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Abstract: Biosurveillance activities focus on acquiring and analyzing epidemiological and 

biological data to interpret unfolding events and predict outcomes in infectious disease 

outbreaks. We describe a mathematical modeling framework based on geographically 

aligned data sources and with appropriate flexibility that partitions the modeling of disease 

spread into two distinct but coupled levels. A top-level stochastic simulation is defined on 

a network with nodes representing user-configurable geospatial ―patches‖. Intra-patch 

disease spread is treated with differential equations that assume uniform mixing within the 

patch. We use U.S. county-level aggregated data on animal populations and parameters 

from the literature to simulate epidemic spread of two strikingly different animal diseases 

agents: foot-and-mouth disease and highly pathogenic avian influenza. Results demonstrate 

the capability of this framework to leverage low-fidelity data while producing meaningful 

output to inform biosurveillance and disease control measures. For example, we show that 

the possible magnitude of an outbreak is sensitive to the starting location of the outbreak, 
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highlighting the strong geographic dependence of livestock and poultry infectious disease 

epidemics and the usefulness of effective biosurveillance policy. The ability to compare 

different diseases and host populations across the geographic landscape is important for 

decision support applications and for assessing the impact of surveillance, detection, and 

mitigation protocols. 

Keywords: spatial epidemiology; foot-and-mouth disease; H5N1 avian influenza; 

biosurveillance; epidemic simulation; geography 

 

1. Introduction 

Emerging infectious diseases are of critical concern from the perspectives of global economics, 

security, and public health. Most new infectious diseases important to public health have emerged 

from animal reservoirs and are considered zoonotic [1]. Other animal epidemics such as the 2001 

outbreak of foot-and-mouth disease (FMD) in the UK resulted in the culling of approximately four 

million animals and a cost of $3.7–6.3 billion [2]. The current epizootic spread of highly pathogenic 

avian influenza (HPAI) A subtype H5N1 among wild avian and domestic poultry species has resulted 

in 200 million birds destroyed with an impact of $10 billion dollars [3] and continues to pose a 

significant zoonotic threat [4]. As of the end of 2012, there have been 610 human H5N1 influenza 

infections worldwide with a 59% case fatality [5]. The emergence of the 2009 pandemic influenza A 

(H1N1) strain as a triple re-assortment of swine influenza viruses underscores the need for intensive 

monitoring in livestock populations for future infectious diseases with great zoonotic potential [6]. 

Early detection of emergent infectious disease threats, enabled by enhanced surveillance efforts, can 

mitigate the downstream morbidity, mortality, and economic consequences resulting from large-scale 

infectious disease outbreaks.  

Biosurveillance activities focus on acquiring and analyzing epidemiological and biological data to 

interpret unfolding events and predict outcomes in infectious disease outbreaks. During the early hours 

and days of a new biological event, data on crucial parameters such as the number of secondary 

infections generated by a primary case and the serial generation time are typically crude [7]. Data 

quality generally improves as the event progresses. The large uncertainty in the estimate of the basic 

reproductive number during the early days of the 2003 SARS epidemic in Beijing narrowed as the 

outbreak progressed [8]. Similarly, the case fatality ratio associated with the 2009 influenza A  

H1N1 pandemic strain was initially estimated with a broad range of 0.8%–1.8% [9]. Garske and  

co-workers [10] identified shifts in case ascertainment from mild to severe cases as the pandemic 

progressed and the reporting delay between symptom onset and death in the early days of the event as 

primary reasons why disease severity was difficult to assess. Thus, models that, with limited 

information, can provide practical guidance and a range of possible outcomes under various control 

and surveillance scenarios could be valuable tools for scientists and policy makers. 

Progress in information science and technology is giving rise to real-time public health data 

collection capabilities, mandating the need for ―decision-aid models‖ that can be linked to surveillance 

data and provide real-time feedback during an epidemic [11]. These models will provide support to 
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policymakers and inform their decisions about when, where, and how intensely to implement control 

measures such as quarantine, movement restrictions, vaccine strategies, and culling in the case of 

animal diseases.  

Because outbreaks can arise from multiple possible known and unknown pathogen-host systems, 

models that support biosurveillance activities must be flexible and dynamic in nature, able to 

incorporate new and better quality data as a situation evolves. Changes in parameters, such as a virus 

mutation resulting in altered virulence, or changes in host distribution or competence must be easily 

incorporated into a successful model framework. In some cases, the structure of transmission pathways 

may need to change to accommodate new qualitative characteristics of a progressing outbreak. For 

instance, a previously unknown transmission route for pathogen transmission might be discovered and 

need to be incorporated. At the start of an epidemic, parameters are often highly uncertain, but 

uncertainty can be reduced as the epidemic progresses and better data become available and a more 

detailed understanding of etiological mechanisms emerges. An ideal model framework must be able to 

evolve with the changing state of knowledge. 

We describe a mathematical modeling approach that is flexible enough to incorporate diversity of 

pathogen-host systems and an evolving state of knowledge about the systems. Flexibility is achieved 

by partitioning the modeling of disease spread and mitigation into two distinct but coupled levels. First 

is a top-level stochastic simulation with patches (or nodes) interacting via a contact network defined on 

a lattice [12] consisting of all short- and long-distance interactions relevant for disease transmission. 

Within each node is a ―hidden‖ second level, internal to a patch, where disease spread follows the 

standard mean-field SIR-like ordinary differential equations [13]. This framework incorporates 

mitigation strategies on both the top level and bottom level models, allowing for such varied policies 

as movement control, surveillance, quarantine, vaccine, and culling. Finally, given the multiple levels 

of uncertainty in disease outbreaks, we incorporated stochasticity in spatial spread and ran the  

model multiple times with variation in parameter values and initial location of an outbreak. This 

quantification of uncertainty provides a plausible range of outcomes for decision makers to consider. 

