
ISPRS Int. J. Geo-Inf. 2013, 2, 577-597; doi: 10.3390/ijgi2030577 

 

ISPRS International 

Journal of  

Geo-Information 
ISSN 2220-9964 

www.mdpi.com/journal/ijgi/ 

Article 

Evaluation of Model Validation Techniques in Land 

Cover Dynamics 

Bayes Ahmed 
1,

*, Raquib Ahmed 
2
 and Xuan Zhu 

1
 

1
 School of Geography & Environmental Science, Building 11, Clayton Campus, Monash University, 

Melbourne, Victoria 3800, Australia; E-Mail: xuan.zhu@monash.edu 
2 

Department of Geography & Environmental Studies, University of Rajshahi, Rajshahi 6205, 

Bangladesh; E-Mail: raquib_geog@ru.ac.bd  

* Author to whom correspondence should be addressed; E-Mail: bayesahmed@gmail.com. 

Received: 30 April 2013; in revised form: 17 June 2013 / Accepted: 19 June 2013 /  

Published: 26 June 2013 

 

Abstract: This paper applies different methods of map comparison to quantify the 

characteristics of three different land change models. The land change models used for 

simulation are termed as ―Stochastic Markov (St_Markov)‖, ―Cellular Automata Markov 

(CA_Markov)‖ and ―Multi Layer Perceptron Markov (MLP_Markov)‖ models. Various 

model validation techniques such as per category method, kappa statistics, components of 

agreement and disagreement, three map comparison and fuzzy methods have then been 

applied. A comparative analysis of the validation techniques has also been discussed. In all 

cases, it is found that ―MLP_Markov‖ gives the best results among the three modeling 

techniques. Fuzzy set theory is the method that seems best able to distinguish areas of 

minor spatial errors from major spatial errors. Based on the outcome of this paper, it is 

recommended that scientists should try to use the Kappa, three map comparison and fuzzy 

methods for model validation. This paper facilitates communication among land change 

modelers, because it illustrates the range of results for a variety of model validation 

techniques and articulates priorities for future research. 

Keywords: model validation; map comparison; land cover change; Kappa; fuzzy; 
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1. Introduction 

A typical approach to land-use and land-cover change (LUCC) modeling is to investigate how 

different variables relate to historic land transitions, and to then use those relationships to build models 

to project future land transitions [1,2]. Moreover, in general the spatially-explicit models of LUCC 

begin with a digital map of an initial time and then simulate transitions in order to produce a prediction 

map for a subsequent time [3]. Upon seeing the prediction results, questions may arise about the 

accuracy of the base maps, the performance of the model and whether this predicted map represents 

the real scenario [4]. In this regard, it is necessary to quantify the map errors, the amount of differences 

among the maps and to validate the models used for prediction. 

With the growth of high-resolution spatial modeling, geographic information systems (GIS) and 

remote sensing the need for map comparison methods increases. Good comparison methods are needed 

to perform calibration and validation of spatial results in a structured manner [5]. The importance of 

map comparison methods is recognized and has growing interest among researchers [6,7]. In general 

maps are compared for a number of reasons: (1) to compare maps generated by models under different 

scenarios and assumptions, (2) to detect temporal/spatial changes, (3) to calibrate/validate land-use 

models, (4) to perform uncertainty and sensitivity analyses and (5) to assess map accuracy. In fact, 

map comparison may be seen as finding a goodness-of-fit measure [8]. 

There has been tremendous interest in validation of simulation models that predict changes over 

time [9,10]. However, there is usually less than perfect agreement between the change predicted by the 

model and the change observed in the reference maps, which is no surprise, since scientists usually do 

not anticipate that a model’s prediction will be perfect. Furthermore, scientists rarely believe that the 

data are perfect. Therefore, a natural question is, ―What accounts for the most important disagreements 

between the prediction and the data: (1) error in the prediction map, or (2) error in the reference  

maps?‖ [11]. If precise information on accuracy and error structure is available, then there could be a 

method to incorporate information concerning data quality into measures of model validation [12,13]. 

