were excluded. Following the “Code
for classification of urban and rural land use and planning standards of development
land (GB50137)”, the study area was categorized into residential zones, commercial zones,
industrial zones, public service zones, and green spaces. After cropping and reclassification,
a total of 558,333 POI points were used (Table 2).

The land cover data in this study utilized WorldCover v200 with a spatial resolution
of 10 m. The WorldCover dataset, a collaborative effort of the European Space Agency and
multiple global scientific research institutions, provides 10 m resolution land cover infor-
mation. This dataset is generated based on data from Sentinel-1 and Sentinel-2 satellites. It
encompasses 11 land cover categories and has undergone independent validation, with an
overall global accuracy of approximately 75%. The land cover data for the year 2021 were
employed in this study (Figure 1c). In addition, the building vector data comes from an
open sharing platform.

https://earthexplorer.usgs.gov/
http://59.175.109.173:8888/app/login.html
http://59.175.109.173:8888/app/login.html
https://dataspace.copernicus.eu/
https://www.openstreetmap.org/
https://www.amap.com/
https://map.baidu.com/
https://dataspace.copernicus.eu/
https://mp.weixin.qq.com/s/kCLLrSI7aPu7sSqi-Fuvhg
https://mp.weixin.qq.com/s/kCLLrSI7aPu7sSqi-Fuvhg
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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Table 2. POI reclassification.

UFZ Categories POI Categories Number

Residential Commercial and residential areas, residential areas,
dormitories, villa areas, etc. 23,153

Commercial
Companies, catering, leisure and entertainment, gas
stations, sports and fitness, shopping and consumption,
banking, life services, etc.

478,751

Industrial Factories, industrial parks 2310

Public service Public utilities, medical care, science, education and
culture, schools, libraries, etc. 52,383

Green space Scenic spots, parks, tourist attractions, memorial halls, city
squares, etc. 1736

3. Method

The workflow of this study is illustrated in Figure 2, encompassing four components:
(1) First, the extraction of LST within the Fifth Ring Road of Beijing was conducted

using Landsat-8 remote sensing image.
(2) Second, using OSM road network data, we partitioned the urban area into basic

units and conducted supervised and unsupervised identification of UFZs based on multi-
source data and POI attributes.

(3) Third, the computation of 2D and 3D urban morphological factors for UFZs was
carried out using land cover data and building vectors.

(4) Finally, analysis of the relationship between 2D/3D urban morphology and LST in
UFZs was conducted using Pearson correlation analysis and GeoDetector.
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Figure 2. Workflow of this study.

3.1. LST Inversion

LST can be retrieved through various remote sensing sensors, such as MODIS and
ASTER sensors, which are supported by the Terra and Aqua platforms [28], as well as the
Landsat satellite series, supported by sensors like ETM, TM, and OLI. Landsat-8, with its
higher spatial resolution and suitable spectral bands for the study area, was employed in
this study for LST inversion [29]. Following the approaches of Feng et al. [30] and Huang
et al. [20], an atmospheric correction method was applied to estimate the atmospheric



ISPRS Int. J. Geo-Inf. 2024, 13, 120 7 of 27

impact on LST radiation. To ensure robust results, this study selected summer images for
inversion, given that the UHI effect is more pronounced during this season. Therefore,
using the Google Earth Engine platform, the average of LST inversion results from 1 August
2021 to 15 August 2021 was calculated. The computation of LST in this study is described
as follows:

Lλ = [εB(TS) + (1 − ε)Ld]τ + Lµ (1)

In the equations, Lλ represents the top-of-atmosphere (TOA) atmospheric radiance; ε
denotes the surface emissivity; B(TS) signifies the thermal radiance derived from the Planck
law at temperature t; τ is the transmissivity of the atmosphere in the thermal infrared band;
and Ld and Lµ are the atmospheric downwelling and upwelling radiance, respectively. The
relationship between B(TS) and Lλ can be expressed as follows:

B(TS) =
Lλ − Lµ − τ(1 − ε)Ld

τε
(2)

Thus, the LST (TS) can be inverted from the Planck formula as follows:

Ts =
K2

ln(K1/B(TS) + 1)
(3)

For Landsat-8, the constants are K1 = 774.89 W/(m·sr·µm) and K2 = 1321.08 K.

3.2. UFZ Mapping

For UFZ mapping, this study proposes a two-stage method that combines both un-
supervised and supervised classification to leverage the strengths of various data sources.
Prior to UFZ classification, we initiated topological processing of OSM road network data.
On this basis, correction of interruptions and duplicate routes was performed, establishing
a fundamental framework for the classification of independent units of UFZs.

In the first stage, a Sentinel-2 image was initially utilized to compute the NDVI and
NDWI values. Thresholds were then set to distinguish green areas and water bodies,
respectively. Subsequently, the total area proportion of green areas and water bodies within
each UFZ was calculated. Based on these proportions, green space zones were determined,
as they typically have a larger proportion of green areas and water bodies. Next, the average
nighttime light index for each UFZ was computed, and a threshold was set to identify
commercial zones, as these zones typically exhibit higher levels of luminosity at night.
Commercial and green space zones were extracted in this step. Following this, a supervised
classification approach was employed to identify the types of the remaining UFZs.

