
ISPRS Int. J. Geo-Inf. 2013, 2, 507-530; doi:10.3390/ijgi2020507 

 

ISPRS International 

Journal of  

Geo-Information 
ISSN 2220-9964 

www.mdpi.com/journal/ijgi/ 

Article 

Assessing Completeness and Spatial Error of Features in 

Volunteered Geographic Information 

Steven P. Jackson 
1,

*, William Mullen 
1
, Peggy Agouris 

1
, Andrew Crooks 

2
, Arie Croitoru 

1
 

and Anthony Stefanidis 
1
 

1
 Department of Geography and GeoInformation Science, George Mason University, 4400 University 

Drive, MS 6C3, Fairfax, VA 22030, USA; E-Mails: wmullen@gmu.edu (W.M.); 

pagouris@gmu.edu (P.A.); acroitor@gmu.edu (A.C.); astefani@gmu.edu (A.S.) 
2
 Department of Computational Social Science, Krasnow Institute for Advanced Study, 

George Mason University, 4400 University Drive, MS 6B2, Fairfax, VA 22030, USA;  

E-Mail: acrooks2@gmu.edu 

* Author to whom correspondence should be addressed; E-Mail: sjacks11@gmu.edu;  

Tel.: +1-703-362-0205. 

Received: 28 March 2013; in revised form: 14 May 2013 / Accepted: 20 May 2013 /  

Published: 4 June 2013 

 

Abstract: The assessment of the quality and accuracy of Volunteered Geographic 

Information (VGI) contributions, and by extension the ultimate utility of VGI data has 

fostered much debate within the geographic community. The limited research to date has 

been focused on VGI data of linear features and has shown that the error in the data is 

heterogeneously distributed. Some have argued that data produced by numerous 

contributors will produce a more accurate product than an individual and some research on 

crowd-sourced initiatives has shown that to be true, although research on VGI is more 

infrequent. This paper proposes a method for quantifying the completeness and accuracy of 

a select subset of infrastructure-associated point datasets of volunteered geographic data 

within a major metropolitan area using a national geospatial dataset as the reference 

benchmark with two datasets from volunteers used as test datasets. The results of this  

study illustrate the benefits of including quality control in the collection process for 

volunteered data.  
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1. Introduction 

Improvements in communications technology and information availability are having a significant 

impact on the field of geography as they enable the general public to produce geospatial products for 

mass consumption on the Internet [1,2]. As technology continues to improve (e.g., enhancing the 

computing and geolocation capabilities of hand-held devices) and the Internet is accessible by more 

citizens, the amount of geospatial data generated by citizens without formal geographic training is 

expected to rapidly increase [3]. Thus, Volunteered Geographic Information (VGI) [4] is bringing the 

general public into the realm of map production functions traditionally reserved for official agencies. 

With all humans becoming potential contributors of geospatial information [4], this trend is affecting 

greatly the geospatial community 

VGI is following the development of Web 2.0 where users are contributing in more places and more 

often [5]. Another significant descriptive phrase is ―crowdsourcing‖ which describes VGI in business 

terms, linking resources and work assignments as suggested by Howe [6]. Crowdsourcing has many 

definitions in relation to the development of geospatial data. Brabham describes the approach as using 

on-line volunteers to solve a formerly internal production requirement of a business or agency [7]. 

Heipke suggested the term crowdsourcing be used to describe data acquisition by large and diverse 

groups of people using web technologies [8]. Stefanidis et al. differentiated crowdsourcing from 

crowd-harvesting, and VGI from Ambient Geographic Information (AGI) respectively [9]. In the 

former, the crowd is presented with an explicit task, and their contributions are part of this assignment, 

whereas in the latter broader-scope information contributed by the crowd (e.g., through social media 

contributions) is mined to harvest geospatially-relevant content. Harvey argued that crowdsourcing 

includes both data that is ―volunteered‖ and data that is ―contributed‖ suggesting that contributed data 

represents information that has been collected without the immediate knowledge and explicit decision 

of a person using mobile technology that records location while ―volunteered‖ data is representative of 

information explicitly provided [10]. 

The focus of this paper is on crowdsourced VGI (rather than the AGI), and more specifically on the 

accuracy of such information. It has been noted that public participation in geospatial mapping on the 

web has allowed citizen groups to map and provide local knowledge context that significantly 

advances the mapping project; however, others have noted that the characteristics of the information 

are less rigorous than traditional scientific data collection reporting, which could impact both feature 

content and attribution [11,12]. Volunteered data is usually provided with little to no information on 

mapping standards, quality control procedures, and metadata in general [13]. Understanding and 

measuring the data quality of information provided by volunteers who may have unreported agendas 

and/or biases is a significant problem in geography today [14]. A step towards understanding the 

potential data quality of volunteered data would be to quantify key quality characteristics for 

geospatial data that can reasonably be expected to be included in contributed datasets, and then be used 

to compare those characteristics against reference sources of data to quantify data quality. 

The assessment of the accuracy of volunteered geographical information has been the subject of 

earlier work, but that work has focused almost exclusively on the accuracy and completeness of linear 

features such as roads and walkways with a focus on analyzing nodes or points that comprise such 
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features [15–17]. VGI errors have been shown not to be random, and occur, as Feick and Roche point out, 

across spatial and thematic domains yielding data that must be assessed prior to operational use [15–18].  

Regarding point feature accuracy, efforts to date have focused primarily on road intersections [15], 

and have not evaluated the accuracy of other features that are commonly represented as points in VGI 

datasets. A representative example of such features is Points of Interest (POI) in OpenStreetMap 

(OSM) [15,19]. In order to bridge this gap and expand the current state-of-knowledge, in this study we 

will address point features representing schools and will assess relevant accuracy issues, namely their 

completeness and accuracy (spatial error). We consider for our study VGI data in the United States 

(US), where government-provided sources are readily available; however, the concepts presented in 

this study have applicability to any geographic area or dataset.  