The framework we outline here builds upon and extends existing work to model spatial spread of 

animal disease [14–20]. Our work highlights the important and interacting roles of geography, and the 

spatial aspects of host diversity, host distribution, long and short distance movement, human-livestock 

interactions, and possible interventions.  

The model framework described here has the ability to handle a wide variety of host species and 

significant drivers of disease spread arising from the host-pathogen biology (e.g., length of no clinical 

signs period), control measures (e.g., effect of local vs. global movement controls), and geographic 

dependence (initiation of the outbreak in areas of dense livestock production vs. more rural settings) 

that might provide windows of opportunity for mitigating an outbreak. Incorporating the spatial 

structure of the susceptible host contact network has been shown to be important for predicting 

emergent population-scale epidemiological parameters like the basic reproductive number and attack 

rates [21–23]. The highly detailed models of the 2001 FMD in the UK by Keeling et al. [23] and 

Ferguson et al. [14] were possible due to the availability of precise geo-location data on livestock 

holdings. Publicly available agricultural census data on livestock populations in the U.S. exist only in 

aggregated form at the county level. The model described here can be scaled to the county level to 
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provide information and insight even with a lack of specific, high-quality farm location and livestock 

movement data. 

In this work, we highlight the generality and usefulness of this framework by presenting two 

applications of our model, simulating epidemics of two economically important animal diseases with 

different hosts: foot-and-mouth disease (FMD) and highly pathogenic avian influenza (HPAI). FMD 

and HPAI spread in very different animal host populations (cattle, sheep, and pigs for FMD and 

poultry for HPAI) and have dichotomous etiological properties (FMD: species-dependent natural 

history, low mortality, high potential to become endemic and HPAI: homogenous natural history, 

nearly 100% mortality). We use only publicly available livestock population data, aggregated at the 

county level and updated every five years, by the National Agricultural Statistics Service [24].  

2. Materials and Methods  

This model is a spatially-based simulation based geographically at the county level in the United 

States and similar to the one described previously [25]. The top-level (―inter-patch‖) model is a 

stochastic simulation where each ―patch‖ is a geographic or epidemiological unit within which uniform 

mixing (i.e., homogenous inter-host contact rates) is assumed to hold. A schematic showing the model 

construct with states represented as boxes and transitions as arrows is shown in Figure 1.  

Each susceptible host population within a patch X and species (or livestock type) a follows the  

disease-specific natural history shown in Figure 1.  

We begin with the inter-patch model for geographic spread. At time t during the simulation, if a 

particular patch X is susceptible (i.e., free of infected hosts), its probability of becoming infected at 

time t is given by 

    1 expX Xp t t    (1) 

The kernel, ΓX(t), describing infection spread, is a function of the distance from nearby infected 

patches and connection with distant infected patches via livestock movement. The county infection 

kernel is also dependent on mitigations involving reduction of livestock movement at long-distance or 

short-distance scales. The ―intra-patch‖ states of the disease model characterize the natural history of 

the disease in hosts of species or livestock type a in county (or patch) X. Disease compartments include 

susceptible hosts (𝑆𝑎
𝑋), asymptomatic infected hosts that will progress to symptoms (𝐴𝑎

𝑋), aymptomatic 

infected hosts that will not progress to symptoms (i.e., a carrier state), (𝐿𝑎
𝑋), symptomatic infected hosts 

(𝐼𝑎
𝑋), recovered hosts who have cleared the infection either naturally or via immunization (𝑅𝑎

𝑋), and 

infected hosts that have died from the disease (𝐷𝑎
𝑋 ). As with any compartmental disease model, 

compartments can easily be added or subtracted depending on the disease system considered. 

There are states associated with the mitigation/response architecture as well. In addition to the 

movement controls discussed, we consider quarantine of susceptible hosts, vaccination of both 

susceptible (prophylactic) and infected (treatment to reduce infectivity) hosts, and culling for animal 

hosts. The states related to control measures are susceptibles who have been successfully quarantined  

(𝑄𝑎
𝑋), susceptibles who have been successfully vaccinated and are still capable of being infected at a 

lower rate for a short period of time before they are moved to the recovered class (𝐸𝑎
𝑋), infected hosts 

that have been successfully treated by vaccination (𝐵𝑎
𝑋), and animals who have been culled (𝐶𝑎

𝑋). The 
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dynamics of disease transmission and progression are described by the coupled system of equations 

detailed in the appendix. 

Figure 1. Schematic for the intra-county disease transmission and progression model. 

Boxes indicate states for animals of species a in county X. Solid boxes label the natural 

history disease states: susceptible (𝑆𝑎
𝑋 ), no clinical signs infected (𝐴𝑎

𝑋 ), infected latent 

carrier state (𝐿𝑎
𝑋), symptomatic infected (𝐼𝑎

𝑋), recovered (𝑅𝑎
𝑋), and dead (𝐷𝑎

𝑋) (due only to 

disease mortality). States bordered by dashed lines represent mitigation states: quarantined 

susceptibles (𝑄𝑎
𝑋 ), prophylactically vaccinated susceptibles ( 𝐸𝑎

𝑋 ), vaccinated infected 

animals (𝐵𝑎
𝑋), and culled animals (𝐶𝑎

𝑋). 

 
 

(a) (b) 

The surveillance/control measure architecture on the disease natural history is governed by ―gating‖ 

functions that take values of zero or one depending on time and determine when mitigation will turn on 

and off, 𝜉𝑋𝑎
𝐽𝐼 (𝑡). Mitigation effectiveness is defined as the degree of success that is achieved when 

implemented. These are given by the parameters  𝜀𝑋𝑎
𝐽𝐼 ∈  0,1 .  For example, in Equation S3a 

(Supplementary), the term 𝜉𝑋𝑎
𝑄𝑆  𝜀𝑋𝑎

𝑄𝑆  𝜆𝑋𝑎
𝑄𝑆  𝑆𝑎

𝑋  describes the rate at which susceptibles are being 

quarantined. While the transition rate  𝜆𝑋𝑎
𝑄𝑆

 determines the number of susceptible hosts that can possibly 

be quarantined per unit time, the parameter  𝜀𝑋𝑎
𝑄𝑆

 determines the quality of the control measure. The 

control measure parameters can be a function of both species type and location, so highly specific 

control measures can be constructed. For vaccination, we assume that the underlying biology is the 

dominant efficacy factor, so these variables are not location dependent. We assume all animals 

designated for culling will be culled, so we set the efficacy at 1. 