In the second stage, the remaining UFZs were classified using multi-source features
and a random forest classifier. We utilized multiple data sources as features for each UFZ,
including the average values of NDVI, NDWI, nighttime light index, and five normalized
kernel density estimates of POI measures. However, the quantity of POIs varies across
different types, with commercial POIs outnumbering others. This results in an imbalanced
distribution of point numbers among different POI types [31]. To address these issues, we
calculated the normalized kernel density of POI within each unit to determine UFZs. The
function is expressed by the following formulas:

f (x) =
1

nh

n

∑
i=1

k
(

x − xi
h

)
(4)

Fnorm =
f (x)− fmin(x)

fmax(x)− f min(x)
(5)

where f (x) represents the kernel density function; k
(

x−xi
h

)
is the kernel function; n is the

number of known points; h is the bandwidth; and x − xi is the distance from the grid center
point to the known point. In Equation (5), Fnorm is the normalized value of POI kernel
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density, and fmin(x) and fmax(x) are the minimum and maximum values of POI kernel
density, respectively.

The categories of certain UFZs were determined through manual visual interpretation,
along with the green spaces and commercial zones identified in the first stage, serving
as the training dataset for the random forest classifier to identify the remaining UFZs. In
this study, the dataset is randomly divided into a training set (comprising 70% of the data)
and a testing set (30% of the data). Random forest was trained on the training set and
evaluated on the testing set. The random forest algorithm integrates predictions from
multiple decision trees, effectively reducing the risk of overfitting [32].

To evaluate the accuracy of the proposed method, this study employed overall accuracy
(OA) and Kappa coefficient metrics [33]. OA represents the ratio of correctly classified
samples to the total number of samples, while Kappa is used to assess the consistency between
classification results and actual categories. The calculation formula for OA is as follows:

OA =
∑m

i=1 aii

n
(6)

where m represents the number of UFZ categories, aii denotes the number of correctly
classified samples in each UFZ category, and n represents the total number of UFZ samples.

The calculation of OA is given by:

Pe =
∑m

i=1 aibi

n
(7)

Kappa =
OA − Pe

1 − Pe
(8)

where Pe represents the chance-corrected agreement, m denotes the number of UFZ cate-
gories, ai signifies the actual number of samples in each UFZ category, and bi represents
the number of samples misclassified into each category.

3.3. 2D/3D Urban Morphology Factors

Patches are fundamental units composing landscape patterns, representing relatively
homogeneous non-linear areas distinct from the surrounding background [34]. This study
explored the relationship between the patchiness of land cover types and LST concerning
UFZs, utilizing landscape metrics.

As shown in Table 3, 2D urban morphology encompasses surface cover landscape in-
dices, while 3D urban morphology involves building forms computed through architectural
calculations. Three widely used landscape indices were employed in this study to assess
urban landscape patterns: percentage of landscape area (PLAND), patch density (PD),
and Shannon’s diversity index (SHDI). These indicators, calculated using FRAGSTATS 4.2,
describe urban morphology from three perspectives: area proportion, shape complexity
and diversity, and spatial arrangement. They effectively capture the ecological environment
formed by the interaction of natural and anthropogenic factors within a region. Both
PLAND and PD were calculated based on each land cover element, while SHDI was
computed across all categories.

In addition, to focus on 3D architectural structures, six indices were constructed using
building vectors, including the area-weighted mean shape index (shape index), building
density (density), shape coefficient, mean height, height variance, and sky view factor
(SVF). These six indicators encompass aspects of shape, composition, and distribution
(Table 3). Buildings represent the primary aspects of 3D urban morphology, and the
selected indices cover differences in building height, shape, density, and other horizontal
and vertical dimensions. They comprehensively measure the 3D morphology within UFZs.
The calculation of the SVF is conducted using the UMEP plugin in QGIS software 3.16.
Figure 3 illustrates the building heights and SVF in a sample area. Considering the fact that
the climate factors and the terrain factors are relatively consistent in the study area, this
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study only discusses the influence of 2D/3D urban morphological parameters on daytime
urban LST.

Table 3. 2D/3D urban morphology factors.

Type Factor Equation Description

2D urban
morphology
factors

Percentage of
landscape
(PLAND)

PLAND =
∑n

j=1 aij

A × 100

aij represents the area
of the j-th patch in the
i-th landscape type; A
is the total area of
the landscape

Describe the proportion
of the land type in
the landscape

Patch density (PD) PD = NP
A

NP is the number of
patches; A is the total
area of the landscape
or patches

Describe the number of
patches per unit area; the
greater the density of
patches, the finer the
granularity of
the landscape

Shannon’s diversity
index (SHDI) SHDI = −∑PilnPi

Pi is the proportion of
species i in the total
number of species

Describe the complexity
and variability of patches
in the landscape; when
there is only one patch
type in the landscape,
SHDI = 0

3D urban
morphology
factors

Area-weighted
mean shape index
(shape index)

Shape index = C√S

C is the perimeter of
the patches, S is the
area of the patches

Shape complexity of
individual buildings
It is equal to the
perimeter of the patch
divided by the square
root of the area of
the patch

Density Density =
∑n

j=1 Sij

∑n
i=1 Si

Sij represents the area
of the j-th building in
the i-th functional zone

Indicates the building
density within each block

Shape coefficient Shape coefficient = S
V

S is the building
surface area; V is the
building volume

The ratio between
exterior surface and
building volume; it
measures a building’s
ability to exchange heat
with the surrounding
environment

Mean height Mean height = ∑n
i=1 hi
n

hi is the height of the
i-th building

Represents the average
height of buildings in
each block

Height variance Height variance = ∑n
i=1(hi−MH)2

n

hi is the height of the
i-th building; MH is the
average height of
the building

Represents the height
change of buildings
within each block

Sky view
factor (SVF) SVF = 1 − ∑n

i=1 sinγi
n

γi represents the
azimuth size of
building height relative
to the center, r, and n
represents the number
of azimuths within the
buffer zone

The proportion of the
covered hemisphere
occupied by the sky,
ranging from 0 (no sky
visible) to 1 (no horizon
obstruction visible); it
measures the extent of a
3D open space
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area and (c) SVF.