Assessing model performance is a continuous challenge for modelers of landscape dynamics. A 

common approach is historical validation where a predicted map is compared to an actual map [14]. 

However, many types of land-use models simulate land-use changes starting from an original land-use 

map, such as Markov models, cellular automata, logistic regression models, neural networks, etc. Since 

most locations do no change their land use over the length of a typical simulation period, the similarity 

between the simulated land-use map and the actual land-use map will be high for most calibrated 

models [15]. Therefore, to rigorously assess the accuracy of the simulated land-use map, a meaningful 

reference level is required [16]. 

The evaluation of spatial similarities and land use change between two raster maps is traditionally 

based on pixel-by-pixel comparison techniques. This kind of change detection procedure is called the 

post-classification comparisons [17]. A problem with this traditional approach is that, because they are 

based on a pixel-by-pixel comparison, they do not necessarily capture the qualitative similarities 

between the two maps. This problem becomes important when map comparisons (e.g., of actual and 

predicted land use) are used to evaluate the output of predictive spatial models such as cellular 

automata based land use models [18]. The lack of appropriate comparison techniques, specially, the 
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ones that can handle qualitative comparisons of complex land use maps for the purpose of evaluating 

model output, is currently a major problem in the area of predictive simulation modeling [19]. 

Recently, numerous map comparison methods have been proposed that take into account the spatial 

relation between cells, as opposed to simple cell-by-cell overlap [20]. These new methods consider, for 

example, proximity [21], the presence of recognizable structures, i.e., features [22], moving  

windows [23] or wavelet decomposition [24]. Others have evaluated model performance based on 

metrics summarizing the whole landscape [25,26]. 

This is how different methods have been introduced and new software packages are being 

developed, for the sake of map comparison/validation of models that predict LUCC change from a 

map of initial time to a map of a subsequent time [2]. This paper addresses these issues and illustrates 

some methods through a case study from Khulna, Bangladesh to validate the predicted maps. The main 

objective of this paper is to find out whether the simulation is giving any abrupt result or not and to 

compare among the different model validation techniques. Therefore, in this paper, we will discuss the 

advantages and disadvantages of some commonly-used map comparison techniques to assess the 

agreement between the simulated maps and the actual land-cover maps. 

Figure 1. Location of Khulna City in Bangladesh. Source: Banglapedia, National 

Encyclopedia of Bangladesh, 2012. 
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2. Materials and Methods 

2.1. Study Area 

The proposed study area is Khulna City Corporation (KCC) and its surrounding impact areas 

(Figures 1 and 2). Geographically, Khulna lies at 22°49'N and 89°34'E. Its mean elevation is seven feet 

above Mean Sea Level. Khulna is a linear shaped city [27]. 

Figure 2. Location of the study area (areas of Khulna City Corporation (KCC) and 

adjoining fringe areas) on Landsat satellite images. (Image source: US Geological Survey 

(USGS), 2012 and Shapefile source: Khulna City Corporation, 2012). 

 

Within the KCC core area, there are roughly 11,280 acres of land. Nearly 10% of this land is not yet 

in urban use. It means that about 1,100 acres of land are available within KCC for future  

urban growth [27]. 
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2.2. Remote Sensing Data 

To prepare the base maps, the Landsat satellite images (1989, 1999 and 2009) have been collected 

from the official website of US Geological Survey (USGS). Landsat Path 137 and Row 44 cover the 

whole study area. The map projection of the satellite images is set as the Universal Transverse 

Mercator (UTM) within Zone 46 N– Datum World Geodetic System (WGS) 1984. The pixel size of 

the images is 30 × 30 m. 

The following five land cover types have been identified for this research (Table 1) [28]: 

Table 1. Land cover types. 

Land Cover Type Description 

Built-up Area 
All residential, commercial and industrial areas, villages, settlements and 

transportation infrastructure. 

Water Body River, sea, permanent open water, lakes, ponds, canals and reservoirs. 

Vegetation 

Trees, shrub lands and semi natural vegetation: deciduous, coniferous, and 

mixed forest, palms, orchard, herbs, climbers, gardens, inner-city recreational 

areas, parks and playgrounds, grassland and vegetable lands. 