The paper is organized as follows. In Section 2, we discuss relevant VGI accuracy considerations. 

In Section 3, we present a methodology and case study to assess the accuracy of crowdsourced point 

data. The case study comprises three datasets and the results of this study, presented in Section 4, and 

aims to provide researchers with a better understanding of the completeness and accuracy of the 

different volunteered datasets. We conclude with our summary and outlook in Section 5. 

2. Accuracy and Completeness Considerations for Volunteered Geographic Information  

Goodchild stated that ―all spatial data without exception are of limited spatial accuracy‖ and yet the 

accuracy of geospatial data remains a significant concern today, nearly 20 years after Goodchild made 

this comment [20]. The concern is perhaps greater now than in the past with the widespread use of new 

technologies for mapping across the Internet [21], presenting both challenges and opportunities to the 

dissemination of geographic information [22]. In addition, researchers have considered how to 

quantify the value of the contributions from a societal perspective as well as evaluating the quality and 

usability of the contributed geospatial data itself [23–26]. Feick and Roche point out that VGI data 

generation inherently lacks professional oversight, does not follow established quality standards, and is 

affected by the inherent heterogeneity of VGI across thematic, media, and spatial dimensions [18]. 

These issues impact the functional utility of using VGI as an alternative or complement to 

―authoritative‖ datasets, which may be available from commercial or government sources [12,27,28].  

While data quality has been at the center of the research agenda since the definition of GIScience, 

Goodchild and Hunter presented a discussion of the method for comparing two datasets whereby the 

tested source of data is compared to the reference source of data [29,30]. The reference dataset is 

assumed to represent ground truth while the test dataset is measured against the reference dataset. 

Comparisons between datasets are common within the literature; however, the methods in this paper 

are tailored for comparing point features [30–33]. The methods outlined in Section 3 of this paper will 

complement the linear comparison approach of Haklay [15], extending it for application on point 

features. We will then illustrate how to compute completeness and accuracy of such data. 

Considering the rather ad hoc nature of VGI approaches, completeness is as important as accuracy 

when it comes to assessing the quality of the contributed information. Haklay and others measured 

completeness of VGI data as a measure of the total length of road segments within VGI as compared to 

the reference data [15–17]. Brassel et al. noted that the concept of completeness describes the 

relationship between objects in a dataset and the universe of all objects (real world) and could be 
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extended to include assessing the completeness of attribution and metadata [34]. Devillers and 

Jeansoulin expanded the definition of completeness to include assessment of errors of ―omission‖ and 

―commission‖ for datasets that either under-represent or over-represent reality [32]. Therefore, 

knowledge of the existing (actual) number of features in a study area is a key factor when assessing the 

completeness of volunteered contributions of geospatial data for that area but evaluating the 

completeness of metadata or attribution is not included in this study. 

Goodchild and Hunter examined a method of quantifying spatial accuracy using traditional 

statistical methods such as the Root Mean Square Error (RMSE) and the standard error to describe the 

spatial error of point features [30]. Al-Bakri and Fairbairn reviewed the spatial accuracy between VGI 

and government data and found that the RMSE is quite high for VGI [35]. These authors attributed 

these errors to the common methods used by VGI data collectors, which often employ low-precision 

instruments such as personal GPS units and commercial imagery services. Zielstra and Zipf examined 

the differences between VGI and commercial data sources in Germany noting that the quality of the 

VGI degraded considerably as the distance from the urban core increased [17]. 

Drummond defined positional accuracy as the ―nearness‖ description of a real world entity in an 

appropriate coordinate system to that entity‘s true position [36]. However, in dealing with point 

features representing areal features, there is an inherent ambiguity in identifying a single location to 

represent such a feature. Accordingly, the accuracy of such features is affected by how well a 

contributor can distill an areal feature to a single location and how consistently this operation can be 

performed across a range of different contributors. Therefore, the accuracy of such features is affected 

not only by mensuration (which is affected by scale, accuracy, and precision), but also by the 

contributor‘s interpretation of the appropriate representative location of the feature [37,38]. This 

ambiguity or vagueness, as discussed by Worboys and Duckham, affects the traditional concept of 

accuracy measurements [39]. This paper suggests that representational vagueness is inherent in VGI 

datasets, and that assessing positional accuracy of the contributed data will provide an understanding 

of the reliability and variability of the reported results. Furthermore, an enhanced understanding of the 

positional accuracy will aid in assessing the overall quality of contributed data as a potential data 

source for use by mapping agencies and researchers. 

Our research continues the trend in evaluating both completeness and accuracy, but extends the 

notion of completeness to the comparison of individual point features representing area features, and 

assesses accuracy generally. Because of the inherent vagueness of POI locations, we base our analysis 

on the notion of school building or school campus extent to tie the numeric results to real-world values. 

3. Materials and Methods  

The discussion presented here is broken down into several pieces. We start in Section 3.1 by 

introducing the study area and datasets that will be used in the rest of this paper. Next, in Section 3.2 

we will present the rationale for the development of our method. Following that, in Section 3.3, we 

discuss data processing issues; this will be followed by a presentation of the automatic methods, in 

Section 3.4, and manual methods, in Section 3.5, which are part of our procedure. Finally, in Section 3.6, 

we present summary statistics, which will aid in the later analysis for completeness and accuracy. 
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3.1. Case Study 

As has been illustrated in the previous section, geospatial data quality is an ongoing concern; 

however, ideas have been presented for comparing reference and test datasets with each other. 

Quantifying completeness and accuracy will allow users of the data to better understand the data‘s 

utility, but require that reference and test datasets be available. Fortunately, some recent work in the 

US has generated data that is appropriate for these analyses. This research uses three data sources 

including a government-provided reference source and two different VGI test sources. 