3.4. Data Analysis Methods

Using machine learning models may introduce the risk of overfitting, especially
with limited sample sizes. In contrast, Pearson correlation analysis and GeoDetector are
simpler and more suitable for our research purposes. Additionally, they can provide
direct relationships and the extent of influence among indicators, making the results easy
to interpret and understand. Therefore, this study will first employ Pearson correlation
analysis to identify variables that may have significant effects. Subsequently, variables will
be input into the GeoDetector model to analyze the relationship between urban morphology
parameters and LST. In addition, these two methods have been successfully applied in the
related field [20,35].

3.4.1. Pearson Correlation Analysis

Considering the potential correlation between 2D/3D urban morphology indicators
and LST, this study employed Pearson correlation analysis to investigate the relationship
between 2D/3D urban morphology indicators and LST. Pearson correlation analysis is a
statistical method used to measure the strength and direction of the linear relationship
between two variables. It is based on the concept of covariance, calculated by dividing the
covariance of two variables by the product of their respective standard deviations, resulting
in a correlation coefficient ranging from −1 to 1 [36]. The Pearson correlation formula is
as follows:

r =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(9)

where xi represents 2D/3D urban morphology indicators, yi represents LST, and n is the
sample size. The correlation coefficient ranges from −1 to 1: when r > 0, it indicates
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a positive correlation between LST and the factor; when r < 0, it indicates a negative
correlation; when r = 0, it indicates no correlation between LST and the factor.

3.4.2. GeoDetector

GeoDetector represents a set of statistical methods used to explore spatial variations
and reveal the driving forces behind them. Its core concept is based on the assumption
that if a certain independent variable significantly influences a dependent variable, their
spatial distributions should exhibit similarity [37]. In this study, the differentiation and
factor detection module of GeoDetector is employed to assess the explanatory power of the
influencing factors on the spatial variation of LST in UFZs, as indicated by the formula:

q = 1 − ∑L
h=1 Nhσ

2
h

Nσ2 (10)

where q represents the explanatory power of a certain influencing factor on the spatial
variation of LST in UFZs; h = 1,2,3,. . .; L denotes the layers of LST or influencing factors; Nh
and N represent the number of units in layer h and the total number of UFZs, respectively;
σh and σ2 denote the variance of feature values in layer h and UFZs, respectively. The q
value ranges from [0, 1], where a higher value indicates a stronger explanatory power of
each influencing factor on the spatial variation of LST in UFZs [38].

The interaction detection module is employed to detect the types of interactions
between the independent variables (Xi), determining whether the combination of different
factors affects the explanatory power of the dependent variable (Y). This method first
calculates the q value for each influencing factor and then computes the q value for each
pair of factors after interaction, as presented in Table 4. A higher q value indicates a stronger
joint explanatory power of the two factors [37].

Table 4. Interaction types.

Interaction Type Judgments Based

Nonlinear weaken q(x1∩x2) < min[q(x1),q(x2)]
Single factor nonlinear weaken min[q(x1),q(x2)] < q(x1∩x2) < [q(x1),q(x2)]
Bivariate enhance q(x1∩x2) > max[q(x1),q(x2)]
Independent q(x1∩x2) = q(x1),q(x2)
Nonlinear enhance q(x1∩x2) > q(x1),q(x2)

4. Results
4.1. Results of UFZ Mapping

This study delineated 998 UFZs (Figure 4). Through analyzing normalized POI density,
Baidu satellite images, and original images obtained from Baidu street view, combined with
our understanding of the study area, we visually interpreted the categories of 236 UFZs.
Along with the 64 green spaces and commercial zones identified in the first stage, a
total of 300 UFZs were utilized for model training and accuracy assessment. The dataset
was randomly divided into a training set, comprising 70% of the data, and a testing set,
comprising 30% of the data. Finally, a confusion matrix was created, and the Kappa
coefficient was calculated to determine the accuracy of the UFZ classification against the
testing set. The overall accuracy of UFZ mapping in this study is 89%, with a Kappa
coefficient of 0.85 (Figure 5). As depicted in Figure 5, based on the confusion matrix results,
the correct recognition rates for the five UFZs are all above 80%. Specifically, residential
zones had a 3.3% chance of being misclassified as commercial zones, 2.2% as industrial
zones, 1.1% as green spaces, and 1.1% as public service zones. Commercial zones had a
3.4% chance of being misclassified as residential zones, 2.9% as green spaces, and 5.7% as
public service zones. Industrial zones have had a 1.1% chance of being misclassified as
residential zones, 5.9% as commercial zones. Green spaces had a 12.5% chance of being
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misclassified as public service zones. Public service zones had a 5.9% chance of being
misclassified as industrial zones, and a 3.2% chance of being misclassified as green spaces.
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As shown in Table 5, a statistical analysis of UFZs types within the Fifth Ring Road
of Beijing revealed 566 units were classified as residential zones, covering a total area of
573.48 km2, constituting 45.4% of the total. There are 196 units classified as commercial
zones, with a total area of 194.92 km2, representing 15.4% of the total. Industrial zones
comprised 57 units, covering a total area of 70.79 km2, accounting for 5.6% of the total.
Green spaces encompassed 72 units, with a total area of 328.90 km2, making up 26% of
the total. Public service land zones comprised 107 units, with a total area of 95.21 km2,
constituting 15.4% of the total.
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Table 5. UFZ statistics.

