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Abstract: We aimed to study the geographic variation in the incidence of COPD. We used 

health survey data (weighted to the population level) to identify 56,944 cases of COPD  

in Manitoba, Canada from 2001 to 2010. We used five cluster detection procedures,  

circular spatial scan statistic (CSS), flexible spatial scan statistic (FSS), Bayesian disease 

mapping (BYM), maximum likelihood estimation (MLE), and local indicator of spatial 

association (LISA). Our results showed that there are some regions in southern Manitoba 

that are potential clusters of COPD cases. The FSS method identified more regions than the 

CSS and LISA methods and the BYM and MLE methods identified similar regions as 

potential clusters. Most of the regions identified by the MLE and BYM methods were also 

identified by the FSS method and most of the regions identified by the CSS method were 

also identified by most of the other methods. The CSS, FSS and LISA methods  

identify potential clusters but are not able to control for confounders at the same time.  

However, the BYM and MLE methods can simultaneously identify potential clusters and 

control for possible confounders. Overall, we recommend using the BYM and MLE 

methods for cluster detection in areas with similar population and structure of regions as 

those in Manitoba. 

Keywords: bayesian computation; chronic obstructive pulmonary disease;  

geographic epidemiology; prediction; random effects; spatial cluster detection 
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1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a lung disease defined by continuous airflow 

limitation caused by small airway disease (obstructive bronchiolitis) and parenchymal destruction 

(emphysema). The small airways narrow in response to chronic inflammation. As well, inflammatory 

processes cause the deterioration of the lung parenchyma, which leads to a decrease in the elastic recoil 

of the lung. As a result of these changes, the airways have a decreased ability to remain open during 

expiration [1]. The biggest and most widely known risk factor of COPD is cigarette smoking [2].  

Other risk factors of COPD include occupational or environmental exposure to dust and hazardous 

gases, for example when burning biomass fuel [3]. A family history (i.e., genetics), low socioeconomic 

status, poor nutrition, asthma, and recurrent lung infections can also be risk factors for COPD [1,4]. 

Therefore, COPD can be the result of a gene-environment interaction [1]. 

The impact of COPD is often underestimated by health authorities and government officials [5].  

In Canada, one of the most overlooked chronic conditions is COPD. Patients suffering from a 

degenerative lung disease are often misdiagnosed as having bronchitis, a cough or a respiratory tract 

infection [6]. In 2008, COPD was the leading cause of hospitalizations in Canada. As well, 18% of 

COPD patients were readmitted to a hospital once within the year and 14% were re-admitted twice 

within the year. These readmission rates were higher than any other chronic illnesses [6,7]. According to a 

Canadian article [8], for severe COPD exacerbations or attacks, the average length of a hospital visit was 

10 days with an estimated cost of $10,000. Within a single year, the estimated cost of moderate and severe 

COPD exacerbations exceeds $730 million. This number is expected to nearly double by 2015 [8]. 

There are various treatments for COPD including antibiotics and chest physiotherapy.  

However, early detection of COPD is crucial for a positive outcome [9]. Therefore, it is important to 

identify trends in COPD incidence that may suggest further epidemiological studies to identify risk 

factors and identify any changes in important factors. Trends may occur over a region and the focus of 

our paper is to examine geographical variation in the number of people diagnosed as having COPD 

during 2001 to 2010 in the province of Manitoba, Canada. 

A spatial cluster is defined as a limited area within the entire study region which has a high 

proportion of disease cases [10]. Possible factors related to diseases may be determined by discovering 

disease clusters which may lead to an improved understanding of etiology. In fact, the identification of 

clusters may lead to further analyses to study how exposures and disease interventions are connected [11]. 