2.1. Simulations 

Our simulations are structured in the following way: The top-level of the simulation is the  

inter-county model, which has a time step of ∆t = 1 day. During each time step, all counties are looped 

over. If a county has infected animals the state variables { 𝑆𝑎
𝑌 ,  𝐴𝑎

𝑌 ,  𝐿𝑎
𝑌 ,   𝐼𝑎

𝑌 , 𝑅𝑎
𝑌 ,  𝐷𝑎

𝑌 ,  𝑄𝑎
𝑌 ,  𝐸𝑎

𝑌 ,  𝐵𝑎
𝑌 ,  𝐶𝑎

𝑌}
 

are updated by integrating Equation (S3a–j) of the intra-county model using a fourth-order  

Runge-Kutta method. If a county does not have infected animals, Equation (1) is updated and a 

random number n ∈ [0,1] is drawn from a uniform distribution. If n ≤ pX(t) then the county will 

become infected, if n > pX(t) then the county will remain uninfected. If infected, ~100 infected 

asymptomatic animals will be introduced and will be allocated to either the carrier state or the no 
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clinical signs but progressing to symptoms state according to the branching ratio  𝜃𝑎
𝐴𝑆 . The number of 

initially infected animals was chosen to be the same as in Manore et al. [25], an approximation of the 

number of infected animals present before an outbreak would be detected, but can be changed as 

necessary. We applied the two-level mathematical model of epidemic disease to simulate disease 

spread among a multi-species susceptible host population for two pathogens, FMD and HPAI.  

Both sets of simulations were constructed using only county-level aggregated census data [24]. The 

patches are defined as individual US counties with county seats as the geospatial centroids. For each 

disease we ran multiple simulations sampling from appropriate parameter distributions for three 

different initial outbreak start locations in California, Arkansas, and Georgia for HPAI and California, 

Iowa, and Texas for FMD. For each location we ran 400 realizations, sampling over parameter 

probability density functions for each initial condition, with a time cutoff of 1000 days.  

We then determined the consequence of these two diseases, measured as the total number of 

animals infected in each realization as a function of biological parameters (e.g., incubation times, 

symptomatic infectious periods) and control measure parameters (quarantine, movement control, 

vaccination efficacies). In addition, we examined the effect of geography (i.e., different initial 

conditions) on the epidemic spread. In the next two subsections, we discuss the specific choices made 

for the FMD and HPAI model parameters.  

2.2. Foot-and-Mouth Disease 

FMD virus is a member of the Picornaviridae family of viruses that infects ungulates or ―hoof 

stock‖ like cattle, swine, sheep, goats, and deer [21]. The clinical disease caused by FMD virus is 

characterized by fever, anorexia, and the appearance of vesicles on the mucous membranes of the 

mouth and the feet. Although mortality associated with FMD is usually below 5%, morbidity can reach 

100% [26]. The disease reduces the commercial value of an animal by reducing its weight and milk 

output. FMD is not zoonotic, though humans can carry and spread the virus easily to new locations and 

animals [22]. FMD greatly decreases livestock productivity, and affected countries cannot participate 

in international trade of animals and animal products.  

Cattle show the clearest clinical signs and, thus, can be considered sentinel animals. Sheep and 

goats do not show noticeable clinical signs and can easily spread the disease to other domestic  

animals [27–31]. The primary methods of FMD transmission are aerosols, direct and indirect contacts 

with infected animal, and ingestion. Movement of infected animals is by far the most important spatial 

transmission factor, followed by movement of contaminated animal products [32]. 

We used the 2007 U.S. Department of Agriculture National Agriculture Statistics Service [24] 

agricultural census spatial data to initialize county-level population distributions of the species of 

interest, i.e., beef cattle, dairy cattle, cattle on feedlots, pigs, and sheep. Figure 2a,b show the density of 

hogs and cattle, respectively, in the United States from the 2007 census. In Table 1, we show the 

model parameters we used in the simulation. We parsimoniously treated all biological and 

epidemiological parameters as normally distributed. Mean values and standard deviations for the 

parameter distributions (unless explicitly stated in the reference) were determined from literature 

sources by taking the mean as the center of the range of values specified and the standard deviation 

was assumed to be one half of the range. The control measure parameters were assumed to be 
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uniformly distributed over their specified ranges. Starting values for the transmission and susceptibility 

parameters for symptomatic cattle were taken from previous FMD modeling efforts [23]. We make the 

assumption that animals in the carrier state with no clinical signs are half as infectious as the 

symptomatic animal, since infectivity of the carrier state is highly uncertain [33]. When they do not 

show clinical signs, hogs and pigs have the same infectivity as cattle or sheep, but their infectiousness 

increases by a factor of two relative to cattle for the symptomatic phase, due to their propensity for 

generating aerosol droplets containing high concentrations of the virus [34]. We set the transmission 

parameters for sheep identical to cattle. The short-range length scale of spread is set at five miles, 

which is somewhat larger than the empirically derived kernel, estimated by DEFRA, during the 2001 

UK outbreak (4 km) [23], where the prevalent mechanisms were animal movement and transmission of 

virus by trucks, equipment, and fomites. For cattle, hogs, and sheep, there are detailed data on the 

inter-state movements of animals [35]. We converted the monthly data into frequencies for the  

long-distance animal transport term. 