The reference data is based upon information from the Department of Education‘s lists of public 

and private schools. On behalf of the Federal government, Oak Ridge National Laboratory (ORNL) 

was asked to geospatially improve the location accuracy of the Department of Education data using 

repeatable methods. The ORNL data was created by geocoding address information for the schools [40]. 

The resulting dataset is used extensively across the Federal government as the definitive national level 

database of the location and attribute information for both public and private schools in the US. In 

addition to this reference dataset, two test datasets are also used in this case study. 

The first VGI test dataset comprises school locations from the POI layer of OSM. The POI layer 

represents each specific feature as a node and may include: churches, schools, town halls, distinctive 

buildings, Post Offices, shops, pubs, and tourist attractions as noted by the OSM wiki-site [41]. Over et al. 

indicate that the primary key in OSM for these nodes is ―amenity‖, which is broken down into 

categories, including: accommodations, eating, education, enjoyment, health, money, post, public 

facilities and transportation, shops, and traffic [42]. From the above-referenced OSM wiki, instructions 

are provided to contributors to identify schools as areas when possible; however, when the boundaries 

of the area are unknown, the contributor is instructed to place a node in the middle of the area to 

represent the school compound. Because no limitations are placed on OSM contributors regarding the 

preferred placement of a representative location, significant variation in actual point location should be 

expected, whether the contribution is created from a personal GPS, smartphone, or online using  

heads-up digitizing with imagery of unspecified accuracy. We will use the OSM dataset to provide a 

direct assessment of point feature accuracy in VGI contributions.  

We also use a second test dataset, which is a product of the US Geological Survey (USGS) 

OpenStreetMap Collaborative Project (OSMCP)—2nd Phase [43]. OSMCP represents a hybrid variant 

of VGI in that it introduces limited oversight to the VGI process: the data are collected through VGI 

processes, peer-edited by volunteers, and a government agency (USGS in this case) provides quality 

control feedback to the volunteers, in an effort to improve the overall accuracy of their products. The 

USGS provided guidelines to the volunteers and instructed them to place features at the center of the 

building they represent [44]; however, the OSMCP data collection method did not involve visiting any 

sites, but rather relied upon online research coupled with heads-up digitization using imagery that was 

provided to the users. The motivation behind the OSMCP effort is the desire of USGS to use such VGI 

data as a complement to their official datasets and incorporate the OSMCP results into The National 

Map [43].  

It is important to recognize that one possible source of inconsistency between the datasets is the use 

of different feature classification schemes between each of the data sources. The ORNL and OSMCP 

data represents elementary and secondary education in the US [44–46]. The OSM data includes the 
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same definition for schools; however, the word ―kindergarten‖ is used in OSM to represent day care 

facilities while in OSMCP and ORNL, it represents the first year of elementary school and as a result, 

some schools may be inconsistently tagged within OSM [47]. A cursory examination of the OSM  

data for the study area revealed no instances where ―kindergarten‖ was used when elementary school 

was intended. Within the research for this paper, we noted this discrepancy; however, based upon  

the substantial overlap between these definitions, we do not feel that these differences strongly affect 

the results. 

OSMCP focused on the collection of data (point features) for selected structures that are similar to 

the POI from OSM. In the case of OSMCP though, the data collection was performed by a select group 

of 85 non-expert college student volunteers, and the process also underwent an iterative but limited 

quality control process by volunteers and USGS [43,48]. OSMCP can therefore be viewed as a hybrid 

VGI effort for two reasons. First, as we mentioned above, it introduces the notion of partial oversight 

to VGI. Second, with a relatively small group of college student volunteers performing the data 

collection, it resembles focused crowdsourcing efforts like Ushahidi, rather than the participation  

of ―large and diverse groups of people‖ that Heipke considered as a representative participation  

pattern [8,49]. 

The study area for the comparison presented here is dictated by the footprint of the OSMCP data 

since both the ORNL and OSM data include the entire US. The OSMCP study area is located 

completely within the Denver-Aurora-Broomfield Colorado Metropolitan Statistical Area (MSA) as 

defined by the Census Bureau [50]. The study area covers a large percentage of the City and County of 

Denver, including downtown Denver, extends into portions of the surrounding Arapahoe, Jefferson, 

and Adams Counties as shown in Figure 1, and encompasses approximately 228.5 square miles. The 

study area consists predominately of commercial, industrial and residential neighborhoods commonly 

found in heavily urban areas, and includes a population of just under 1,100,000 people, or 

approximately 43% of total MSA population of 2.54 million. 

While the ORNL data was generated using pre-prescribed methods and standards [40], it is unlikely 

to be perfect; however, Goodchild affirms the use of an imperfect reference source data by pointing out 

that many users are willing to ascribe authority to data sources which are common regardless of the 

methods under which they may have been developed [4]. While unlikely to be perfect, the ORNL data 

is likely to be more consistent than the OSM or OSMCP datasets because of the collection methods 

used; however, the methods for updating the ORNL data are slow and some schools, particularly 

newly opened or recently closed schools, are unlikely to be reflected in the ORNL data. Others have 

demonstrated how VGI has been shown to be more appropriate, because of their currency, than sources 

like ORNL during disasters [51]. Matyas et al. point out that data, like OSM, collected through VGI 

methodologies are often done so in a game-like atmosphere because the users contribute when and 

how they like with little or no oversight and as a result does not promote the idea of self-editing [52]. 

In contrast, OSMCP addressed the issue noted above by including editors from both student volunteers 

and USGS in a hybrid environment [53] and provided the volunteer contributors and editors with 

guidelines regarding the appropriate representative location for each feature. One of the stated goals of 

OSMCP was to gain a better understanding of the quality and quantity of data produced by volunteers 

by implementing the two-step quality phase after data collection [48]. The methodology used to 

develop the OSMCP data included an editing phase, which included a provision allowing users to add 
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records, which were not identified in the reference dataset. As has been previously discussed, the 

methodology outlined in this paper uses the ORNL data as a reference dataset because it is the best 

available from the federal government. However, the authors acknowledge that discrepancies between 

the datasets will exist due to the interpretation of the contributor as discussed above. Records identified 

in test datasets but not present in the reference dataset are useful for completeness measures because 

they highlight the possible shortcomings of the reference dataset. 