Spatial cluster detection methods can be classified into two statistical approaches, a focused 

approach or a non-focused (general) approach. The methodology of focused cluster detection 

approaches is to locate regions with an excess number of disease cases in an area near a possible cause 

(i.e., a toxic waste site) [12,13]. On the other hand, non-focused cluster detection methods typically  

use various ways in order to discover areas with a high number of disease cases in the entire study 

region [14–16]. The circular spatial scan statistic (CSS) [17], flexible spatial scan statistic (FSS) [18], 

and Bayesian disease mapping (BYM) [14] are all considered to be focused cluster detection methods, 

whereas, the Besag and Newell (BN) [19,20] test and the maximizing excess event test (MEET) [21] 

are classified as non-focused cluster detection procedures. Non-focused tests are used to detect 

potential clusters in the study area, while focused tests are used to test the null hypothesis of no spatial 

cluster against the alternative hypothesis that a spatial cluster exists. In other words, the purpose of 
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focused tests (CSS, FSS, BYM) is to find possible clusters in an area of interest and the aim of  

non-focused tests is to discover any significant cluster without determining a specific area of interest. 

These approaches were compared by analyzing childhood cancer data in the province of Alberta, 

Canada [22]. Recently, a frequentist approach based on the maximum likelihood estimation (MLE), 

via data cloning (DC) [23,24], was also proposed to obtain possible clusters [25] in an area of interest. 

Another cluster detection method is the local indicator of spatial association (LISA) [26]. This method 

is simple and easy to implement. 

This paper is based on the focused cluster detection methods. In particular, the aforementioned 

focused approaches (CSS, FSS, BYM, MLE, and LISA) are used to analyze a real dataset of COPD 

cases in the province of Manitoba, Canada, from 2001 to 2010. 

2. Methods 

2.1. Study Subjects 

This study was based on the Canadian Community Health Survey (CCHS) [27] from Statistics 

Canada. The CCHS is a cross-sectional survey, which gathers information from the Canadian 

population regarding health status, health care utilization and health determinants. The CCHS collects 

health related data from individuals aged twelve and older in order to provide reliable estimates at the 

health region level [27]. The information from the CCHS used in this study was the number of COPD 

cases in the province of Manitoba, Canada, from 2001 to 2010. Eleven Regional Health Authorities, 

which are further divided into 67 Regional Health Authority Districts (RHADs) are in charge of 

delivering health care services to individuals in Manitoba. The RHADs are the geographic units  

used in our models and all of the data used in the study are related to these RHADs which are  

labeled 1, 2, …, 67 for simplicity. As well, a population-based centroid was provided for each RHAD, 

however, these centroids were not necessarily geographic centres. Since the data used in the study was 

from a survey, appropriate weights (see Section 2.2 for more details) established by Statistics Canada [27] 

were applied to the data, which was then aggregated over the study period from 2001 to 2010. 

The population was stable in Manitoba from approximately 1.15 million people in 2001 to  

1.20 million people in 2010. Region 38 had the smallest average population size of 920 people while 

region 62 had the largest average population size of 91,633 people. The mean and median population 

sizes across the regions were 17,471 and 9466, respectively. The total number of COPD cases in 

Manitoba was 56,944 with a mean of 850 and median of 504 cases. These observations are based on 

the weighted results of COPD cases across the 67 regions. 

The observed number of COPD cases and the expected number of COPD cases as well as the 

population size of each region are important requirements for focused spatial cluster detection 

methods. Adjustments may be made when the expected number of cases varies by different factors 

such as year, age, and gender. The expected number of disease cases was then adjusted by year (1–10), 

age group ((0–5), (6–20), (21–40), (41, 88), (89+)) and gender (male, female). A review of the CSS, 

FSS, BYM, MLE, and LISA spatial cluster detection methods is given in the Appendix. 

The five focused spatial cluster detection procedures (CSS, FSS, BYM, MLE, and LISA) have 

different assumptions. Although the CSS, FSS, and LISA approaches are distribution free,  
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it is assumed that the number of disease cases follow a Poisson distribution in the BYM and MLE 

methods. As well, while the number of regions to be included in the cluster must be specified for the 

CSS and FSS methods, this is not a requirement for the BYM and MLE approaches. For the model-based 

cluster identification methods (BYM and MLE), if the model does not fit the data well, the result can 

be misleading. So, the deviance residual [28] should also be checked. While the expected number of 

disease cases or the population of each region is required for the above methods, they are not a 

requirement for the LISA method. 