Figure 2. Plots of density of (a) hogs and pigs, (b) cattle and calves in the United States 

according to the USDA NASS 2007 census (top row, left to right). Plots of density of  

(c) layers and (d) broilers in the United States according to the USDA NASS 2007 census 

(bottom row, left to right). In our simulations, regions with high density of host species 

result in faster spread with higher consequence. 

  

(a) (b) 

  

(c) (d) 
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Table 1. Biological and control measure model parameters used for the foot-and-mouth 

disease (FMD) simulations.  

Model Parameter Cattle Hogs Sheep 

Transmission Rate/Subclinical Animal 0.000000115 0.000000115 0.000000115 

Transmission Rate/Clinical Animal 0.00000023 0.00000050 0.00000023 

Transmission Rate/Seroconverted non-progressing animal 0.000000115 0.000000115 0.000000115 

Susceptibility per animal 15.2 7.55 15.2 

Subclinical stage residence time (days) 4–8 7–5 10–14 

Clinical signs stage residence time (days) 14–21 14–21 14–21 

Seroconverted stage residence time (days) 120–1277.5 120–1277.5 120–1277.5 

Infected animals that progress to clinical signs (fraction) 0.95–1.0   

Infected animals that dies (fraction) 0.01   

Recovery stage residence time (duration of immunity) 90–180   

Vaccine protection efficacy for susceptibles (fraction) 0.60–0.95   

Vaccine protection efficacy for infected animals (fraction) 0.60–0.95   

Culling rate (animals per day) All animals on infected premises in 48 h 

Vaccination policy Available in 21 days; ring+supressive tactic 

Quarantine policy (fractional efficacy) 0.10–0.90 

Inter-state movement control efficacy (fraction) 0.10–0.90 

Short-range movement control efficacy (fraction) 0.10–0.90 

Radius of surveillance zone (miles) 20 

Time between decision and quarantine (county level-days) 1–2 

Time between detection and culling (county level-days) 1–2 

Time between detection and vaccination (county level-days) 17 

Characteristic length of local speed (miles) 5 

Disease progression parameters were taken from various literature sources. The incubation time for 

cattle is typically 4 to 8 days [36,37]. Pigs generally progress faster and can show symptoms 2 to 5 days 

after infection [27,38]. Sheep typically take longer to progress, at 14 to 21 days [39]. Most of the 

dispersion in incubation times reflects uncertainty on transmission mode and inoculation dose size. 

The symptomatic stage for all animal species is fairly uniform and lasts 14 to 21 days [32,40]. Carrier 

animals can remain infectious in both the clinical and nonclinical signs states for long durations, e.g.,  

4 months to 3.5 years for cattle. While 95% to 100% of all cattle and hogs will progress to clinical  

signs [32,41], sheep are particularly susceptible for progression to the nonclinical signs carrier  

state [30,42]. Up to 25% of infected sheep will fail to develop lesions, so we assign a large range (25% 

to 50%) for the fraction of infected sheep that will progress to symptoms.  

The length of time an animal has immunity after they have cleared the virus is proportional to the 

decay time of neutralizing antibodies elicited by primary infection. The antigenic variability of FMD is 

well known, and infection with one FMD serotype will not confer protection against other  

subtypes [39,43]. Thus, immunity against re-infection with the identical subtype is not permanent and 

it is approximately 90 to 180 days for cattle, hogs, and sheep according to Carrillo et al. [36] and  

Orsel et al. [37]. 

The following assumptions were made for the surveillance and response parameters shown in  

Table 1. At the county level, we have a time interval of 1–21 days between detection and the initiation 
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of both quarantine and culling responses. A uniformly distributed range of (0.10–0.90) is chosen for 

the efficacy of both short-range and inter-state movement controls, as well as quarantine, to reflect a 

high degree of uncertainty in these parameters. Large uncertainty exists in factors like compliance and 

level of committed resources, in part due to the lack of practical experience with FMD, given that the 

last U.S. outbreak was in 1929. All animals designated for slaughter/disposal are culled within two 

days. A strain-matched FMD vaccine for treatment and prophylaxis is not available until 17 days  

post-detection in our simulations, which reflects time needed to match the genotype and for  

mass-production. Efficacy will depend on how well the strain is matched, so we assign a wide 

uniformly distributed range of 0.6–0.95.  

2.3. Highly Pathogenic Avian Influenza 

Avian influenza is a global infectious disease of birds caused by type A strains of the influenza 

virus. Many wild bird species carry these viruses with no apparent signs of harm. In poultry, the 

viruses cause two distinctly different forms of disease–one common and mild (low pathogenecity avian 

influenza), the other rare and highly lethal (HPAI) with mortality rates that can approach 100%. 

Clinical signs may include lesions, severe depression, loss of appetite, decline in egg production, facial 

edema, and hemorrhages on internal membrane surfaces. Infected birds shed the virus in fecal and 

nasal discharges. Apart from being highly contagious among poultry, avian influenza viruses can be 

transmitted between farms by the movement of live poultry, people (especially shoes and other 

clothing), vehicles, equipment, feed, and cages. Additionally, the disease can be spread through 

improper disposal of infected carcasses, manure, or poultry by-products. Insects and rodents may 

mechanically carry the virus from infected to susceptible poultry.  

We populated the model with 2007 U.S. Department of Agriculture, National Agricultural 

Statistical Service [24] agricultural census poultry data on layers, pullets, broilers, and turkeys.  

Figure 2c,d show the density of layers and broilers, respectively, in the United States from the 2007 

census. Table 2 shows the model parameters for the HPAI simulations. As in the FMD case, we 

assume the biological/epidemiological parameters are normally distributed while the control measure 

parameters are uniformly distributed. The intra-county transmission model parameters were calibrated 

to reproduce the 60% flock attack rates observed in poultry houses during Asian HPAI epizootic 

events [43] in separate runs with control measures set to match those outbreaks.  