Low Land 

Permanent and seasonal wetlands, low-lying areas, marshy land, rills and 

gully, swamps, mudflats, all cultivated areas including urban agriculture; crop 

fields and rice-paddies. 

Fallow Land 
Fallow land, earth and sand land in-fillings, construction sites, developed land, 

excavation sites, solid waste landfills, open space, bare soils. 

2.3. Base Map Preparation 

A supervised classification method using ―Fisher hard classifier‖ has been applied to prepare the 

base maps. Fisher classifier performs well when there are very few areas of unknown classes [28]. This 

is why fisher classifier is selected. Then a mode filter is applied to generalize the fisher classified land 

cover images. This kind of filtering helps minimizing the isolated pixels. Later the generalized images 

are reclassified to produce the final version of land cover maps of three different years (Figure 3). The 

combination is adopted for generating the best possible classification results in this particular context. 

After performing change detection analysis, it is found that ―builtup area‖ is increasing while 

―water body‖, ―low land‖ and ―fallow land‖ cover types are decreasing gradually (Figure 4). This is 

the general trend of land cover change that will be used for simulating the future scenario.  

2.4. Accuracy Assessment 

The next stage of image classification process is accuracy assessment. It is not typical to ground 

truth in every pixel of the classified image. Therefore, at first, some reference pixels are generated. A 

total of 250 reference pixels are generated for each classification image to perform accuracy 

assessment. The detailed historical base maps (1988, 1999 and 2008) of KCC area are collected from 

―Survey of Bangladesh‖ for performing the accuracy assessment. The collected base maps have then 

been used to find the land cover types of the reference points. 
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Figure 3. Landcover maps of the study area. 

 

Figure 4. Percentages of presence of land cover types (1989–2009). 
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It is known that user’s accuracy for category K is the percent of category K in the reference 

information, given that the map shows category K. Producer’s accuracy for category K is the percent 

of category K in the map, given that the reference information shows category K [28]. The overall 

accuracy represents the percentage of correctly classified pixels [29]. At the end, the producer’s and 

user’s accuracy for all the years are found ranging approximately from 76% to 95%. While the overall 

accuracies for 1989, 1999 and 2009 are found 84.20%, 88.80% and 93.60% respectively. 

2.5. Simulating Land Cover Maps 

In the next stage three different models, using IDRISI Selva® software, are implemented to 

simulate the land cover maps of Khulna of 2009 [28]. For this purpose, the base maps of 1989 and 

1999 are used in all three cases. The first model that has been implemented is given the name as 

―Stochastic Markov Model (St_Markov)‖ [30], because this model combines both the Stochastic 

processes as well Markov Chain analysis techniques [31,32]. 

Figure 5. Simulated land cover maps of Khulna City (2009). 
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The second model is termed as ―Cellular Automata Markov Model (CA_Markov)‖ [30]. 

CA_Markov combines the concepts of Markov Chain [32], Cellular Automata [33], Multi-Criteria 

Evaluation [34] and Multi-Objective Land Allocation [30]. The third model is named as ―Multi Layer 

Perceptron Markov Model (MLP_Markov)‖ [28]. MLP_Markov combines the concepts of Markov 

Chain [32], Artificial Neural Network [35] and the Feed-Forward concept of Multi Layer Perceptron 

Neural Network [36]. The ―St_Markov‖, ―CA_Markov‖ and ―MLP_Markov‖ methods have been 

adopted from Ahmed and Ahmed (2012) [28]. The simulated land cover maps are shown in Figure 5. 

3. Results and Discussion 

Traditionally model validation refers to comparing the simulated and reference maps [37]. 

Sometimes the simulated maps can give misleading results. In that case, it is necessary to validate the 

projected/simulated map with the base/reference map. In this section, the comparisons between the 

actual base map (2009) and the simulated maps (St_Markov, CA_Markov and MLP_Markov) of year 

2009 have been performed. The main objective of model validation is to find out whether the 

simulation is giving any abrupt result or not. This justifies the modeling output in terms of reality. 