The University of Manitoba’s Research Data Centre approved the study, and Statistics Canada 

approved administrative data access. ArcGIS version 10.0 (Environmental Systems Research Institute, 

Redlands, CA, USA) was used to produce choropleth maps of risks. 

2.2. Weighting Process 

The weighting was completed by Statistics Canada using a detailed weighting process [27].  

A brief summary of this procedure is given here. First, the weighting depends on the sampling method 

(area frame vs. telephone frame) used in each region. In the area frame an initial weight is assigned 

based on the Labour Force Survey (LFS). Out-of-scope units (i.e., Dwellings that are under 

construction, vacant, seasonal or secondary and institutions) are removed from the sample. As well, 

sub-clusters (i.e., Sub-sampling within a selected dwelling), larger sample sizes and non-response units 

are adjusted for in the weighting process. In the telephone frame (the survey is conducted by 

telephone) an initial weight is assigned as the probability that phone number will be selected, which 

depends on the number of units sampled and the number of units available to be sampled.  

In this method, samples are drawn every two months therefore, an adjustment factor is applied to reduce 

the weights of each two-month sample so that the total sample is representative of the population only 

once. Similar to the area frame method, out-of-scope numbers (i.e., Businesses, institutions, out-of-scope 

dwellings or numbers that are not in service) are removed from the sample. Also, non-response units and 

dwellings with multiple phone numbers are adjusted for in the weighting process [27]. 

The weights common to the area frames and telephone frames need to be integrated using an 

adjustment factor α (0 < α < 1). Then a person-level weight is created by taking the inverse of  

the probability a person in the selected dwelling will be selected, which depends on the number of 

people in the household and the ages of those people. After the appropriate adjustment is made,  

a “winsorization” trimming method is used to decrease any extreme weights that occur.  

Finally, a calibration approach is used to ensure the weights are representative of the population 

estimates for the different age groups and genders in each health region [27]. 

2.3. Specific Hypotheses 

We specify the alternative hypotheses for the CSS, FSS, BYM, and MLE approaches. We consider 

multiple alternatives that are tested separately. Further, let RRi indicate the relative risk for the i-th 

region within a cluster when compared with the region outside a cluster; the latter has RRi = 1.  

For example for cluster X, the RRi is given by 

RRi = ቄ3 i ∈ X 								
1 otherwise.
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3. Results 

The results of five different cluster detection techniques when applied to a COPD dataset in the 

province of Manitoba, Canada, from 2001 to 2010 are shown and compared in this section. 

Based on the 67 regions, four different clusters were tested: (1) a case of no clusters (called A);  

(2) seven regions from the northern part of the province (called B); (3) seven regions from  

south-central part of the province (called C); and (4) 12 regions which comprise the Winnipeg region 

(called D). For A, no region was specified as a potential cluster. Moreover, the regions belonging to 

clusters B, C, and D are: B = {31, 33, 34, 36, 38, 40, 41}, C = {27, 28, 29, 30, 50, 51, 52},  

and D = {56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67}. Since the LISA method does not depend on the 

expected number of observations, it could only be applied to cluster A as the other clusters require the 

adjustment of the expected number of disease cases for those regions inside the specified cluster. 

The areas that are statistically significant (potential clusters) are shown for each cluster and each 

method separately (Figures 1–4). The summary of cluster A, no region specified as a potential cluster, 

is presented in Table 1. For the CSS and FSS procedures, the regions that are most likely to constitute 

a disease cluster are presented, as well as the regions that are second and third most likely to be 

considered as a cluster. For the BYM and MLE methods, a region is considered (and ranked) to be a 

significant cluster if the lower limit of the credible/prediction interval follows the specified criteria. For 

example, in the BYM method region 10 is most likely to be considered as a cluster and region 61 is 

least likely to be considered as a cluster under the criteria that the lower bound of RR is greater than 

one. For the LISA method, a region is determined (and ranked) to be significant if the p-value is less 

than 0.1. 