The mechanisms for disease spread include bird-to-bird contact at the individual farm level, 

movement of infected animals, and human-mediated routes of transmission involving contaminated 

trucks, equipment, or other fomites. We assume that none of the birds are infective until they manifest 

symptoms, which is consistent with the fecal-to-oral route where the virus must be shed in diarrhea 

into places where birds may peck. Only local spread between facilities was simulated, assuming that 

birds will appear at an average of approximately five miles between where they are hatched from eggs 

and where they are slaughtered (production), which is consistent with the observation that inter-state 

transport of poultry is limited [44].  
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Table 2. Biological and control measure model parameters used for the highly pathogenic 

avian influenza (HPAI) simulations. 

Model Parameters Poultry 

Transmission Rate/Subclinical Animal 0 

Transmission Rate/Clinical Signs Animal 0.000000425 

Transmission Rate/Serconverted Non-progressing Animal N/A 

Susceptibility/Animal 1.0 

Subclinical Stage Residence Time (days) 1–3 

Clinical Signs Stage Residence Time (days) 1–1.5 

Seroconverted Stage Residence Time (days) N/A 

Infected Animals that Progress to Clinical Signs (fraction) 1.0 

Infected Animals that die 0.975 

Recovery Stage Residence Time (duration of immunity) Indefinite 

Vaccination Protection Efficacy for Susceptibles N/A 

Vaccination Protection Efficacy for Infected Animals N/A 

Culling Rate (animals per day) 53,500 

Quarantine Policy (fractional efficacy) 0–1.0 

Vaccination Policy N/A. 

Interstate Movement Control Efficacy (fraction) N/A 

Short Range Movement Control Efficacy 0–0.5 

Radius of Surveillance Zone (miles) 6.2 

Time Between Detection and Quarantine (days) 
2.67 if not in surveillance zone. 

1 if in surveillance zone. 

Time Between Detection and Culling (days) 
5.67 if not in surveillance zone. 

1 if in surveillance zone. 

Time Between Detection and Vaccination (days) N/A 

Characteristic length of local spread (miles) 5.53 

Ranges for the disease progression parameters were based on reported literature values for recent 

HPAI outbreaks. The incubation period in poultry can vary between 1.6–8 days depending on the  

strain [45]. We chose a range in incubation times given by the work of Shortridge et al. [46]. For the 

infectious period (and assuming viral shedding in naive poultry will be large) we chose a range of  

1–1.5 days [45]. After this period, poultry will recover or die with a clinical mortality rate of 97.5%. 

We assume immunity of recovered poultry to repeat infections [47–50]. 

The mitigation strategies evaluated are quarantine, culling, and movement controls. Vaccination 

was not chosen because it can lead to viral shedding in vaccinated, uninfected birds, and, also, 

generation of the nonclinical signs ―carrier‖ states, which could increase the risk of between-flock 

transmission before outbreaks are detected [51–53]. The parameters used in the simulations are shown 

in Table 2. 

The overall efficacy of mitigation and movement controls, both at the regional and national  

(inter-state) scales during a large HPAI outbreak, is largely uncertain. The past experiences in the U.S. 

with HPAI (Pennsylvania 1983, Texas 2004) show that rapid response and good biosecurity measures 

are important. The maximum effectiveness of inter-county movement controls is assigned as relatively 

low (50%) and quarantine efficacy is given the full range of uncertainty (i.e., 0–1) because of the 
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phenomenon known as area spread [54], which includes unknown biosecurity breaches and other 

traditional farm and community practices that can result in movement of infectious agents. This is of 

particular importance for HPAI that is established in the environment [54–56]. 

For each disease, HPAI and FMD, we simulated 400 separate epidemics initiated at each of three 

locations. For each simulation run, 100 animals were assumed to be infected with disease in a 

population entirely composed of susceptible animals at the start of day 1 with disease progression 

parameters and mitigative efficacies selected at random from the ranges provided in Table 1 

(for HPAI) and Table 2 (for FMD). The epidemic was stochastically simulated, producing an output 

file containing the population of each type of animal in every U.S. county for each disease stage 

(see Figure 1) during every day of the epidemic. Epidemic simulations were ended at 1000 days if they 

had not already been extinguished, and the total consequence numbers presented here include only the 

first 1000 days for these epidemics. 

For each disease, we examined the distribution of animals across the U.S. and chose locations 

representing distinct clusters of livestock. For HPAI, we seeded the epidemic in California, Arkansas, 

and Georgia because of the geographic diversity represented by each of the states and the high density 

of layers and broilers in these states. For FMD, we chose California, Texas, and Iowa in order to 

capture diversity in geography while considering states with high density of cattle (CA, TX) and pigs 

(IA). In considering the impact of geography on epidemic spread, it is important to note that we 

included an explicit inter-state transportation of animals in the FMD model, based on the USDA’s 

published interstate livestock movements [57], while assuming no interstate transport of poultry 

occurred (Figure 2). This partly because of the nature of the industries and partly because of the 

increased ability to isolate poultry from wildlife, compared to cattle.  

We use statistical model selection methods (AIC) to identify the main drivers of the severity or 

consequences of the epidemic among both the disease and control measure model parameters [58]. The 

disease parameters that are identified as significant reveal which elements of the host-pathogen biology 

and the mitigation strategies drive the size of the epidemic. Likewise, we identify the control measures 

are most critical to controlling disease spread and the dependency on the effectiveness of these 

mitigation strategies.  