UFZs Number Total Area/km2 Average Area/km2

Residential 566 573.48 1.01
Commercial 196 194.92 0.99
Industrial 57 70.79 1.24
Green space 72 328.90 4.56
Public service 107 95.21 0.83
Total 998 1263.31 1.27

4.2. LST Inversion Results

The results of LST inversion reveal that the urban LST within the Fifth Ring Road of
Beijing ranges from 25.65 ◦C to 40.85 ◦C (Figure 6), exhibiting an overall pattern of “high in
the center, low in the periphery”. As Beijing’s urban area continues to expand, extensive
buildings, roads, and artificial land cover the original landscape. These structures and
roads absorb solar radiation energy and release it in the form of heat, causing an increase
in temperature within the city. Consequently, the LST within the Fifth Ring Road of Beijing
exhibits a central high-temperature pattern surrounded by lower temperatures.

Overlaying the LST with UFZs and utilizing the natural breaks method, the LST
of UFZs is classified into five categories: low temperature (≤29.85 ◦C), sub-low tem-
perature (29.86–30.70 ◦C), medium temperature (30.71–31.43 ◦C), sub-high temperature
(31.44–32.10 ◦C), and high temperature (≥32.11 ◦C). As shown in Figures 7 and 8, the
LST within the UFZs ranges from 28.23 ◦C to 33.44 ◦C. Residential zones and industrial
zones exhibit higher LST, measuring 31.35 ◦C and 31.18 ◦C, respectively. The proportion
of high temperatures in residential zones is 20.49%, while in industrial zones, it is 10.53%.
Following closely are public service zones and commercial zones, with an LST of 31.16 ◦C
and 31.12 ◦C, respectively. The proportions of high temperatures are 12.15% in public
service zones and 13.27% in commercial zones. Green spaces have the lowest average LST,
at 29.86 ◦C, with a high-temperature proportion of only 4.17%. According to Figure 9,
industrial zones have the largest standard deviation, at 0.95 ◦C, while commercial zones
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have the smallest one, at 0.87 ◦C. The research results indicate that residential zones have
the highest LST, followed by industrial zones, while green spaces exhibit the lowest LST.
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4.3. Factors Influencing Analysis
4.3.1. Correlation between 2D/3D Factors and LST

In terms of the impact of 2D urban morphological indicators on the LST of UFZs
(Table 6), built-PLAND, built-PD, and SHDI in all five UFZs show significant correlations
at the 1% significance level. Among them, all UFZs exhibit the highest positive correlation
with built-PLAND, followed by relatively high negative correlations with SHDI and built-
PD. This indicates that concentrated distribution of buildings, and uneven distribution of
patches in the five UFZs may lead to an increase in LST. Moreover, grass, trees, and water
show negative correlations with LST, suggesting that a higher proportion and dispersed
distribution of trees and water within UFZs can effectively mitigate LST, while bare land
shows a positive correlation with LST, indicating that fragmented bare land can lead to
temperature increases.

Table 6. Pearson correlation coefficients between 2D factors and LST of UFZs.

Residential Commercial Industrial Green Space Public Service

SHDI −0.734 ** −0.706 ** −0.769 ** −0.758 ** −0.679 **
Built-up
Built-PLAND 0.86 ** 0.813 ** 0.866 ** 0.901 ** 0.866 **
Built-PD −0.451 ** −0.415 ** −0.417 ** −0.462 ** −0.463 **
Grass
Grass-PLAND −0.037 −0.1 −0.338 * −0.087 −0.249 **
Grass-PD −0.129 ** −0.172 * −0.174 −0.034 −0.342 **
Tree
Tree-PLAND −0.2 ** −0.197 ** −0.473 ** −0.462 ** −0.062
Tree-PD −0.228 ** −0.212 ** −0.422 ** −0.455 ** −0.143
Bare
Bare-PLAND 0.165 ** 0.108 0.402 ** 0.225 0.146
Bare-PD 0.188 ** −0.115 0.434 ** 0.258 * 0.140
Water
Water-PLAND −0.116 ** −0.236 −0.187 −0.173 −0.144
Water-PD −0.138 ** −0.173 −0.239 −0.164 −0.146

* p < 0.05 (2-tailed). ** p < 0.01 (2-tailed).

Regarding the impact of 3D urban morphological indicators on the LST of UFZs
(Table 7), building density shows the highest correlation in all UFZs and passes the 1%
significance level test, with correlation coefficients of 0.566, 0.443, 0.412, 0.482, and 0.608,
respectively. In addition, in all UFZs, the mean height shows a negative correlation with
LST, indicating that taller buildings are more conducive to reducing LST. In residential
zones, the shape index (r = 0.38, p < 0.01) and the SVF (r = −0.216, p < 0.01) suggest that
simple and dispersed building shapes help alleviate LST. In the commercial zones, the
shape index (r = 0.339, p < 0.01) and the height variance (r = −0.128) indicate that simpler
building shapes and greater height variance contribute to lowering LST. In the industrial
zones, the SVF (r = −0.409, p < 0.01) and the mean height (r = −0.401, p < 0.01) suggest that
dispersed and taller buildings help mitigate LST. In green space zones, the shape index
(r = 0.415, p < 0.01) and the SVF (r = −0.395) indicate that complex and dense building
shapes may lead to higher LSTs. In public service zones, the shape index (r = 0.426, p < 0.01)
and the SVF (r = −0.278, p < 0.05) indicate that complex and dense building shapes may
lead to higher LSTs. Through comparing different UFZs, spatial variations in the impact
on LST are observed. For instance, in the residential zones, industrial zones, green space
zones, and public service zones, the SVF shows a negative correlation with LST, while in the
commercial zones, the SVF is positively correlated with LST. Additionally, in the industrial
zones and green space zones, height variance is positively correlated with LST, whereas in
the residential zones, commercial zones, and public service zones, height variance exhibits
a negative correlation with LST, with the industrial zones and green space zones showing
a greater impact than the other three UFZs. Due to the strong correlation found between



ISPRS Int. J. Geo-Inf. 2024, 13, 120 17 of 27

2D/3D urban morphology parameters and LST in the Pearson correlation analysis, both
2D and 3D urban morphology parameters will be included in the subsequent analysis
using GeoDetector.