Figure 1. Study Area. 
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3.2. Rationale 

Quantifying the quality aspects of the schools within OSMCP, with its relatively limited spatial 

extent and restricted contributor set as compared with the equivalent OSM data, offers a unique 

opportunity to assess the question: Do the quality controls instituted by the USGS measurably improve 

the completeness and accuracy of volunteered contributions? Additionally, are the spatial biases noted 

in OSM data consistent between linear features and the point features focused on in this study [15]? If 

so, are the biases present in both the OSM and OSMCP data? The findings from this study could then 

be applied by other researchers during implementation of other VGI projects so that they could work to 

mitigate any bias that may exist in data which was collected using VGI data collection methods. 

Table 1 presents the total count of schools within the study area for each data source. While the 

total numbers of schools are reasonably close across the three sources, it is important to note ORNL 

and OSMCP data represent only active schools while OSM data includes approximately 12% historic 

schools which are likely no longer in existence and would, therefore, not match schools in either 

ORNL or OSMCP. A limited review of raw OSM data indicated that the majority of the records were 

derived from the USGS Geographic Names Information System (GNIS) which includes historic  

points of interest. GNIS data was likely bulk uploaded into OSM and users have not removed the 

historic records. 

Table 1. School count by data source. 

Source School Count 

Oak Ridge National Laboratory 

(ORNL) 
402 

OpenStreetMap (OSM) 406 * 

OpenStreetMap Collaborative 

Project (OSMCP) 
412 

* Includes 48 historical school locations. 

Following the work of Haklay, the results shown in Table 1 imply that these datasets are  

similar [15]. However, a deeper assessment of the schools showed that only 281 schools are common 

to all three datasets illustrating that simple feature count may not adequately evaluate spatial accuracy 

or completeness. 

Figure 2 presents a portion of the study area that included 33 schools from the three datasets:  

11 OSM; 12 OSMCP; and 10 ORNL, respectively. Review of Figure 2 indicates that there is very 

good spatial correlation across the three data sources for seven locations where each data source 

indicates the presence of a school. However, the review also allows identification of two ORNL 

reference schools that do not have either an OSMCP or OSM school located nearby (black circle). In 

addition, there are three areas where both OSMCP and OSM schools are indicated, but there is no 

ORNL school associated (black diamonds), and there is one location where ORNL and OSMCP data 

correlate without an associated OSM school (black triangle). Lastly, there are two locations (black 

squares) where only one data source indicates the presence of a school, one from OSM and one from 

the OSMCP data source. The above visual assessment clearly indicates that while there are similar 

numbers of schools within the study area, as shown in Table 1, the spatial variability suggests that a 
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detailed evaluation of the data sources is required to understand the similarities and differences 

between the datasets. The above assessment only looked at the spatial ―association‖ of features, and 

did not address the specific attribution associated with those locations.  

Figure 2. Comparison of OSM, OSMCP, and ORNL data. 

 

Figure 3 depicts the ORNL, OSMCP and OSM feature locations for the vicinity of Southwest Early 

College within the study area and presents an example where the effects of spatial variability discussed 

above, as well as variation in attribution, impact dataset comparison. There is only one school 

identified in the ORNL reference dataset in the vicinity. The ORNL location is denoted by a tan square 

and is located several hundred meters east of the OSMCP and OSM locations. OSMCP data indicates 

four separate schools (Summit Academy; Southwest Early College; Loretto Heights College; and 

Colorado Heights College from north to south) on what appear to be the same school grounds while 

the OSM data indicate three schools (Teikyo Loretto Heights University; Loretto Heights College; and 

Southwest Early College, from northwest to east). The presence of multiple schools noted in the 

OSMCP and OSM data suggest that the reference ORNL data may have errors of omission. 

Figure 3 illustrates the concept of spatial vagueness within datasets discussed above and 

demonstrates that the traditional concept of geographic accuracy is likely an unnecessary goal when 

examining crowdsourced point feature data. Using any of the sources for Southwest Early College 

would allow navigation to the school property, although the OSMCP point feature location visually 

appears more accurate in that it falls on an actual building while the OSM location is on the school 

grounds and the ORNL location is mapped to a road centerline, furthest from the school buildings and 

off the campus entirely.  
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Figure 3. Various identified locations of Southwest Early College. 

 

Based on the limited assessments presented above, and the discussion regarding attribution and 

source differences, it is clear that a systematic comparison of the datasets is required in order to 

evaluate the quality of the VGI test data in comparison to the reference data. The following section 

outlines that systematic approach. 

3.3. Data Preparation 

The ORNL data was provided in shapefile format projected in WGS84 but was re-projected into the 

Central Colorado State Plane system. The data was then clipped to the boundary of the OSMCP study 

area, yielding 402 school locations within the study area. 
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The OSM data was downloaded from the Internet [54]. The data was downloaded on 13 December 

2011 and represented OSM data as of 16 November 2011. The OSM points of interest data, provided 

in shapefile format projected in WGS84, was extracted and then clipped to the boundary of the 

OSMCP study area, yielding 4,285 points. The data attribution consists of four attributes: FID, Shape, 

Category, and Name. Significantly, to this study, the ―Name‖ attribute is a concatenation of function 

and name. For example, ―Place of Worship:Applewood Baptist Church‖, ―Restaurant:Bonefish Grill‖, 

―Café:Einstein Brothers‖, ―Pub:Baker Street Pub and Grill‖ and ―School:Alpine Valley School‖. The 

4,285 OSM points of interest were queried to extract records including the phrase ―School‖: yielding 

406 schools in the study area. One concern with this method of extraction is that it relies upon the 

OSM data contributor to properly tag the schools; however, for this research we did not attempt to 

identify any improperly tagged entities to search for missing schools. The data was then projected into 

the Central Colorado State Plane system. Unfortunately, address was not included in the OSM 

extracted data and as a result, only the names can be used for comparing the data. As was discussed 

above, the GNIS data was used to bulk upload schools data into OSM and GNIS data does not include 

address information. 