3. Results  

The two largest drivers for the overall economic cost of livestock epidemics are the magnitude and 

duration of the epidemic, and we compare the day of the epidemic peak and total animals for HPAI 

and FMD (Figure 3). Each symbol represents the overall output of a simulated epidemic, with the 

overall size of the epidemic, measured in total number of animals infected and plotted on a logarithmic 

y-axis, and the day of the peak of the epidemic on the x-axis. For both diseases, geography was a good 

predictor of the rapidity and scale of the epidemic. Figure 4 shows a representative run for HPAI with 

three starting locations. For HPAI, epidemics initiated in California remain small and peak rapidly, 

while epidemics initiated in Arkansas peak rapidly, but are, in general, the largest epidemics of the 

three sites. The epidemics started in Georgia, while nearly as large as those started in Arkansas, reach a 

peak only after 3–6 weeks, instead of the 1 week characteristic of those started in California and the  

10 days characteristic of those started in Arkansas.  
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Figure 3. Scatter plot of the total number of infected animals vs. duration of the epidemic 

for 1200 realizations of the consequence model for (a) FMD and (b) HPAI. Each dot 

corresponds to a single run with a randomly sampled set of parameters. Different colors 

label initial location of epidemic spread. Although both plots show dependence on 

geography, the HPAI plot shows much tighter clustering of epidemic length and size 

depending on the starting location of the epidemic. An exception is that for FMD, 

outbreaks started in California tend to peak high and fast. 

  

(a) (b) 

Figure 4. Inter-county level spread of HPAI. Green dots indicate counties where there are 

susceptible poultry according to the 2007 USDA NASS agricultural census data for layers, 

pullets, broilers, and turkeys. Blue dots indicate counties where there are at least  

10 infected asymptomatic birds, red dots indicate counties with at least 1 symptomatic 

infected bird. Black crosses indicate counties which either initially have no susceptible 

poultry or where the susceptibles have been depopulated via quarantine measures, culling, 

or disease mortality. 
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For HPAI epidemics, the effect of incubation time on the overall rapidity of the epidemic peaking is 

large, with short incubation times leading to higher consequences and very rapid epidemic peaks. This 

reflects our decision to sample incubation times ranging from 1 to 7 days, consistent with the broad 

variability observed in this parameter, and the relatively isolated nature of California providing the 

conditions for highly repeatable epidemic simulations.  

Table 3. Model selection (AIC) outputs for highly pathogenic avian influenza. 

Disease 

Endpoint 
Model AICC ΔAICC Wi 

Total Infected Global 13,906.4 0 0.4954626 

 
Location + Asym + Infect+ Trigger + Intraquar + Interquar + 

Duration (Without fatality rate) 
13,914.4 8 0.0090747 

 
Location + Asym + Infect + Fatality + Trigger + Duration 

(Without short- and long-range quarantine effect) 
13,990.4 84 0.0000000 

 
Location + Trigger + Intraquar + Interquar + Duration 

(Without disease characteristics) 
13,947.4 41 0.0000000 

 Asym + Infect + Fatality (Only disease characteristics) 14,510.4 604 0.0000000 

 
Asym + Infect + Fatality+Trigger + Intraquar + Interquar + 

Duration (Without location effects) 
14,004.6 98.2 0.0000000 

Dead Global 45,178.1 0 0.4954626 

 
Location + Asym + Infect+ Trigger + Intraquar + Interquar + 

Duration (Without fatality rate) 
45,235.2 57.1 0.0000000 

 
Location + Asym + Infect + Fatality + Trigger + Duration 

(Without short- and long-range quarantine effect) 
45,502.4 324.3 0.0000000 

 
Location + Trigger + Intraquar + Interquar + Duration 

(Without disease characteristics) 
45,425.1 1216.6 0.0000000 

 Asym + Infect + Fatality (Only disease characteristics)  45,830.3 652.2 0.0000000 

 
Asym + Infect + Fatality + Trigger + Intraquar + Interquar + 

Duration (Without location effects) 
45,298.6 120.5 0.0000000 

Peak Global 37,007.7 0 0.500000 

 
Location + Asym + Infect + Trigger + Intraquar + Interquar 

+ Duration (Without fatality rate) 
37,034.2 26.5 0.000001 

 
Location + Asym + Infect + Fatality + Trigger + Duration 

(Without short- and long-range quarantine effect) 
37,414.5 406.8 0.000000 

 
Location + Trigger + Intraquar + Interquar + Duration 

(Without disease characteristics) 
37,469.8 462.1 0.000000 

 Asym + Infect + Fatality (Only disease characteristics)  37,725.6 717.9 0.000000 

 
Asym + Infect + Fatality + Trigger + Intraquar + Interquar + 

Duration (Without location effects) 
37,348.4 340.7 0.000000 

  



ISPRS Int. J. Geo-Inf. 2014, 3 651 

 

 

Table 3. Cont. 

Disease 

Endpoint 
Model AICC ΔAICC Wi 

PeakT Global  36,914.1 0 1.000000 

 
Location + Asym + Infect + Trigger + Intraquar + Interquar 

+ Duration (Without fatality rate) 
36,942.4 36,914.1 0.000000 

 
Location + Asym + Infect + Fatality + Trigger+Duration 

(Without short- and long-range quarantine effect) 
37,296.5 382.4 0.000000 

 
Location + Trigger + Intraquar + Interquar + Duration 

(Without disease characteristics) 
37,463.3 549.2 0.000000 

 Asym + Infect + Fatality (Only disease characteristics)  37,725.6 811.5 0.000000 

 
Asym + Infect + Fatality + Trigger + Intraquar + Interquar + 

Duration (Without location effects) 
37,157.5 549.2 0.000000 

Location = California, Georgia, or Arkansas. Fatality rate = case fatality rate. Asym = time of asymptomatic 

period, Trigger = day epidemic is reported. Intraquar = Within state quarantine control. Interquar = Interstate 

quarantine animal movement control. Duration = duration of the epidemic. Minimum AICC is the lowest 

AICC score. AICC = (−2 × log-likelihood) + (2 × K); Model—these are the candidate models 

representing model inputs; ΔAIC is a model’s AIC minus the best model’s AIC; Wi or Akaike 

weights are calculated as follows: w = exp(−0.5 × ΔAIC). This is the same as taking the inverse 

natural logarithm of (−0.5 × ΔAIC).Wi (Akaike weights) are the normalized relative model 

likelihoods and are calculated as follows: Wi = exp(−0.5 × ΔAICi)/∑Rr = 1 exp(−0.5 × Δr), where 

R is the set of candidate models.  