For validating the simulated maps, two different approaches are adopted. The first one is  

pixel-based visual approach. This approach helps to reveal the spatial patterns in a quick look. The 

visual approach is subjective. Another one is statistical approach. This approach is important because it 

explains the scenario in a quantitative way. There is a general trend in choosing the wrong technique 

for the purpose of model validation in remote sensing and GIS analysis. This article will help the 

researchers in selecting the proper model validation technique.  

3.1. Per Category Method 

The per category comparison method performs a cell-by-cell comparison with respect to one (user 

selected) category. It simultaneously gives the user information about the occurrence of the selected 

category in both maps [37]. Figures 6–8 show the method that performs cell-by-cell comparison for 

each land cover category. The outputs are depicted in four different legends indication different states 

of comparison. The more there will be the amount of ―both maps‖, the better the simulation result. 

This is how all the possible combinations (Base Map 2009 vs. St_Markov 2009, Base Map 2009 vs. 

CA_Markov 2009 and Base Map 2009 vs. MLP_Markov 2009) are taken into consideration. It is then 

found that the simulated map of ―MLP_Markov 2009‖ shows the best results for all the land cover 

categories in terms of the highest amount of the legend ―in both maps‖ (Figure 8). This kind of pixel-based 

per category map comparison method is calculated based on the ―Contingency Table‖, which details 

the cross-distribution of categories on the two maps. The table is expressed in number of cells 

(Tables 2–4). Three statistics are compared in each confusion matrix: overall accuracy, producer’s 

accuracy, and user’s accuracy. But this kind of map comparison method cannot perform and formulate 

the concepts of ―error due to quantity‖ and ―error due to location‖, in order to partition the total error 

when comparing maps that show the same categorical variable [38,39]. 
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Figure 6. Per category comparison method (Base Map (2009) vs. St_Markov (2009)). 
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Figure 7. Per category comparison method (Base Map (2009) vs. CA_Markov (2009)). 
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Figure 8. Per category comparison method (Base Map (2009) vs. MLP_Markov (2009)). 
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Table 2. Per category map comparison (Map 1 = Base Map (2009) and Map 2 = 

St_Markov (2009)). 

Land Cover Type In both Maps In none of the Maps Only in Map 1 Only in Map 2 

Builtup Area 60,574 386,747 154,005 86,098 

Water Body 12,799 655,963 8,240 10,422 

Vegetation 87,432 497,671 43,091 59,230 

Low Land 103,479 336,886 98,116 148,943 

Fallow Land 60,265 509,554 59,423 58,182 

Table 3. Per category map comparison (Map 1 = Base Map (2009) and Map 2 = 

CA_Markov (2009)). 

Land Cover Type In both Maps In none of the Maps Only in Map 1 Only in Map 2 

Builtup Area 137,182 463,419 77,397 9,426 

Water Body 17,637 660,736 3,402 5,649 

Vegetation 126,870 537,014 3,653 19,887 

Low Land 192,860 426,412 8,735 59,417 

Fallow Land 107,069 556,309 12,619 11,427 

Table 4. Per category map comparison (Map 1 = Base Map (2009) and Map 2 = 

MLP_Markov (2009)). 

Land Cover Type In both Maps In none of the Maps Only in Map 1 Only in Map 2 

Builtup Area 217,071 445,337 13,508 11,508 

Water Body 20,018 664,326 2,071 1,009 

Vegetation 127,789 552,167 4,738 2,730 

Low Land 194,399 477,533 9,296 6,196 

Fallow Land 118,568 565,267 2,287 1,302 

3.2. Location and Quantity Accuracies Using Kappa Statistics 

Kappa is a member of family of indices that have the following desirable properties: (1) if 

classification is perfect, then Kappa = 1; (2) if observed proportion correct is greater than expected 

proportion correct due to chance, then Kappa > 0; (3) if observed proportion correct is equal to 

expected proportion correct due to chance, then Kappa = 0; and (4) if observed proportion correct is 

less than expected proportion correct due to chance, then Kappa < 0 [38,40]. 