The OSMCP data provided by the USGS is bounded by the study area; however, it includes data 

beyond education, so schools were extracted from the overall dataset using an attribute called FType 

(Feature Type) yielding 412 schools [55]. The OSMCP data was projected into the Central Colorado 

State Plane system. After that, the procedures outlined in Sections 3.4 and 3.5 were repeated for each 

comparison of a test dataset to a reference dataset. 

3.4. Automated Methods 

Automated matching of the datasets was carried out using four different methods across each of the 

name and address fields from the dataset attributes. The automated matching process begins with 

verifying that the spatial reference of each dataset is the same and in units that are useful for measuring 

the spatial error between two features. For example, WGS84 data is unlikely to yield useful matching 

results because the distance measures will be in degrees whereas a projection based on feet or meters 

would yield more useful distance measurements. Next, a spatial join of the test dataset to the reference 

dataset is conducted (using the Spatial Join tool within the Analysis Toolbox of ArcGIS™) as the 

most-likely match for each record is the physically closest record and the spatial join identifies the 

closest record. 

Before further analysis can begin, an attribute, called ―MatchMethod‖ is added to the joined 

dataset‘s attribute table. This attribute is populated by a script that was developed by the authors as a 

part of this research utilizing the Python™ scripting language within the ArcGIS™ environment. The 

valid values for MatchMethod are from 0 to 11 as shown in Table 2. The script moves through the 

records looking for matches between the reference and test dataset and records the MatchMethod used. 

Initially, all records have a MatchMethod value of 0, which indicates that the records have not yet been 

evaluated. MatchMethod values 1 through 5 are ―name‖ matches with the first four being automated 

and denoted by the ‗AN‘ prefix. MatchMethod values 6 through 10 mirror MatchMethod values 1 

through 5 in function except that the address field is used to find a match instead of the name field. 

Automated methods based on the address are denoted by the ―AA‖ prefix. As was previously 
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discussed, the OSM data did not include address information so the ―AA‖ methods did not yield 

results in that specific comparison, but they are included here because the algorithm does leverage 

address information when it is available, such as for the OSMCP data. 

Table 2. Values used to track record matching. 

Match Method Value Description 

0 Record not yet analyzed 

1 (AN-C) Fully automated name match derived from closest record 

2 (AN-O) Fully automated name match using any other record 

3 (AN-DC) Fully automated name match using difflib string comparison to closest record 

4 (AN-DO) Fully automated name match using difflib string comparison to any other record 

5 (MN) Manual match using name 

6 (AA-C) Fully automated address match derived from closest record 

7 (AA-O) Fully automated address match using any other record 

8 (AA-DC) Fully automated address match using difflib string comparison to closest record 

9 (AA-DO) Fully automated address match using difflib string comparison to any other record 

10 (MA) Manual match using map/address 

11 No match identified 

Initially, the algorithm attempts to identify a perfect match between the test and reference dataset. 

The test record nearest to each reference record was identified using a spatial join as described above. 

Perfect matches of the nearest records are denoted by the suffix ―C‖ in Table 2. If the nearest record is 

not found to be an exact match for the reference dataset, then the algorithm examines the test records 

to identify another exact match within the test dataset. If one is found, then the match is denoted by the 

suffix ―O‖ in Table 2. Examples of MatchMethod values AN-C and AN-O are shown in Figure 4(a,b). 

The MatchMethod values ending with ―DC‖ and ―DO‖ use the Python™ difflib library to identify 

similarities in the attribute values. The difflib method is based on a pattern matching algorithm 

developed in the late 1980s by Ratcliff and Obershelp [56]. The two methods listed in Table 2 that 

used the ―DC‖ suffix examine the nearest test record to each reference record using the SequenceMatcher 

class and the ratio method to find a match. The ratio method returns a value between 0 (no match) and 

1 (perfect match) when comparing two values. The pattern matching methods implemented in 

Python™ are used in this analysis because they are fast and effective for our purposes and they provide 

a result, the ratio, which can be quickly interpreted. In essence, the method counts the number of 

matching characters between the two strings and divides that number by the total number of characters 

in the two strings and returns that result as a value (ratio) which can then be compared to a minimum 

value to determine whether an appropriate match was identified. Through trial and error, appropriate 

minimum ratios for matching the name and address attributes were identified. These ratio values were 

selected with a focus on minimizing false positives. Similarly, the methods from Table 2 that have the 

suffix ―DO‖ leverage the get_close_matches method to find the closest match between the reference 

record and all test records. The get_close_matches method returns an ordered list of close matches. 

The script developed for this paper selects the highest match value and compares that value to the 

minimum acceptable ratio to determine whether the record is a match or not. Examples of 

MatchMethod values AN-DC and AN-DO are shown in Figure 4(c,d).  
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Figure 4. (a) MatchMethod value AN-C between ORNL and OSM Data; (b) MatchMethod 

value AN-O between ORNL and OSM Data; (c) MatchMethod value AN-DC between 

ORNL and OSM Data; (d) MatchMethod value AN-DO between ORNL and OSM Data.  

  

(a) (b) 

  

(c) (d) 
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After completing the automated methods, one school, Adams City High School, was observed to 

have over a 3,000 m difference between the reference and test datasets. Review of the school 

information from online sources indicated that the original school buildings (represented in the ORNL 

data) had been closed after the development of the ORNL data and a new school, bearing the same 

name was built in a different location (represented in both the OSMCP and OSM data) [57]. Therefore, 

this school was omitted from further analysis of accuracy. 