For the epidemic endpoints for HPAI, the peak time of the epidemic or how fast it spread was not 

impacted by the intrinsic disease fatality rate (ANOVA, F1,1194 = 0.90, P = 0.34) or the day the 

response was triggered (F1,1194 = 3.20, P = 0.075). The number of total dead animals was not 

dependent on the day the response was triggered as well (F1,1196 = 1.93, P = 0.165). The total number 

of infected animals was also not impacted by the intrinsic mortality rate (F1,1194 = 0.24, P = 0.62). All 

other disease characteristics and mitigation that were varied impacted the severity and duration of the 

HPAI epidemic (Table 3).  

For FMD, by contrast, there is very little correlation between the incubation time and either the 

scale or duration of the epidemic. This is likely due to the relatively low variability observed in this 

parameter, and because the inter-state transport aspect of our model introduces significant stochastic 

noise into the overall consequence of the simulation. Figure 5 illustrates the scale vs. rapidity for a 

single realization of the FMD simulation for beef cattle, hogs, and dairy cattle for a single realization. 

As with HPAI, geography is important in the spread of FMD. However, unlike HPAI, with long 

distance livestock transportation and more subclinical cases, FMD outbreaks often quickly grew to 

national levels. Figure 6 shows a typical run for FMD started in three counties (top left panel). 

Figures 7 and 8 show the sensitivities of consequence magnitude to control measures. In Figure 7, 

we show how FMD outbreak magnitude (measured in terms of dead beef cattle) varies with the time 

delay between disease detection and initiation of culling of infected animals. Figure 8 shows how the 

efficacy of quarantine correlates in reducing HPAI consequence in terms of total dead poultry.  
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Figure 5. Time series (averaged over counties and simulations) for the number of newly 

infected animals from FMD is plotted against the time of the epidemic peak, with the color 

indicating the animal type. On average, the FMD outbreaks peak at around 80 days, with 

hogs being the most affected. The epidemic peaks at a lower number for beef cattle, but 

lasts longer than for hogs. 

 

Figure 6. Inter-county level spread of FMD. Green dots indicate where there are 

susceptible populations of cattle, hogs and/or sheep according to the 2007 USDA NASS 

agricultural census data. Blue dots indicate where there are 10 or greater asymptomatic 

animals, red dots indicate where there are one or more symptomatic animals. Black crosses 

indicate counties which either had no initial susceptible populations or that are depopulated 

of susceptibles by mitigative measures, i.e., quarantine, culling and/or vaccination. 
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Figure 7. Time series for all simulations for FMD grouped by the time to cull animals. The 

red plus signs are cull delay of 14–21 days, the green crosses a cull delay of 7–14 days and 

the blue stars a cull delay of 1–7 days. Less delay in culling generally results in fewer total 

dead cattle and in slower epidemic spread. 

 

Figure 8. HPAI consequence (measured as total number dead during a simulation) as a 

function of efficacy of quarantine for all epidemic simulations. The percent of animals not 

protected by quarantine is on the x-axis and the total number of dead animals on the y-axis. 

We see that for HPAI, effective quarantine results in reduction of dead animals by almost 

an order of magnitude. 

 

4. Discussion  

We presented a model framework with appropriate granularity (given limited data on geolocations 

of livestock holdings and animal movement) and complexity to simulate a variety of infectious 

diseases with mitigation and illustrated its use in an analysis of outbreaks of HPAI and FMD. The 

model allows for a realistic characterization of the differences in disease progression and geographic 

distribution of a variety of different hosts, as well as differences in our ability to mitigate the 

outbreaks. The model also runs rapidly enough that the sensitivity of the consequence to disease 

progression parameters, disease mitigation parameters, and geography can all be characterized. It does 
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require, however, that realistic ranges for all parameters be appropriately defined for this sensitivity 

analysis to work appropriately; we took great care in this respect for the present study. 

Geography is a critical aspect of the epidemics that is captured by our model. Indeed, the spread of 

HPAI exhibits diffusion-like properties within the context of geographical barriers and varying host 

density among counties. This kind of spatial spread is more easily mitigated by isolation or quarantine 

as see in Figure 8 and may be more forgiving with regards to time before mitigation begins. As 

expected, FMD, which spreads rapidly across the nation, appears to have major aspects of its epidemic 

properties determined by the spatial distribution of host and carrier animals. Although there were no 

differences in the epidemic outcomes for FMD based on our chosen starting locations, this was not the 

case for HPAI in poultry. With this said, it is worth reviewing the structure of our distance-dependent 

spread kernel and long-range transport matrix. Specifically, when comparing outcome vs. geography of 

initiation, epidemics that begin in California reflect dependence on long-range transport mechanisms. 

Epidemics started in California usually form a tight band, because it is an isolated, homogenous 

system. Larger dispersion happens in regions with high host density and high connectivity 

(e.g., Arkansas and Georgia for HPAI and the Midwest for FMD).  

We acknowledge that a weakness of the simulations shown here is that the county is probably not 

the best epidemiological unit for the spread of animal diseases, and that farm-level resolution is 

probably required for high accuracy [59]. However, we show that a properly formulated model that 

contains all of the salient features of disease transmission can give reasonable results and provide the 

correct sensitivities to geographic host distributions and control measures in the absence of higher 

resolution data. If farm level data were to become available, this model framework could be adapted so 

that nodes represent farms rather than counties. We expect that the within-county spread would be 

slowed in this construct, inferring that the simulations shown here are generally representative of a 

―worst-case scenario‖ while providing coarse scale insight for mitigation and surveillance at a county 

or state level. 