The FSS method identified more regions as potential clusters than the CSS approach for cluster A, 

although, the regions with potential clusters that were detected by the CSS method were also identified 

by the FSS approach. The CSS approach detected regions {10, 43, 45, 61, 62} as potential clusters, 

and the FSS method identified the same regions as the CSS method, as well as regions {1, 11, 12, 13, 

14, 20, 21, 27, 46, 50, 51, 54, 56, 60, 64, 65}. The BYM and MLE methods identified regions {1, 3, 6, 

10, 11, 12, 20, 21, 24, 27, 43, 45, 50, 54, 61, 62, 64, 65} as possible clusters. The only difference 

between the results of these two procedures was the order of significance for the potential clusters.  

As well, most of the regions identified using these two approaches were also identified by the FSS 

approach and the regions identified by the CSS technique were also detected by the BYM and MLE 

approaches. Note that by evaluating the criterion of the RR values from greater than 1 to 1.5 or even 2, 

the number of potential clusters decreases (Table 1). Based on the deviance residual plots for both the 

BYM and MLE methods, we found that there is no serious lack of fit in the model. The LISA method 

found regions {2, 7, 16, 24, 43, 56, 57, 58, 60, 62, 64, 67} to be possible clusters of COPD.  

This approach identified some different regions to be potential clusters as compared to the other methods. 

For the case of cluster B, none of the methods were able to detect all the regions in cluster B as a 

potential cluster. However, the CSS method identified regions 10, 43, and 62 as a potential cluster 

while the FSS method detected the same regions as the CSS method in addition to regions {11, 12, 13, 

14, 20, 21, 27, 31, 45, 46, 50, 51, 54}. The BYM approach could identify regions {1, 3, 6, 10, 11, 12, 

20, 21, 24, 27, 31, 43, 45, 50, 54, 61, 62, 64, 65} as potential clusters. The MLE method was also able 

to identify the same regions as the BYM method in addition to region 19. 
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Figure 1. The order of most likely clusters of COPD for the CSS, FSS, and LISA  

(based on the p-value) methods, and the special effects of the regional COPD risks for the 

BYM and MLE methods; in the case of cluster A. Major urban centre (Winnipeg region) is 

incorporated as an inset. (a) CSS; (b) FSS; (c) BYM; (d) MLE; (e) LISA. 

(a) (b) 

(c) (d) 
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Figure 1. Cont. 

(e) 

Figure 2. The order of most likely clusters of COPD for the CSS and FSS methods, and 

the special effects of the regional COPD risks for the BYM and MLE methods; in the case 

of cluster B. Major urban centre (Winnipeg region) is incorporated as an inset. (a) CSS;  

(b) FSS; (c) BYM; (d) MLE. 

(a) (b) 
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Figure 2. Cont. 

 
(c) (d) 

Figure 3. The order of most likely clusters of COPD for the CSS and FSS methods, and 

the special effects of the regional COPD risks for the BYM and MLE methods; in the case 

of cluster C. Major urban centre (Winnipeg region) is incorporated as an inset. (a) CSS;  

(b) FSS; (c) BYM; (d) MLE. 

(a) (b) 
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Figure 3. Cont. 

 
(c) (d) 

Figure 4. The order of most likely clusters of COPD for the CSS and FSS methods,  

and the special effects of the regional COPD risks for the BYM and MLE methods; in the 

case of cluster D. Major urban centre (Winnipeg region) is incorporated as an inset.  

(a) CSS; (b) FSS; (c) BYM; (d) MLE. 

(a) (b) 
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Figure 4. Cont. 

(c) (d) 

Table 1. The order of significant regions for the LISA, CSS, FSS, BYM, and MLE 

methods for cluster A. 

Region 

Method 

LISA CSS FSS
RR > 1.0 RR > 1.5 RR > 2.0 

BYM MLE BYM MLE BYM MLE 

1 - - 3 13 11 - - - - 
2 1 - - - - - - - - 
3 - - - 11 13 - - - - 
6 - - - 5 5 5 5 - - 
7 12 - - - - - - - - 

10 - 1 1 1 1 1 1 1 1 
11 - - 1 15 15 - - - - 
12 - - 1 10 10 - - - - 
13 - - 1 - - - - - - 
14 - - 1 - - - - - - 
16 9 - - - - - - - - 
20 - - 1 4 4 4 4 - - 
21 - - 1 14 14 - - - - 
24 7 - - 6 6 6 6 - - 
27 - - 2 12 12 - - - - 
43 2 3 2 2 2 2 2 2 2 
45 - 3 2 7 8 - - - - 
46 - - 2 - - - - - - 
50 - - 2 3 3 3 3 - - 
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Table 1. Cont. 