3.5. Manual Methods 

MatchMethod values 5 and 10 are manual matching methods. Our automated methods are incapable 

of dealing with these cases; therefore, the user must manually examine the unmatched records which 

remain after the automated processes to determine if any potential matches were missed. In concept, 

the user will display both the reference and test datasets along with their labels within a Geographic 

Information System (GIS). The user then examines all records that have yet to be matched (i.e., they 

retain a MatchMethod value of 0), in order to determine if a match might exist. If a record with a 

similar name is identified as a match, then the user would update the MatchMethod value to 5, measure 

the distance between the two features, and then update the distance, name, and address fields to match 

those of the matched record. In rare cases, the automated methods fail to match two records because 

their names and/or addresses are too different for the pattern matching algorithm to recognize; 

however, during the manual process, the user can identify these two records as a match. One example 

of manual match is ―Escuela Tlatelolco Centro de Estudios‖ and ―Escuela Tlatelolco‖ where the 

automated matching methods failed to identify these two records due to the difference in the length of 

the corresponding records. In order for the pattern-matching algorithm to identify these records as a 

match, the minimum ratio would have to be set so low that many false matches would be generated for 

other features and as was previously stated, the minimum values were selected to minimize false 

matches. The ratio describing the similarity of these two strings is 0.65, which is well below the 

minimum ratio of 0.83 that was developed through trial and error. Fortunately, very few cases of 

missed records, like the one illustrated above, were discovered during the manual matching process 

which confirmed the decision to set higher ratios to avoid false matches. 

A very similar process would be followed looking for an adjacent record with a similar address 

except that the user would update the MatchMethod value to 10 and then update the distance, name, 

and address. If no match can be found through manual means, then the user would update the 

MatchMethod value to 11 indicating that no match was found. The user would repeat the process until 

no record with a MatchMethod value of 0 remains, completing the matching process. 

3.6. Computation of Summary Statistics 

Once the matches had been identified, as outlined above, an additional processing step is  

required before analysis can take place. The final process in the analysis includes computation of the 

intersection, union, and complement. These values can then be used in the computation of the accuracy 

and completeness [58]. 
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The Intersection (Reference ∩ Test) dataset includes all records that are in both of the datasets. The 

records are identified by selecting records that have a MatchMethod value of 1–10 in the  

joined dataset. 

The Reference Complement Test (Reference/Test) dataset includes those records that are in the 

Reference dataset, but not in the Test dataset. To identify these records, the records with a MatchMethod 

value of 11 are selected from the joined dataset. 

The Test Complement Reference (Test/Reference) dataset includes those records that are in the Test 

dataset, but not in the Reference dataset. The method for identifying these records is a bit less 

straightforward than the previous method. The reason for the added complexity is that the joined 

dataset does not include all of the records from the Test dataset but instead only those records that had 

matches. In order to determine which Test records are not in the joined dataset, the two datasets were 

compared using a table join on attributes using a unique identifier in the Test dataset and then all 

unjoined records were extracted since they were not identified in the joined dataset. 

The Union (Reference   Test) represents all records that are in the Reference or Test dataset. The 

previously described intersection and complement datasets were merged to derive the Union. 

Computation of these four parameters will facilitate the completeness and accuracy calculations, 

which will be presented later in this paper. 

4. Results  

From previous discussion, Table 1 presents the total number of schools in the study area for each 

dataset and illustrates the similarities between the two datasets based purely on record counts. While 

Haklay used record counts of road segments as a surrogate for completeness, the previous discussion 

goes on to illustrate how pure count comparisons are insufficient to describe the differences between 

two point datasets [15]. The result is the method in this paper, which quantifies these differences in a 

more robust way. 

Table 3 provides a breakdown of the types of each match that were identified using the automatic 

and manual matching techniques when comparing the ORNL to OSMCP datasets and ORNL to OSM 

datasets in an effort to determine whether or not the methods outlined in this paper meet the goal of 

being repeatable and reliable. For the comparison of ORNL to OSMCP, roughly 82% of the records 

were matched using the automated algorithm while fewer than 7% were matched using manual 

methods with approximately 11% unmatched. For the comparison of ORNL to OSM, the matching 

percentages were somewhat lower as a result of the fact that the OSM data used in the analysis did not 

contain address information. Roughly 56% of the records were matched using the automated algorithm 

while approximately 15% were matched using manual methods with over a quarter (28%) unmatched. 

Table 3. Matching results for ORNL and OSMCP. 

Match Method 
ORNL-OSMCP ORNL-OSM 

Record Count Percent Record Count Percent 

1–4, 6–9 Automated Matches 329 82% 225 56% 

5, 10 Manual Matches 28 7% 62 16% 

11 No Match 44 11% 114 28% 

 Total 401 100% 401 100% 
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These analyses of the match method counts indicate that the automated methods were successful in 

matching a majority of the records automatically even though the datasets were contributed using 

different, or non-existent, standards. The percentages of records that were identified using manual 

methods were relatively low even when the unmatched record counts were high. These successes in 

automated matching will ensure that the method used is repeatable and provide some validation for the 

method. The next step is to use these results to begin to evaluate the differences between the datasets. 

Following the previous discussion, examining the results of the automatic and manual matching 

methods, Table 4 provides a summary of the counts that were obtained from each of the Intersection, 

Complement, and Union calculations. The Union and Complement counts for the OSM comparison are 

higher, as would be expected, because of the lower matching rates caused by the absence of the 

address information; however, as is the case for comparing record counts, simply comparing the counts 

between these comparisons is insufficient when trying to understand the meaning of the results. 

Table 4. Summary of record counts for data matching. 

Method ORNL-OSMCP ORNL-OSM 

Intersection 357 287 

Reference Complement Test 44 114 

Test Complement Reference 63 99 

Union 464 500 

Reference Count 401 401 

Test Count 412 406 

4.1. Completeness 

Assessing completeness of the contributed data provides an understanding of the reliability of the 

reported results and allows assessment of the usefulness of contributed data as a potential data source 

for use by mapping agencies and researchers. In assessing completeness, the present study considers 

the issues of omission and commission within the database. Brassel et al. focused on evaluating 

whether the entity objects within the database represent all the entity instances in the real world [34]. 