There are many things that impact the spread of an infectious disease epidemic in animals that 

include host genetics [60] and the environment [61]—with potential implications for impacting disease 

spread associated with climate change [62]. However, using appropriately scaled models to match the 

data collected from previous epidemics and observed disease characteristics can help alleviate the 

impacts of these micro impacts on overall simulations. In addition, the use of multiple simulations 

based on all potential ranges of disease parameters, as done in this study, can help quantify the 

variation that may be expected in any given future outbreak. 

The application of the model to FMD and HPAI scenarios demonstrate the ability of the model to 

capture the epidemic spread of very different diseases with different hosts. The strengths of the model 

include the incorporation of the geospatial nature of the host-contact network without any highly 

specific calibration towards a particular disease, the contribution of multiple species and livestock 

types to the epidemiology, the range of magnitude of symptoms, etc. (resulting from the host-pathogen 

interaction), and the variance in the disease parameters themselves, reflecting the uncertainty in the 

virulence of a particular pathogen. The incorporation of mitigation at multiple scales is also an 

important contribution in the move toward modeling for policy. 

It is important to point out that disease detection is dependent on farmers and stakeholders not only 

detecting disease but reporting on any sick animals. While official reporting of disease in animals is 
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the right thing to do, it takes courage due to the potential for severe economic costs. It is important to 

continue to educate the farmers and the public that not only has rapid disease detection been proven to 

slow and even stop an epidemic from taking it off, the overall economics are substantially less than 

detecting disease later [63,64]. 

These aspects make the model framework ideal for the evaluation of emerging infectious disease 

threats. More than 70% of the most important human infections (AIDS, cholera, dengue fever, SARS, 

H5N1 influenza) are of zoonotic origin, arising from known and unknown wildlife reservoirs. Large 

domestic animals herds of agricultural livestock can provide efficient conduits for pathogen transfers 

from wild animals to humans [1]. Even without spread to humans, pathogens affecting livestock pose 

threats to food security and can cause significant economic losses. Early genetic, environmental, or 

epidemiological surveillance of disease ―hotspots‖ or emergent outbreaks can initially yield sparse 

and/or low-fidelity data. Given that our simulations can sample over this uncertainty, this model can 

produce early, initial consequence estimates that can be gradually refined iteratively e.g., through 

Bayesian estimation techniques as described in [65] as more data become available. Human 

populations, with the appropriate couplings to animal populations, can be added to also assess the 

zoonotic risk. This knowledge gives more effective decision support to activities such as resource 

allocation prioritization and policy generation or modification than simple extrapolation of known diseases. 

This model framework can be adapted to multiple outbreak stages. The patches, or network nodes, 

in the model can change scope and definition as an outbreak progresses. At the start of an outbreak, 

nodes could be defined as individual hosts. Disease parameters for transmission and progression could 

be sampled from probability densities estimated from initial data. During this phase, no use would be 

made of the of the within-patch ordinary differential equation model since statistical fluctuations 

dominate and the uniform mixing approximation is not valid for this phase of the event. Eventually, if 

the outbreak increases in scope, patches or nodes would change to represent different epidemiological 

units at different scales (e.g., family groups, herds, farms, cities, counties, etc.). Patch configuration 

changes would depend primarily on the fidelity of data available, but also on either qualitative 

assessments of where uniform mixing is expected to hold or on which choice of epidemiological unit 

patch representation gives best fits for model parameter estimation. We would expect this process to 

not only generate better models, but to increase computational efficiency as the patch size increases, 

since more hosts can be simulated with fewer patches. 

5. Conclusions 

Computational decision support models for biosurveillance activities require a great deal of 

flexibility in the quality and types of data that they must incorporate to give actionable results for 

controlling infectious disease outbreaks. We have presented a mathematical modeling framework that 

describes the spread of infectious diseases among multiple species of hosts while incorporating spatial 

heterogeneity in the host-contact network, the roles that different species play in the epidemiology, and 

the effects of human intervention. We have shown that by using low-fidelity, publicly available 

county-level population aggregations and parameters extracted from the biological and epidemiological 

literature, it was possible to simulate two pathogens of high interest, FMD and HPAI, and equitably 

describe their consequences.  
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We also see that each of the different details incorporated in the model structure matter—different 

dependence on disease properties, different mitigation strategies, different host species, geographic 

heterogeneity in host population distributions—all impact the outcome of the epidemic. Highly 

detailed models which are difficult to adapt to different diseases and hosts may give different answers 

on the propagation of the epidemics due to the uncertainties in each of the above factors that can each 

impact the outcome. More detailed models may give better predictions on a local scale in particular. 

However, knowing critical regions for more rapid and extensive propagation of the disease will assist 

in knowing where to apply mitigation and animal movement control strategies and where to expend 

effort on more detailed models. Geography and the spatial clustering of animals even at a regional 

level are key to consider for developing mitigation strategies and applying available resources.  

In conclusion, the model framework presented here can be thought of as providing a ―first line of 

defense‖ for managing and preventing emerging infectious disease outbreaks in livestock and poultry 

in the United States. The general nature of the model architecture can be adapted to multiple host 

species and multiple pathogens while incorporating important aspects of spatial heterogeneity and 

long-distance transport. It is parameterized and initialized with publicly available data and incorporates 

common mitigation strategies. Additionally, the model is computationally efficient, so can easily be 

run multiple times for many different scenarios to offer real-time feedback to policy makers and 

scientists. Model frameworks such as this can be used to inform mitigation and surveillance measures, 

especially in the face of high uncertainty. 

The current model structure applies only to directly-transmitted diseases. We plan to adapt the 

model to incorporate vector-borne diseases spread by ticks, mosquitoes, midges, etc. The high 

diversity in vector species and distributions along with their very close, but not often straightforward, 

dependence on local weather and climate will provide added challenges to adapting this model 

framework. Incorporating seasonality and its effect on pathogen transmission and animal or human 

behavior would also be interesting. 
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