Region 

Method 

LISA CSS FSS
RR > 1.0 RR > 1.5 RR > 2.0 

BYM MLE BYM MLE BYM MLE 

51 - - 2 - - - - - - 
54 - - 2 17 17 - - - - 
56 6 - 3 - - - - - - 
57 4 - - - - - - - - 
58 5 - - - - - - - - 
60 8 - 3 - - - - - - 
61 - 2 3 18 18 - - - - 
62 3 2 1 8 7 - - - - 
64 11 - 3 9 9 - - - - 
65 - - 3 16 16 - - - - 
67 10 - - - - - - - - 

For cluster C, all four methods were able to detect all the regions of cluster C as a potential cluster. 

Furthermore, the CSS method also identified regions {3, 10, 20, 21, 43, 45, 49, 62} as potential 

clusters while the FSS method detected those regions identified by the CSS method in addition to 

regions {6, 11, 12, 13, 64, 65}. Both the BYM and MLE methods identified regions {1, 3, 6, 10, 11, 

12, 20, 21, 24, 43, 45, 54, 61, 62, 64, 65} in addition to the regions in cluster C as potential clusters. 

For cluster D, all four methods detected the regions belonging to the D cluster as a potential cluster. 

In addition to the regions in Winnipeg (cluster D), the BYM and MLE approaches were also able to 

detect some neighbours of Winnipeg (14 regions) as potential clusters. However, the CSS and FSS 

methods only detected two regions, 10 and 43 as a potential cluster in addition to cluster D. 

4. Discussion and Conclusions 

We used five popular approaches in spatial epidemiology to identify potential clusters of COPD 

cases in the Canadian province of Manitoba, Canada. These five methods have been used extensively 

in the literature and are relatively comprehensive. These methods use different approaches  

(non-parametric to parametric) to test for significant clusters. 

We considered four different alternative hypotheses to compare the results of the CSS, FSS, BYM, 

and MLE methods. All four methods did a good job of identifying potential clusters for dense 

populations (clusters C and D) but not for a dispersed population (cluster B). In general, the CSS 

method identified a lower number of regions combined as a potential cluster compared to the FSS 

method, due to the non-circular shape of some regions in the province of Manitoba. A disadvantage of 

the LISA method is that the results do not depend on the expected number of cases or the population in 

each region. This is concerning since regions with high populations will likely have higher observed 

numbers of disease, however, this is not taken into account when using the LISA method. Therefore, 

the LISA method could only be applied to cluster A as cluster B, C, and D require the expected 

numbers to be adjusted for the respective regions in a cluster. This may explain why the LISA approach 

identified some different regions as potential clusters when compared with the other procedures. 
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A region was identified as a potential cluster if the lower bound of credible/prediction interval of 

the estimated relative risk was larger than one for the BYM and MLE approaches. Different decision 

rules may be defined where the estimated relative risk (in terms of the credible/prediction interval) 

would be larger or smaller than one [29]. One could also consider the exceedance probability 

PrሺRRi	>	bሻ>	c , where b  can be 1, 2 or 3 and c  may be a large value such as 0.90 [30].  

For the LISA method, a region was defined to be significant if the associated p-value was less than 0.1. 

However, different decision rules could be used where the level of significance is smaller than 0.1. 

Here, three important factors, age, gender and year were used to adjust the expected number of 

COPD cases in the province of Manitoba. Unlike the CSS, FSS, and LISA methods, we can extend the 

model A2–A3 in the Appendix, for both the BYM and MLE methods, to include other covariates 

directly, which may be required for some applications. 

We also note that the methods have different settings and assumptions, which motivate our 

comparison. User-chosen settings are part of all cluster tests and different choices could lead to 

different results. All five methods have been proposed for local clusters. Under the null hypothesis,  

the number of COPD cases follows a Poisson distribution for the BYM and MLE methods, while the 

test statistic for the CSS and FSS methods has an asymptotically χ2 distribution and the LISA method 

uses an empirical distribution. These features motivated us to consider these important methods and 

apply them to our COPD cases. 