Completeness describes the difference between the real world and the database as a percentage of the 

total physical structures in the study area. 

Using Brassel et al.‘s approach to determine degree of completeness, this study compared the test 

(OSMCP and OSM) data to the reference (ORNL) data [34]. As shown in Table 3, the comparison of 

ORNL and OSMCP data showed that a total of 89% of the records were matched. Of that, 82% were 

matched automatically while the remaining 7% were matched manually indicating that the automated 

matching algorithm is successful. 

Table 3 also summarizes the comparison of ORNL and OSM data. While the match rate for this 

comparison was considerably lower with only 71% of the total records matched, the manual match rate 

was over twice as high at 15% with the automated match rate falling to 56%. Due to the relatively poor 

performance for completeness, the utility of OSM data as an alternative mapping source is 

questionable in the study area; however, the OSMCP data, which included approximately 9 out of 

every 10 schools, represented a significant improvement over the unconstrained OSM results of just 

over 7 out of every 10 schools. 
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Analyses revealed that the OSM and OSMCP efforts captured schools that were not in the ORNL 

data. 28% of the OSM schools remained unmatched at the end of the analyses while 11% of the 

OSMCP records remained unmatched, as shown in Table 3. The analyses within this paper did not 

investigate these issues further to determine whether these unmatched records identify schools which 

are absent from the reference dataset or whether the test datasets captured records which are not 

schools according to the common definition described above in Section 3.1. Further analysis of the 

unmatched records would be required to study their nature to assess the quality of the reference dataset. 

4.2. Accuracy 

While the completeness measure is assessed by comparing the matched and unmatched records, the 

accuracy examines only those records which had matches as identified previously in the Intersection. 

It is expected that the overall accuracy of the OSMCP data will be high considering the quality 

control procedures that were part of the project; however, it is important to quantify the accuracy of the 

data since this is a fundamental element of geospatial analysis. Accuracy comparisons across datasets 

from differing sources require careful understanding of the standards used for feature placement in 

each source. As was mentioned above, the ORNL data focused on address matching to street centerline. 

The OSMCP collection parameters instruct the contributors to locate the school features at the building 

centroids. OSM instructs contributors to create area features for school complexes, but if the complex 

boundary is poorly specified the contributor is instructed to estimate a location in the middle of the 

complex. It is important to recognize that associating a single point for the features studied in this work 

may result in different degrees of vagueness depending on the characteristics of a specific feature and 

the interpretation by the contributor. In the absence of a common method, some positional differences 

between any two datasets can occur. This issue of how contributors reduce areal features into point 

locations is a complex one, and as such it is beyond the scope of this paper [38]. 

The spatial error is evaluated for each match and the results are located in Table 5. While the 

minimum error was two meters in both comparisons, the maximum error for the OSM data was 

approximately four times that of the maximum error for the OSMCP. Both the mean and the standard 

deviation were higher for the OSM data with the latter indicating that the error within the OSM data 

varies more than in OSMCP. In addition, the median of the OSM data is lower than the mean 

indicating that the data is skewed. These results support the notion of error heterogeneity which has 

previously been described for OSM road networks [15–17]. 

Table 5. Spatial error for matched schools.  

Spatial Error (m) 

Datasets Count Minimum Maximum Mean St. Deviation Median 

ORNL-OSMCP 357 2 487 47 50 33 

ORNL-OSM  287 2 1,848 190 314 43 

Because the error was so different between the two datasets, an additional effort was undertaken to 

examine the nature of the error distribution. As was discussed previously, VGI has no formal 

mechanism for enforcement of data collection standards and therefore some users may decide to place 

the school feature somewhere on the building while others may decide to place the school feature in 
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the street adjacent to the building. As a result of these uncertainties of the feature placement, some 

error is expected. While on the low end of the spectrum, as seen in Table 5, a two meter error could be 

considered noise, at over 1,800 m, the high end would be considered a true error. Somewhere in 

between these two values, error makes the jump from noise to true error. In an effort to evaluate the 

place where this jump exists, two thresholds were identified. In recognition of the inherent vagueness 

of the definition of the location for the schools, we selected thresholds that are based upon the physical 

nature of the elements being represented as opposed to basing the thresholds upon the results themselves. 

Thresholds are identified at 30 and 150 m respectively. The 30 meter (30 m) value was selected in 

response to school building size. If a school were a square with a 40,000 sq ft foot print, which would 

be typical for a 500 pupil middle school with two stories, then one half of one side would be 

approximately 30 m and as a result, any two points within 30 m of each other could be thought of as 

being in the middle of and on the edge of the building [59]. Similarly, school sites are ideally around 

25 acres for middle schools with populations of 500 pupils [60]. One half of one side of a square  

25-acre lot is a little over 150 m and therefore two points which are within 150 m of each other could 

be thought of as still being on the school property. Therefore 30 m is used to represent ―building‖ 

accuracy and 150 m is used to represent ―campus‖ accuracy. Using these two thresholds, Table 6 was 

generated to show the distribution of the error in the test datasets within these thresholds. 

Table 6. Percent of schools with spatial error in each threshold. 

Datasets 
Distance (m) 

<30 30–150 >150 

ORNL-OSMCP 164 (45.8%) 178 (49.7%) 15 (4.2%) 

ORNL-OSM 90 (31.4%) 186 (64.8%) 11 (3.8%) 

Using the information in Table 6, the percent of matched schools within 150 m (cumulative) for 

both OSMCP and OSM can be shown to be 96%; however, at the 30 m level, OSMCP was able to 

match 46% of the records while OSM only matched 31%. These results indicate that either dataset 

would be equally capable of getting the user to the school property as shown by the similar percentage 

of records below the 150 m threshold; however, the OSMCP data has a greater potential to identify the 

school building as shown by its higher percentage with an error of less than 30 m. If, however, all of 

the ORNL data follows the example presented in Figure 3, where ORNL plots the address on the street 

while the OSM and OSMCP data plots a location on the property, then only the 150 m threshold would 

be appropriate and therefore the larger threshold is valid. 