But Pontius (2000, 2002) proved that standard Kappa (Cohen’s Kappa) offers almost no useful 

information because it confounds quantification error with location error [38,39]. Therefore, four 

kappa statistics are presented here (Table 5): the traditional kappa (Kstandard), a revised general kappa 

defined as kappa for no ability (Kno), and two more detailed kappa statistics to distinguish accuracies in 

quantity and location (Kquantity and Klocation). The Kno statistic is an improved general statistic over 

Kstandard as it penalizes large quantity errors and rewards further correct location classifications, while 

Kquantity and Klocation are able to distinguish clearly between quantification error and location error, 

respectively [38]. 
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Table 5. Summary of kappa statistics for the models on validation data (2009). 

Kappa Indices St_Markov CA_Markov MLP_Markov 

Kstandard 0.3001 0.7959 0.9320 

Kno 0.3402 0.8076 0.9363 

Klocation 0.3462 0.9184 0.9457 

Kquantity 0.8672 0.9021 0.9744 

Pontius (2000, 2002) tried to prove that standard Kappa is not giving proper information. However, 

that concept has not yet been recognized globally by the international scientists. The land-use modelers 

extensively use Kappa, as a simple index to evaluate the accuracy of base maps and for map 

comparison purposes [41,42]. Therefore, still Kappa is a very popular and well recognized map 

comparison index [43]. 

After analyzing Table 5, it can be concluded that ―MLP_Markov‖ is showing the highest values of 

kappa coefficients among the three models. The assumption is like—the higher the kappa values, the 

better the model. 

3.3. Errors Due to Quantity and Allocation 

For the practical applications in remote sensing, Pontius and Millones (2011) explained how these 

Kappa metrics are misleading for the purposes of accuracy assessment and map comparison [44]. It is 

more helpful to summarize the cross-tabulation matrix in terms of quantity disagreement and allocation 

disagreement, as opposed to proportion correct or the various Kappa indices [44]. 

Chen and Pontius (2010) now recommend using the term ―error due to allocation‖ rather than ―error 

due to location‖, in order to clarify its meaning [2,45]. Both error due to quantity and error due to 

allocation are measured in terms of the percent of the landscape and the two types of errors sum to the 

total error [2]. For a two-map comparison, error due to allocation measures how much less than 

optimal is the match in the spatial allocation of the changes, given the specification of the quantities of 

the changes in the observed and predicted change maps [4]. 

Pontius and Millones (2011) suggested that the two simple measures of quantity disagreement and 

allocation disagreement are much more useful to summarize a cross-tabulation matrix than the various 

Kappa indices [44]. Therefore, a variety of statistical summaries of a cross-tabulation matrix that is 

called ―PontiusMatrix20.xlsx‖ has been recommended [44]. It offers one comprehensive statistical 

analysis that answers simultaneously two important questions: (1) How well do a pair of maps agree in 

terms of the quantity of cells in each category? and (2) How well do a pair of maps agree in terms of 

the allocation of cells in each category? The statistics indicate how well the comparison map agrees 

with the reference map [4]. 

Results show that the values of disagreement components are found lowest while the values of 

agreement components are highest for MLP_Markov (Table 6).  

However, this method compares the simulation for 2009 to the reference map for 2009, which is a 

flawed comparison, because it fails to distinguish agreement, due to persistence from agreement 

resulting from change. Therefore, it is important to perform a three maps comparison of reference 

1999, reference 2009 and simulation 2009 [46]. 
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Table 6. Components of agreement and disagreement for model validation. 

Name of Component St_Markov CA_Markov MLP_Markov 

Disagreement due to Quantity 0.1006 0.1006 0.0074 

Disagreement at Grid Cell Level 0.4273 0.0533 0.0428 

Agreement at Grid Cell Level 0.2263 0.6003 0.6991 

Agreement due to Quantity 0.0458 0.0458 0.0507 

Agreement due to Chance 0.2000 0.2000 0.2000 

3.4. Comparison of Three Maps 

In this section, a method of comparing three maps (a reference map of time 1, a reference map of 

time 2 and a simulation/prediction map of time 2) has been implemented for model validation [46]. In 

this case, the base map of 1999, the base map of 2009 and the simulated maps of time 2009 

(St_Markov, CA_Markov and MLP_Markov) have been used. The three map comparison for each 

modeling application specifies the amount of the prediction’s accuracy that is attributable to land 

persistence versus land change [1]. 