Table 7. Pearson correlation coefficients between 3D factors and LST of UFZs.

Residential Commercial Industrial Green Space Public Service

Shape index 0.38 ** 0.339 ** 0.186 0.415 ** 0.426 **
Density 0.566 ** 0.443 ** 0.412 ** 0.482 ** 0.608 **
Shape coefficient −0.025 0.096 −0.212 −0.021 0.267 **
Mean height −0.212 ** −0.114 −0.401 ** −0.36 ** −0.023
Height variance −0.132 ** −0.128 0.344 ** 0.307 ** −0.016
SVF −0.216 0.017 −0.409 ** −0.395 −0.278 *

* p < 0.05 (2-tailed). ** p < 0.01 (2-tailed).

4.3.2. The Influence of 2D/3D Factors on LST

From the perspective of the impact of 2D urban morphology factors on the LST of
UFZs (Table 8), the built-PLAND exhibits the highest explanatory power, followed by the
SHDI, for the LST in the five UFZs. The built-PLAND, grass-PLAND, tree-PLAND, and
SHDI for the residential zones, commercial zones, industrial zones, public service zones,
and green spaces are all significant at the 1% level. When considering individual UFZs for
residential zones, all factors, except for water-PD, are significant at the 1% level, indicating
a complex set of factors influencing the LST in the residential zones. In the commercial
zones, built-PLAND (q = 0.558, p < 0.01), grass-PLAND (q = 0.357, p < 0.01), and SHDI
(q = 0.481, p < 0.01) have a high explanatory power for LST spatial variability, suggesting
a close correlation with these factors in the commercial zones. In the industrial zones,
the built-PLAND (q = 0.777, p < 0.01), built-PD (q = 0.357, p < 0.01), and SHDI (q = 0.652,
p < 0.01) have high explanatory power for the LST spatial variability. In the green spaces,
except for bare soil and water bodies, all factors have high explanatory power for LST
spatial variability. In the public service zones, the built-PLAND, built-PD, and SHDI have
high explanatory power for the LST spatial variability, with all q values greater than 0.3
and being significant at the 1% level. Overall, among the 2D urban morphology indicators,
built-PLAND and SHDI are identified as the primary factors influencing urban LST.

Table 8. The impact of 2D factors on LST across UFZs (PLAND and PD are denoted as “land cover
-landscape index”, where, for example, built-PLAND represents the PLAND of built-up area and
built-PD represents the PD of the built-up area).

Factors Residential Commercial Industrial Green Space Public Service

SHDI 0.543 ** 0.481 ** 0.652 ** 0.643 ** 0.473 **
Built-up
Built-PLAND 0.740 ** 0.558 ** 0.777 ** 0.865 ** 0.787 **
Built-PD 0.388 ** 0.219 ** 0.357 ** 0.325 0.376 **
Grassland
Grass-PLAND 0.415 ** 0.357 ** 0.244 ** 0.415 ** 0.097 **
Grass-PD 0.329 ** 0.256 ** 0.240 ** 0.363 * 0.195 **
Tree cover
Tree-PLAND 0.273 ** 0.248 ** 0.321 ** 0.267 ** 0.134 **
Tree-PD 0.267 ** 0.076 ** 0.317 * 0.262 * 0.118 **
Bare
Bare-PLAND 0.067 ** 0.087 * 0.138 0.169 0.021
Bare-PD 0.065 ** 0.093 * 0.111 0.071 0.075
Water
Water-PLAND 0.022 ** 0.053 ** 0.062 * 0.041 0.043
Water-PD 0.018 0.040 0.047 * 0.039 0.067

* p < 0.05 (2-tailed). ** p < 0.01 (2-tailed).



ISPRS Int. J. Geo-Inf. 2024, 13, 120 18 of 27

In order to provide a clearer and more intuitive understanding of the impact of 2D/3D
factors on the LST within different UFZs, we calculated the percentage of influence of
2D/3D factors in individual UFZs. This facilitates a comparison of their influence across
different UFZs, as shown in Figures 10 and 11. Figure 10 illustrates a comparative analysis
of the influence of various 2D factors within different types of UFZs. Among the five
UFZs, SHDI and built-PLAND have the most significant impact on LST. In residential,
commercial, and industrial zones, the influence of SHDI and built-PLAND on LST is
generally similar. However, in green spaces and public service zones, the influence of
built-PLAND exceeds that of SHDI. It is worth noting that in public service zones, the
influence of built-PLAND on LST is the most significant. Additionally, compared to other
UFZs, the impact of tree-PLAND and tree-PD on green spaces is more pronounced.
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Examining the impact of 3D urban morphological factors on the LST of UFZs
(Table 9), the density values for the residential zones, commercial zones, industrial zones,
green spaces, and public service zones are all significant at the 1% level, with q values
of 0.521, 0.323, 0.467, 0.388, and 0.467, respectively. Specifically, for the residential zones,
all four factors of 3D urban morphology have explanatory power for LST, passing the 1%
significance test. Notably, the SVF (q = 0.226, p < 0.01) and the mean height (q = 0.161,
p < 0.01) exhibit stronger explanatory power for spatial variations in LST in the residential
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zones, indicating a close correlation between the residential zone LST and building height
and sky visibility. In commercial zones, all 3D urban morphology factors are significant
at the 1% level, except for height variance, and its explanatory power (q = 0.028) is the
weakest. The shape index (q = 0.167, p < 0.01), the shape coefficient (q = 0.074, p < 0.01), and
the SVF (q = 0.048, p < 0.05) demonstrate strong explanatory power for spatial variations
in the LST in commercial zones, suggesting a close relationship between commercial zone
LST and building shape and sky visibility. For the industrial zones, all the six factors of
3D urban morphology fail to pass the 1% significance test, except for density. However,
the SVF (q = 0.441, p < 0.05) and the mean height (q = 0.436, p < 0.05) exhibit relatively
stronger explanatory power for spatial variations in the LST in the industrial zones. In
the green spaces, only the SVF and the shape index pass the 5% significance test, with
the SVF (q = 0.44, p < 0.05), the shape index (q = 0.272, p < 0.05) and the mean height
(q = 0.274) demonstrating stronger explanatory power for spatial variations in LST in the
green spaces. For public service zones, only the shape coefficient and height variance failed
the significance test, and although the shape coefficient has a q value of 0.183, it does not
pass the 1% significance test. Overall, among the 3D urban morphology factors, density,
SVF, and shape index are identified as the primary factors influencing urban LST.