As limitations of this study, we assumed that our COPD cases are rare cases to be able to use the 

Poisson model in the BYM and MLE methods. Also, we used survey data (weighted to the population 

level) in our study. Strengths of the study include the evaluation of multiple cluster detection methods. 

Overall, the potential clusters of COPD were located in the southern part of the province with the 

exception of region 24, which was identified by the BYM and MLE methods (cluster A). According to 

findings from Fransoo et al. [31], which are based on the Community Health Survey [27],  

binge drinking and smoking levels are higher than the Manitoba average in the south-central part of the 

province. As well, there are a higher percentage of people who consume low levels of fruits and 

vegetables in this region, although these differences are not statistically significant. Obesity levels are 

significantly higher than the Manitoba average in this region as well. In the south-eastern part of the 

province binge drinking, exposure to second hand smoke, and overweight and obesity levels are higher 

than the Manitoba average although the results are not statistically significant [31]. These are some 

possible health determinants that may explain the clusters of COPD in these regions. We found that the 

BYM and MLE methods are the best approaches in terms of identifying potential clusters and 

controlling for possible confounders (if any). These results may represent real increases in COPD or 

may be due to unmeasured covariates that need to be adjusted for in the model. Further investigation is 

needed to examine these findings, and also to explore the cause of these increases. 
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Appendix 

Circular Spatial Scan Statistic (CSS) 

The spatial scan statistic is widely used in the field of epidemiology for a variety of purposes [32].  

A circular window S is set on each region by the circular spatial scan statistic with the radius of the 

circle ranging from zero to a pre-specified maximum distance d or a pre-determined maximum number 

of regions J to be considered in the cluster. The window made up of the (j-1)-th nearest neighbours to 
region i is denoted by Si:jሺj	=	1,…,Jሻ. As well, S1	=	{Si:j;i	=	1,…,m;j	=	1,…,J} denotes the set of all 

windows to be scanned by the circular scan statistic. A likelihood ratio statistic based on the number of 

observed and expected cases inside and outside the circle is computed for each circle.  

Now, L0 denotes the likelihood under the null hypothesis and Li(i	=	1,…,m) represents the likelihood 

under the alternative hypothesis. The null hypothesis states that there is no cluster in region i and is 

tested against the alternative hypothesis that a cluster exists in region i  based on its j-th nearest 

neighbours. The likelihood ratio statistic is given by 

 max
i

Li

L0
 =	൬Ci

Ei
൰Ci ൬N-Ci

N-Ei
൰N-Ci

I(Ci > Ei) (A1) 

where Ci denotes the observed number of cases inside a circle and Ei represents the expected number 

of cases inside a circle. Also, (N-	Ci) and (N-	Ei) denote the observed and expected number of cases 

outside the circle, respectively. The indicator function I(Ci	>	Ei) is equal to 1 when Ci	>	Ei  and 0 

otherwise. Circles with high likelihood ratios are identified as possible clusters [17]. 

Using SaTScan [33] or FleXScan [34] software, the CSS method can be applied. Generally, J is 

chosen to include at most 50% of the population at risk, however, we used the FleXScan default which 

is a maximum spatial cluster size of J	=	15. In order for the region to be part of the circle, the region 

centroid had to be included in the radius of the circle. 

Flexible Spatial Scan Statistic (FSS) 

The flexible spatial scan statistic works in the same manner as the circular spatial scan statistic but 

now the shape of the potential cluster is flexible while still being restricted to a small neighbourhood of 
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each region. By connecting adjacent regions, the flexible scan statistic places an irregularly shaped 

window S  on each region. For any region i , the set of irregularly shaped windows of length j , 

containing j connected regions including region i, can vary from 1 to the pre-determined maximum J, 