Comparison between the reference map of time 1 and the reference map of time 2 characterizes the 

observed change in the maps, which reflects the dynamics of the landscape. Comparison between the 

reference map of time 1 and the prediction map of time 2 characterizes the model’s predicted change, 

which reflects the behavior of the model. Comparison between the reference map of time 2 and the 

prediction map of time 2 characterizes the accuracy of the prediction, which is frequently a primary 

interest [1]. 

However, an additional validation technique, considering the overlay of all three maps (the  

three-map comparison), allows one to distinguish between the pixels that are correct due to persistence 

and the pixels that are correct due to change [1]. 

The three maps comparison method consists of two components of agreement and three 

components of disagreement. According to Pontius et al. (2011), the components of agreement are 

persistence simulated correctly and change simulated correctly; the components of disagreement are 

change simulated as persistence (the entries where reference t1 matches simulation t2 but does not 

match reference t2), persistence simulated as change (the entries where reference t1 matches reference 

t2 but does not match simulation t2) and change simulated as change to wrong category (the entries 

where all three maps disagree) [46]. 

Figure 9 shows the results from an overlay of the three maps (the base map of 1999, the base map 

of 2009 and the St_Markov/CA_Markov/MLP_Markov simulated maps of 2009). From this figure, it 

is possible to get a clear idea about the nature of the prediction errors visually. Results show that the 

percentages of disagreement components are lowest (28.066%) while the percentages of agreement 

components (71.934%) are highest for MLP_Markov model (Table 7). 

3.5. Fuzzy Set Theory 

The aim of traditional pairwise pixel-by-pixel comparison is to identify areas of categorical 

disagreement between two maps, by determining the pixels with a difference in theme [18]. Several 

authors have expressed the need for a better post-classification change detection or map similarity 
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procedure because of the limitations of a pixel-by-pixel comparison [47,48]. First, the procedure is 

sensitive to the existence of mixed pixels. A pixel-by-pixel comparison of multi-temporal maps will 

interpret any misalignment of one or both of the maps as change [49]. Second, the comparison techniques 

will often produce results that are significantly different from the actual land use. This is due to their 

inability to account for the inaccuracies in the maps throughout the comparison operation [50]. 

Figure 9. Maps of the components of agreement and disagreement. 

 

Table 7. Components of agreement and disagreement of three map comparison method. 

Name of Component 
St_Markov 

(%) 

CA_Markov 

(%) 

MLP_Markov 

(%) 

Persistence Simulated Correctly 19.88002 22.44001 94.9062 

Change Simulated Correctly 12.52473 1.371206 2.187733 

Total Agreement 32.404745 23.8112 97.09393 

Change Simulated As Persistence 38.98642 46.72851 0.359167 

Persistence Simulated As Change 19.38833 9.371218 2.187733 

Change Simulated As Change to Wrong Category 9.22051 20.08906 0.359167 

Total Disagreement 67.5952 76.1887 2.90606 
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The comparison method presented in this section was primarily developed to be of use in the 

calibration and validation process of cellular models for land-use dynamics [5]. The method is based 

on fuzzy set theory [51,52]. Several authors addressed the potential of fuzzy set theory for 

geographical applications and it has been used before to assess the accuracy of map representations 

and for map comparisons [53,54]. 

The flexibility of fuzzy representation of spatial data offers potential for avoiding the problems of 

traditional comparison procedures [18]. First of all, misregistration and locational inaccuracies can be 

accounted for by fuzzifying the boundaries of the pixels or polygons of the input maps. Second, fuzzy 

set theory provides a method of dealing and comparing maps containing a complex mixture of spatial 

information. A fuzzy map is more appropriate for representing a complex land use type. Therefore, the 

degrees and types of categorical differences between maps should be determined by a fuzzy post 

classification comparison [18].  