Table 9. The impact of 3D factors on LST across UFZs.

Factors Residential Commercial Industrial Green Space Public Service

Shape index 0.160 ** 0.167 ** 0.177 * 0.272 * 0.258 **
Density 0.521 ** 0.323 ** 0.467 ** 0.388 ** 0.467 **
Shape
coefficient 0.069 ** 0.074 ** 0.227 * 0.208 0.183

Mean height 0.161 ** 0.047 ** 0.436 * 0.274 0.149 **
Height
variance 0.108 ** 0.028 0.424 0.247 0.127

SVF 0.226 ** 0.048 * 0.441 * 0.44 * 0.186 *
* p < 0.05 (2-tailed). ** p < 0.01 (2-tailed).

As shown in Figure 11, among the five UFZs, density emerges as the primary factor
influencing LST. Its impact is consistently prominent in commercial and residential zones,
surpassing that of industrial zones, green spaces, and public service zones. The shape
index significantly affects LST in commercial and public service zones. Meanwhile, the SVF
demonstrates notable effects in residential, industrial, and green space zones. In industrial
zones, aside from the shape index and shape coefficient, the remaining 3D urban factors
exhibit similar impacts on LST.

4.3.3. Factor Interaction Analysis

Furthermore, the internal composition of UFZs is complex, and the influence on
LST is also intricate. Investigating a single factor may not adequately characterize the
relationship between them. Therefore, a dual-factor analysis was chosen to explore
whether there is a stronger connection between the double factors and LST. The results
of the interaction detection of the 3D urban morphological factors using GeoDetector
(Figure 12) demonstrate that the interactive detection results of 3D factors in UFZs are both
higher than the explanatory power of single factors. Moreover, they exhibit either bivari-
ate enhancement or nonlinear enhancement, with no instances of mutual independence
or weakening.

For the residential zones, the interaction strength between density and the mean height
is 0.640, and the interaction strength between density and the shape index is q = 0.627.
In the commercial zones, the interaction strength between density and the mean height
is the same as the interaction strength between density and the shape index, both being
q = 0.412. In the industrial zones, the interaction strength between density and the height
variance is the highest (q = 0.765), followed by the interaction strength between density
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and the mean height (q = 0.760). In the green spaces, the interaction strength between
density and the mean height is the highest (q = 0.726), and the interaction strength between
density and the shape index is the second highest (q = 0.724). For the public service zone,
the interaction strength between density and the height variance is the highest (q = 0.782),
followed by the interaction strength between the mean height and density (q = 0.764). The
results indicate that the interaction between density and the mean height exhibits stronger
explanatory power. Building density affects urban spatial layout, shape index is associated
with individual building complexity, while mean height is correlated with airflow. Thus,
the interaction between density, shape index, and mean height demonstrates the maximum
explanatory power for LST, aligning well with the actual situation.
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Through GeoDetector, the interactive detection results of various 2D landscape factors
in UFZs were obtained (Figure 13). The results of the interactive detection of 2D factors
are all greater than the explanatory power of single factors, and they exhibit either bivari-
ate enhancement or nonlinear enhancement, with no instances of mutual independence
or weakening.

In the residential zones, the highest interactive explanatory power is between the
built-PLAND and built-PD (q = 0.798), followed by the interaction between built-PLAND
and bare-PLAND (q = 0.787). In the commercial zones, the highest interactive explanatory
power is between the built-PLAND and grass-PD (q = 0.644), followed by the interaction
between built-PLAND and bare-PD (q = 0.622). In the industrial zones, the highest inter-
active explanatory power is between the built-PLAND and built-PD (q = 0.886), followed
by the interaction between built-PD and SHDI (q = 0.901). In the green spaces, the highest
interactive explanatory power is between the built-PLAND and built-PD (q = 0.948), fol-
lowed by the interaction between built-PLAND and grass-PD (q = 0.936). For the public
service zones, the highest interactive explanatory power is between the built-PLAND
and built-PD (q = 0.890), followed by the interaction between built-PLAND and SHDI
(q = 0.862).