where J is the maximum length of a cluster. Moreover, to prevent unlikely cluster shapes, the joined 
regions are restricted to the subsets of the set of regions i and ൫J-1൯-th nearest neighbours of region i. 
The set of all windows to be scanned by the flexible spatial scan statistic is then S2	=	{Si:jሺkሻ; 	
i	=	1,…,m;j	=	1,…,J;k	=	1,…,kij}. The circular spatial scan statistic examines J circles for any region i 

and the flexible spatial scan statistic examines J circles plus all the sets of connected regions whose 

centroids are found within the J-th largest concentric circle. Subsequently, the size of S2 is much larger 

than S1 which is at most mJ. The test statistic used in the FSS method under the Poisson assumption is 

based on the likelihood ratio test given in Equation (A1). Now, the circle defined in Equation (A1) 

refers to S2  instead of S1 . Using the FSS method, circles with high likelihood ratio values are 

considered to be potential regions of disease clusters [18]. The FSS method can also be applied using 

the FleXScan software [34] with the FleXScan default which is J	=	15. 

Bayesian Disease Mapping (BYM) 

Identifying clusters can also be done through a Bayesian framework using Markov chain Monte 

Carlo (MCMC) methods [14,15,35,36]. First used by Besag et al. [14], Bayesian disease mapping 

(BYM) is a modeling approach consisting of two parts. In the first part of the model, it is assumed that 

the cases follow a Poisson distribution with an area specific parameter θiEi: 

 Ci ~ PoissonሺθiEiሻ (A2)

where the observed and expected number of cases in region i are given by Ci  and Ei, respectively.  

The second part of the model is achieved through 

 log (θi) = μ + ηi (A3)

where the relative risk (RR) in region i is given by θi, μ represents the overall mean ratio over the 
entire region and ηi represents spatially correlated random effects. These spatial random effects are 

captured using the usual CAR model. A variety of CAR models can be used by obtaining a collection 
of mutually compatible conditional distributions p(ηi|η-i), i	=	1,…,m,  where η-i	=	{ηj:j	≠	i, 	
j	∈	δi} and δi refers to a set of neighbours for the i-th region [14]. We use the following general model 
for spatial effects ηi: 

η	= ൫η1,…,ηm൯'
~ N൫0, Ση൯ 

Ση = ση2(Im - ληD)-1P 

where P  is a m × m  diagonal matrix with elements Pii	=	1/ei ; D  is a m × m  matrix with elements 
Dij	=	(ej/ei)

1/2 if region i and j are adjacent and Dij	=	0 otherwise; ei is the number of regions adjacent 

to region i ; ση2  is the spatial dispersion parameter; λη  measures the spatial autocorrelation, 

λmin	≤	λη	≤	λmax, where λmin
-1  and λmax

-1  are the smallest and largest eigenvalues of P-1/2DP1/2; and Im is an 

identity matrix of dimension m. We refer to [37] for details of this proper CAR model. Using vague 
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prior distributions and within the Bayesian framework (MCMC), the parameters may be estimated to 

produce posterior distributions for the parameters in the model [14]. 

A cluster is specified as a region where the estimated relative risk (in terms of the lower credible 

set) is significantly larger than one [38]. To apply this method, WinBUGS software [37] is used to 

calculate the relative risk values. 

Frequentist Approach Using Maximum Likelihood Estimation (MLE) 

The data cloning (DC) approach is a computational algorithm to obtain the MLE for hierarchical 

models [23,24]. This approach is based on the Bayesian computational method and is used for 

frequentist purposes. This method involves independently repeating the observations C	=	(C1,…,Cm)' 

for L different individuals. Subsequently, these individuals all have the exact same set of observations 
C which are represented by C(L)	=	(C,C,…,C). The posterior distribution of α	=	(μ,λη,ση2)' conditional 

on the data C(L) is then given by 

 πL൫αหCሺLሻ൯ =
ሼL(α,C)ሽLπ(α)

H(C(L))
 (A4)

where the prior distribution on the parameter space is π(α) and H൫CሺLሻ൯=׬ሼL(α,C)ሽLπ(α) dα is the 

normalizing constant. Also, ሼL(α,C)ሽL  represents the likelihood for L  copies of the original data.  