The main purpose of the fuzzy map comparison/fuzzy Kappa map comparison is to take into 

account that there are grades of similarity between pairs of cells in two maps. This method takes the 

neighborhood of a cell in account to express similarity of that cell in a value between 0 (fully distinct) 

and 1 (fully identical) [55]. The resulting map is called the fuzzy similarity map (Figure 10). 

Figure 10. Fuzzy similarity comparison maps. 
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Figure 10 gives the results of the fuzzy cell-by-cell method (comparing each of the three different 

simulations with the base map of 2009). The fuzzy membership function is that of exponential decay 

with a halving distance of two cells and a neighborhood with a four-cell radius. Later the fuzzy output 

maps have been categorized into three levels of agreement: identical, medium similarity and low 

similarity (Figure 10). Both fuzzy Kappa and average similarity is found highest for ―MLP_Markov‖ 

and lowest for ―St_Markov‖ model (Figure 10 and Table 8). 

Table 8. Agreements of fuzzy similarity maps for model validation. 

Modeling 

Method  

Fuzzy Kappa  

(KFuzzy) 

Average  

Similarity 

St_Markov 0.304 0.701 

CA_Markov 0.862 0.924 

MLP_Markov 0.953 0.974 

4. Conclusions 

At the beginning of this paper, a fisher supervised classification method is applied to prepare the 

base maps of Khulna City with five land cover classes. After performing accuracy assessment and 

quantifying map errors, it is found that the errors in the maps are not much larger than the amount of 

land change between the two points in time (1989–1999 and 1999–2009). Later, being persistent with 

the inherent changing characteristics, three different methods are implemented to simulate the land cover 

maps of Khulna City (2009). The methods are named as ―Stochastic Markov (St_Markov)‖, ―Cellular 

Automata Markov (CA_Markov)‖ and ―Multi Layer Perceptron Markov (MLP_Markov)‖ model. 

Then different model validation techniques like per category method, kappa statistics, components 

of agreement and disagreement, three map comparison and fuzzy method are applied. A comparative 

analysis, in terms of concerned advantages and disadvantages, on the validation techniques has also 

been discussed. Fuzzy set theory is found best able to distinguish areas of minor spatial errors from 

major spatial errors. In all cases, it is found that ―MLP_Markov‖ is giving the best results among the 

three modeling techniques. This is how, it is possible to compare different models and choose which 

modeling technique is giving better results. 

In order to compare the predicted change to the observed change and to perform validation for 

predictive land change models; it is recommended that scientists should use Kappa, three map 

comparison and fuzzy method based on the outcome of this paper. 

Our hope might be realized if the error in the base maps is reduced to the point where the error 

becomes smaller than apparent change in land. This paper will help the researchers deciding whether 

the most important errors are in the model or in the data. Moreover, it is our belief that this kind of 

research has a high potential to contribute towards learning about the different available validation 

techniques and to choose the right one by the researchers working on different case studies. 

We have designed this article in such an order so that it produces helpful information for other 

scientists whose goals are to validate a model’s performance and to set an agenda for future research. 
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5. Future Research 

For any kind of model validation or map comparison, the accuracy of the base maps is very 

important. However, maintaining accuracy of the base maps is difficult due to lack of availability of 

historical data or verification of the older maps. Moreover, there are different image classification 

(e.g., supervised, unsupervised, object-based, hybrid, etc.) methods, which can give different results. 

Even the use of different filtering techniques (e.g., median, mode, mean, Gaussian), filter size, 

classifier (e.g., hard, soft, segmentation) and reclassification methods can give variant results. The 

spatial and temporal resolution of the remotely sensed images can also put impact while identifying 

training sites for signature development. All these factors can play important role in assessing the 

accuracy of maps or model validation purposes. This is why future research can be conducted 

incorporating all these relevant issues. 

There are many available map comparison techniques. Each has its own advantages and 

disadvantages. Therefore, it is very important to distinguish which technique is suitable for a particular 

context or case study. This can be another dimension for future research. Finally, future research must 

address the spatial dependency between the maps to be compared. 
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