Through GeoDetector, the interactive detection results of 2D/3D urban morphological
factors in UFZs were obtained (Figure 14). The results of the interactive detection are
all greater than the explanatory power of single factors, and they exhibit either bivari-
ate enhancement or nonlinear enhancement, with no instances of mutual independence
or weakening.
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In the residential zones, the highest interactive explanatory power is between the
height variance and built-PLAND (q = 0.825), followed by the interaction between the
shape index and built-PLAND (q = 0.822). For the commercial zones, the highest interactive
explanatory power is between the shape index and built-PLAND (q = 0.663), followed by
the interaction between the shape coefficient and built-PLAND (q = 0.644). In the industrial
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zones, the highest interactive explanatory power is between density and built-PLAND
(q = 0.926), followed by the interaction between the height variance and built-PLAND
(q = 0.911). In the green spaces, the highest interactive explanatory power is between
built-PLAND and built-PLAND (q = 0.973), followed by the interaction between the mean
height and built-PLAND (q = 0.965). In the public service zones, the highest interactive
explanatory power is between the shape coefficient and built-PLAND (q = 0.917), followed
by the interaction between the mean height and built-PLAND (q = 0.913).
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Figure 14. Two-dimensional/three-dimensional factor interaction detection results in UFZs
((a) residential zone; (b) commercial zone; (c) industrial zone; (d) green space; (e) public service zone).

In summary, from the perspective of the single-factor detection results, the spatial
heterogeneity of LST in the UFZs within the Fifth Ring Road of Beijing is the result of the
interaction and enhancement of multiple factors, rather than the independent action of a
single factor. Single-factor detection can reflect the degree of influence of each factor on
LST, while dual-factor interaction detection can better reveal the synergistic effects among
various factors.

5. Discussion
5.1. Impact of 2D/3D Urban Morphology on LST

Previous research demonstrates that land use/cover is the most significant factor
affecting the UHI. Agricultural fields and forests can effectively reduce urban temperatures,
with the cooling effect dependent on the distribution and composition of these fields and
forests [39]. While human activities significantly influence urban LST, these studies often
overlook the impact of human activities on the urban heat environment, focusing more on
2D influencing factors. Therefore, this study explores the impact of UFZs resulting from
human activities on the urban heat environment, as well as the differences in the impact
of 2D and 3D urban morphology on the urban heat environment. The results show that
residential zones have the highest LST, with the largest land area, industrial zones have the
second-highest temperatures, and green spaces exhibit the lowest temperatures.
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Some recent studies indicate a close relationship between building height and density
in urban areas and LST, which is consistent with our findings. Additionally, other research
highlights the significant regulatory role of urban tree, grass, and water bodies on LST,
corroborating our conclusions.

Research indicates a strong positive correlation between building density and LST,
while building height, shape index, and SVF show a negative correlation with LST. Similar
findings have been noted in studies conducted in cities such as Beijing, Nanjing, and
Seoul [15,40,41]. Previous research has also shown lower LST in areas with tall buildings,
suggesting the influence of the urban canyon effect [41] and ventilation corridors [7,9].
High-rise buildings and roads create urban canyons, speeding up airflow over pavements.
Moreover, buildings with simple shapes can more rapidly transfer heat carried in the air
through urban areas, thereby slowing down the increase in LST. Deeper canyon spaces
correspond to lower daytime LST [42]. Furthermore, high-rise areas provide more public
spaces and ventilation corridors. Existing research indicates that a higher SVF represents a
more expansive sky view, which aids in enhancing air circulation and wind speed in dense
urban environments, thereby reducing temperature [43].

Research also indicates that grass, trees, and water have a significant impact on the
variation of urban LST during summer days. Tree canopies create extensive shaded areas
and reduce the absorption of solar radiation heat by transpiration, thereby lowering the
LST [44]. Grass and water have a cooling effect through evaporation. When sunlight
shines on grass and water surfaces, some water evaporates into water vapor, carrying away
the surrounding heat and reducing the LST. Additionally, water has a high heat capacity,
allowing it to absorb more heat without significant temperature rise, thereby reducing the
rate of change in LST. Therefore, balancing the utilization of these elements in individual
UFZs can maximize their cooling effects.

5.2. Comparison with Other Studies

A thorough examination of prior literature reveals that research on the factors impact-
ing LST has predominantly investigated the correlation between LST and 2D/3D urban
spatial morphology. This exploration has been conducted mainly from perspectives, such as
overall societal activity space, urban clusters, cities, and regions. The findings demonstrate
that the influential factors affecting LST vary, depending on the research scale. For instance,
at the city scale, as observed in cities like Shijiazhuang, Xi’an, and Nanchang, the dominant
factor influencing LST is the bare soil index (BSI) [45]. At the grid scale, the dominant factor
for LST in the Seoul region is building height [46]. In this study, focusing on the scale of
UFZs, the results indicate that within Beijing, the primary factors affecting urban LST in 2D
urban morphology indicators are built-PLAND and SHDI, while in 3D urban morphology
factors such as density, SVF, and shape index play a dominant role.

From the perspective of UFZs, our study reveals that the impact of the shape index is
more pronounced compared to the study conducted by Huang et al. on the influence of
2D/3D UFZs on LST in Wuhan [20]. In our study, the shape index emerges as the primary
influencing factor among urban 3D morphology parameters, leading us to conclude that
simpler building shapes are more conducive to mitigating the urban heat island effect.
Unlike Huang et al., who suggest that MH and SVF have a greater impact among 3D
urban morphology parameters, our study indicates that the SVF and the shape index
have a greater influence. Beijing features denser urban buildings compared to Wuhan,
contributing to the higher impact of the shape index [47]. This regional disparity fur-
ther demonstrates the complex mechanisms of urban microclimates at a fine scale and
underscores the significance of our study for urban planning in cities similar to Beijing.