One additional assessment was undertaken in order to evaluate the accuracy of OSM versus 

OSMCP. In this final evaluation, the spatial error for matches from both datasets was compared to 

each other to determine which one is closer more often. Not all ORNL schools were found by both 

OSM and OSMCP contributors. Of the 402 ORNL schools, there were 281 schools that were matched 

by both OSMCP and OSM. A simple approach to determining relative accuracy is to subtract the OSM 

to ORNL distance from the OSMCP to ORNL distance for each of the schools that had a match. Using 

this method, a negative value would indicate that the OSM location is closer to the ORNL location 

than the OSMCP location. Table 7 presents an example of how the comparison of distance differences 

for matching schools between ORNL-OSM (A) and ORNL-OSMCP (B) was executed. 
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Table 7. Data sampling of distance differences for matched schools. 

School Name ORNL-OSM Distance (A) 
ORNL-OSMCP 

Distance (B) 
(A − B) 

ALAMEDA HIGH SCHOOL 105 35 70 

ALICE TERRY ELEMENTARY SCHOOL 22 7 15 

ALL SOULS SCHOOL 16 42 –26 

ALLENDALE ELEMENTARY SCHOOL 46 41 5 

ALSUP ELEMENTARY SCHOOL 17 43 –26 

ANNUNCIATION 2 6 –5 

ARVADA HIGH SCHOOL 36 55 –19 

ARVADA MIDDLE SCHOOL 115 98 17 

… . . . 

The summary results of the sample analysis above for all 281 schools are located in Table 8. Of the 

281 matched schools, OSMCP schools were closer for 58% of the schools; however, OSMCP also has 

the largest difference (224 m). Interestingly, OSMCP and OSM mean distances and standard deviations 

were almost identical, and the OSM data had a slightly higher median error for the matched schools. 

Table 8. Accuracy comparison for matched schools. 

 Count Percent Minimum Maximum Mean St. Deviation Median 

OSMCP Closer 164 58.4% 2 224 23 32.3 26.2 

OSM Closer 117 41.6% 2 159 45 32.1 28.8 

5. Discussion and Conclusions  

As VGI is gaining popularity, it leads to the generation of large volumes of geospatial data that can 

potentially complement and enhance traditional ―authoritative‖ data sources. To enable tapping into 

this potential, we need a better understanding of the quality of VGI contributions, in particular their 

accuracy and completeness. This is even more important now, as VGI data collection is increasingly 

involving volunteers with little or no geographic training, who are producing geographical data. 

Consequently, there is a need to further study the quality characteristics of VGI.  

This paper extends the current state of knowledge on this topic by focusing on completeness and 

accuracy of point features within VGI data. This complements prior studies, which assessed the 

accuracy of linear features in VGI, to improve our overall understanding of relevant quality issues. Our 

analysis demonstrated that simple count comparisons between two point datasets are insufficient for 

characterizing the differences between these two datasets, as they fail to recognize the presence of 

omission and commission errors. As a result, a more robust analysis is required, in order to identify 

and categorize discrepancies between two (or more) datasets. In particular, we introduced a semi-automatic 

approach to match corresponding records between two datasets, and demonstrated its effectiveness. 

Our analysis compared two VGI test datasets against a reference dataset and analyzed their differences. 

We also discussed the particularities of a hybrid variant of VGI (OSMCP) whereby a government 

agency is providing quality control feedback to the volunteers, and assessed its impact on the overall 
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accuracy of the VGI product. Our observations indicate that the added rigor appears to improve both 

the completeness and accuracy as compared to the OSM data.  

The analysis of completeness showed that the OSMCP data capture close to 90% of the records in 

the reference ORNL database, while the OSM data captured approximately 70% of these records. The 

lower completeness result observed within the OSM data can be attributed to two factors: the OSM 

data does not include address information, and the collection methods employed for the OSM data do 

not include the formal quality control processes implemented within the collection methods for OSMCP. 

Lastly, 70 more OSMCP schools (357) matched the reference dataset than did OSM schools (287). 

Similar trends were identified with respect to positional accuracy, which reflects the spatial error 

between the locations of the two datasets, with OSMCP data appearing to be more accurate than OSM. 

Both OSM and OSMCP were within 150 m of the reference dataset 96% of the time; however, 

OSMCP was within 30 m more often (46% of the time) than OSM (31%). Overall, 59% of the time 

OSMCP schools were closer to their ORNL reference entries, compared to their OSM counterparts. In 

addition to providing an estimate for the accuracy and completeness, these results also suggest that 

OSMCP outperforms OSM. 

This paper has addressed a topic, which so far has received cursory study in our community. 

Through this work, we have extended our understanding into these topics by explaining a method for 

comparing two sets of point features. In particular, we have demonstrated how this method can be used 

to compare reference and VGI (test) data sources. We believe that this is an important step in 

understanding the quality of VGI in relation to other data sources.  

As VGI is evolving, both in terms of participation and scope, a better understanding of its quality, 

the parameters that affect it, and the practices used to produce it will help enhance the utility of its 

products for geospatial analysis. Based on this initial work, several areas of future work need to be 

explored. Unconstrained (and untrained) contributors do not always share a common understanding of 

the definition of ―what‖ a feature is or ―where‖ it should be located and the effect of the vagueness on 

data quality is not understood. The result of the vagueness can be degradation in the utility of VGI for 

decision making; however, these effects have not been studied. Lastly, there is a need to improve 

methods for evaluation of data that is currently labeled as ―authoritative‖ because, as we have shown in 

this research, these datasets are not without error. 
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