As shown by Lele et al. [23,24], when L  is large enough, πL(α|C(L))  converges to a multivariate 

Normal distribution with the mean given by the MLE of the model parameters and variance-covariance 

matrix equal to 1/L times the inverse of the Fisher information matrix for the MLE. Hence, the sample 

mean vector of the generated random numbers from Equation (A4) acts as an estimate of the MLE and 

an estimate of the asymptotic variance-covariance matrix for the MLE αො is given by L times the sample 

variance-covariance matrix of the generated random numbers from Equation (A4). Lele et al. [24] also 

provided various tests to determine the adequate number of clones L. 

Prediction of Relative Risk: 

The prediction of relative risk (random effects) can be fairly problematic, especially in the 

frequentist framework. One approach to estimate r  using the data is to use π(R=r|C,αො)  where 

R	=	(RR1,…,RRm)' . However, the variability introduced by the model parameters estimate is not 

captured in this approach. In the literature [39], it has been suggested to use the following density in 

order to take into consideration the variation of the estimator, 

π(r|y)=
׬ f(C|r,α1)g(r|α2)ϕ(α,αො,I-1(αො))dα

H(C)
 (A5)

where α1	=	μ , α2	=	(λη,ση2)' , f(·)  and g(·)  are Poisson and Normal distributions, respectively,  

and ϕ(.,	ξ,	Σ)  denotes a multivariate Normal density with mean ξ  and variance-covariance Σ .  

In this paper, the prediction of the r  was found using Equation (A5) through MCMC sampling.  

A disease cluster is defined as a region where the estimated relative risk (in terms of the lower 

prediction interval) is significantly larger than one. The dclone package [40] is utilized within the R 

software [41] in order to calculate the relative risk values. 



ISPRS Int. J. Geo-Inf. 2014, 3 1054 

 

 

Local Indicator of Spatial Association (LISA) 

Another method for identifying spatial clusters is a local indicator of spatial association (LISA) 
statistic [26]. In general, for an observation, yi in the ith region, the LISA statistic is given by  

Li=f ቀyi,yJi
ቁ 

where f is a function and the values observed in the Jth neighbourhood of region i are given by yJi
.  

In order to determine the statistical significance of the spatial association at region i, the following 

must be satisfied 

PrሺLi > δiሻ ≤ αi  

where a critical value is given by δi and αi is a given level of significance. Another condition of a 

LISA statistic is the total of all LISA statistics in a region must be proportional to a global indicator of 

spatial association. In other words, ෍ Li

i

=γΛ 

where Λ is an indicator of the global indicator with a scale factor defined by γ. In order to test whether 

there is statistically significant spatial association over all the regions, the following statement must be 

true [26] 

PrሺΛ > δሻ ≤ α. 
A general LISA statistic may be used to test the null hypothesis of no spatial association against the 

alternative hypothesis that spatial clustering exists across a region. However, the distribution of the 

general LISA may be hard to find. For this reason, conditional randomization or a permutation 

approach is used to find an empirical distribution. The randomization is done by holding the observed 
value (yi) in region i constant and the remaining observed values across the entire study region are 

randomly permuted and the value of Li is computed. This is done for each region in the study area.  

The result is an empirical distribution function, which expresses the extent to which each observation 

is considered to be extreme in comparison with the other observed values [26]. 

The LISA method is usually a simple method to apply, however, it is complicated by the fact that 

the LISA statistics for individual regions may be correlated. For example, when regions i and k are 

neighbours or have common elements in their neighbourhood sets, the corresponding LISA statistics, 

Li and Lk will be correlated. Typically, it is extremely hard to derive the marginal distributions of each 

statistic and therefore, the significance levels must be approximated by Bonferroni inequalities or the 

method outlined by Sidák [42]. Using Bonferroni inequalities, the individual significance levels (αi) 

are set to α/m and using Sidák’s method, they are equal to 1	-	൫1	-	α൯1/m
, where the overall significance 

level is set to α and there are m comparisons. It has been suggested that m is taken to be the number of 

observations n. However, this may result in bounds that are too conservative and in fact very few 

observations may be deemed to be significant clusters [26]. Further investigation is being conducted to 

determine the best value for m. In our study this method is implemented in R [41] using the ncf 

package [43]. 
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