5.3. Limitations

This study has certain limitations that require further discussion. First, since the
Landsat-8 data utilized in this study were obtained during daytime, nocturnal LST vari-
ations were not accounted for. Given the divergent temperature patterns between urban
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day and night, particularly in narrow urban streets, this discrepancy might yield slightly
different outcomes. Therefore, in future research, the utilization of MODIS day-night
thermal data could be employed to explore the nocturnal relationship between urban
morphology and LST. Second, despite efforts to correct errors in using the OSM road
data for dividing Beijing’s UFZs, potential omissions and errors may still exist during the
manual identification process. Moreover, irregular research units may lead to the loss of
edge details compared to regular grid or image elements. To achieve higher-precision UFZ
mapping, future research could utilize more high-quality, open-source datasets and employ
precise functional zone delineation from government departments. Finally, this study only
explores the relationship between summer LST and UFZs in Beijing. Due to variations
in human activities and solar radiation at different times, future research can investigate
the spatial distribution of LST between different seasons and its influencing factors. In
addition, we will consider introducing machine learning models to explore the relationship
between 2D and 3D urban morphology and LST in the future. For instance, we may utilize
the XGBoost model to establish the relationship between 2D and 3D urban morphology
and LST, and employ the Shapley Additive exPlanation model to interpret the results [48].

5.4. Urban Planning Recommendations

Research shows that both 2D and 3D urban morphology parameters have a significant
impact on LST in summer. Urban planning should focus on the distribution of buildings,
grass, trees, and water. Buildings play a crucial role in LST by influencing solar radiation
absorption, airflow, and anthropogenic heat release. Urban planners should aim to reduce
building density and incorporate more trees, grasslands, and water bodies to alleviate the
UHI effect. However, reducing artificial ground cover in land-constrained cities may not
be feasible. Therefore, simplifying the shapes of buildings and raising building height can
help reduce LST. Moreover, green spaces, trees, and water bodies can mitigate the UHI
effect. In areas with limited green spaces, introducing these elements may be an effective
approach to combating the UHI.

For UFZs, this study reveals the LST characteristics of different urban land use types,
providing references for targeted landscape optimization and land-use planning to mitigate
the environmental impact of urbanization. For instance, in high-density and high-rise
residential zones, greater emphasis should be placed on the 3D design of buildings. In
addition to focusing on the 3D design of buildings, residential zones should also con-
sider the density and dispersed distribution of trees. Public service zones should pri-
oritize increasing lawn coverage and adopting dispersed layouts. Industrial zones and
green space zones should minimize variations in building heights to alleviate the LST
within UFZs.

6. Conclusions

This study aimed to explore the impact of urban morphology on variations in urban
LST, encompassing both 2D and 3D urban morphology. It employed Landsat-8 remote
sensing data to retrieve LST, it utilized OSM road network data to delineate basic urban
units, and combined multiple data sources with POI data for unsupervised and supervised
functional zone identification. This study unraveled the intricate relationship between
urban morphology and LST at the scale of UFZs. The analysis revealed the following
key findings:

1. The LST in Beijing within the Fifth Ring Road exhibits an overall pattern of “higher in
the center, lower in the periphery”. Residential zones have the highest LST, followed
by industrial zones. Notably, the public service zones show the highest standard
deviation (0.95 ◦C), while the residential zones have the lowest (0.87 ◦C).

2. Significant correlations exist between LST and both 2D and 3D urban morphology
parameters. GeoDetector results indicate that built-PLAND and SHDI are the primary
factors influencing LST in 2D urban morphology, while density, SVF, and shape index
play a major role in 3D urban morphology. Three-dimensional urban morphology,
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including density, SVF, and shape index, also influences the variation of LST. Daytime
LST tends to increase with building density, becoming higher as the complexity of
building shapes increases. The SVF regulates ventilation, incoming solar radiation,
and captures thermal radiation simultaneously, affecting LST. Therefore, it is advisable
to reduce building density, increase building height, simplify building shapes, and dis-
perse buildings. Additionally, the spatial distribution of trees, grasslands, and water
bodies also helps mitigate LST, suggesting the adoption of fragmented distributions.

3. In interaction detection results, all UFZs exhibit the highest interaction with the built-
PLAND factor, with q-values as follows: residential zones (0.825), commercial zones
(0.663), industrial zones (0.926), green space (0.973), and public service zones (0.917).
This underscores the dominant role of built-up areas in influencing urban LST.

4. Spatial variations are observed in the impact of different UFZs on LST. For instance,
in residential, industrial, green space, and public service zones, the SVF is negatively
correlated with LST, while in commercial zones, the SVF exhibits a positive correlation
with LST. Additionally, in industrial zones and green space zones, height variance
is positively correlated with LST, whereas in other UFZs, height variance shows a
negative correlation with LST, with industrial zones and green space zones exhibiting
a greater impact than the other three UFZs.

The forthcoming research will primarily focus on two aspects. First, it will investigate
the relationship between UFZs and LST during different seasons, exploring whether in-
fluencing factors undergo changes. Second, recognizing potential variations in LST across
diverse spatial scales, the study will investigate the impacts of different spatial scales
on LST.
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Abbreviations

Abbreviation Full name
2D Two-dimensional
3D Three-dimensional
LST Land surface temperature
UHI Urban heat island
SUHI Surface urban heat island
UHZs Urban functional zones
OLI Operational land imager
POI Points of interest
OSM OpenStreetMap
NDVI Normalized difference vegetation index
NDWI Normalized difference water index
OA Overall accuracy
SHDI Shannon’s diversity index
PLAND Percentage of landscape
PD Patch density
Shape index Area-weighted mean shape index
SVF Sky view factor
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