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Abstract: The type of data an individual contributor adds to OpenStreetMap (OSM) varies 

by region. The local knowledge of a data contributor allows for the collection and editing of 

detailed features such as small trails, park benches or fire hydrants, as well as adding attribute 

information that can only be accessed locally. As opposed to this, satellite imagery that is 

provided as background images in OSM data editors, such as ID, Potlatch or JOSM, 

facilitates the contribution of less detailed data through on-screen digitizing, oftentimes for 

areas the contributor is less familiar with. Knowing whether an area is part of a contributor’s 

home region or not can therefore be a useful predictor of OSM data quality for a geographic 

region. This research explores the editing history of nodes and ways for 13 highly active 

OSM members within a two-tiered clustering process to delineate an individual mapper’s 

home region from remotely mapped areas. The findings are evaluated against those found with 

a previously introduced method which determines a contributor’s home region solely based 

on spatial clustering of created nodes. The comparison shows that both methods are able to 

delineate similar home regions for the 13 contributors with some differences. 
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1. Introduction 

The evolution of voluntarily collected geodata and its distribution on the internet has led to a significant 

increase in research on Volunteered Geographic Information (VGI) [1] in recent years. The spectrum of 

VGI data sources reaches from image sharing websites such as Flickr or Panoramio, over  

social media platforms such as Twitter and Foursquare, to more complex mapping portals such as 

OpenStreetMap (OSM). The type of collected information that can be retrieved from the individual 

platforms, however, varies in complexity and purpose. Most of the aforementioned sources relate to 

one’s individual travel and personal experience associated with a location. Such information can  

be used for the analysis of people’s spatio-temporal travel patterns and their perception of space. 

Examples include the extraction of people’s movement trajectories [2,3], events [4], popular places [5], 

and vernacular regions [6] from the shared image websites Panoramio and Flickr. Furthermore, tweets 

have been used to extract knowledge about significant personal places in people’s everyday lives [7], 

people’s activity patterns [8,9], transit riders’ sentiments about transit services [10], and people’s 

happiness [11]. Login information from the location based social networking website Foursquare was 

used to identify movement patterns across different urban environments [12]. However, OSM, due to its 

goal to create a comprehensive map of the world, does not focus on mapping one’s individual travel 

locations and also avoids subjective statements. Exceptions to the latter are for example situations where 

a dispute over a feature location or name leads to massive feature editing [13]. OSM uses  

more complex spatial structures, i.e., point, line and polygon features relating to physical features and 

administrative units, compared to other VGI data sources. 

The analysis of OSM contribution patterns has recently gained interest in the geospatial research 

community since these patterns are closely related to OSM data quality [14–16]. OSM contribution 

analysis involves among others, the classification of contributors based on their level of activity [17,18], 

a comparison of OSM activities between different world regions [17], assessing the effect of member 

contributions on OSM feature quality [13,15], analyzing collaborative patterns in OSM feature edits [19], 

and assessing the change of editing patterns in a geographic region over time [20,21]. However, limited 

research has so far been conducted on analyzing the spatial contribution patterns of an individual 

contributor, i.e., the variation of contributions between different regions. One of the main characteristics 

that distinguish VGI data sources from traditional governmental and commercial datasets is the “Citizens 

as Voluntary Sensors” approach [1]. Through physical presence at a location and local knowledge, 

individual contributors can collect geographic information that is not visible from above and can 

therefore not be extracted from satellite imagery. We assume that this principle of localized data 

contribution translates to the OSM data collection process, where a contributor can add more detailed 

information and provide more refined data correction steps for a region that the contributor is familiar 

with (e.g., a home region) than for more remote and less traveled regions. As opposed to this, remote 

regions are oftentimes only mapped through tracing satellite images, which will most likely result in 
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different types of data contributions or feature edits compared to the contributor’s home region. Whereas 

an earlier approach identified a contributor’s primary activity area solely based on the position of node 

contributions or the mean positions of changesets for that contributor [17], so far no method utilized the 

additional information about the type of edits made to OSM data to identify a contributor’s home region. 

We assume that such editing information can be valuable for the identification of a contributor’s home 

region as well.  

To test this assumption we use a two-tiered clustering approach which analyzes the editing patterns 

on nodes and ways for 13 selected active OSM contributors. This method spatially delineates  

a contributor’s data collection efforts into a home region and areas the contributor is presumably not  

as familiar with (from here on referred to as external region). We use several methods to verify the 

plausibility of the results of the area delineation, e.g., by comparing the number of days a mapper was 

active in the home and the external region, or by comparing the number of different feature types mapped 

in the home and external region, respectively. This gives some insight into the differences in the level 

of diversity and activity of mapping behavior between home and external regions. As another means of 

testing the plausibility of the area delineation results, we compared the shapes of the identified home 

regions with the home regions verbally described by the selected OSM data contributors after we had 

contacted them.  

The remainder of this paper is structured as follows: The next section reviews previous findings of 

OSM contributor patterns, which is followed by a section on data retrieval and editing analysis, 

and a section on model evaluation. The last section provides a summary of the findings. 

2. Contribution Patterns in OSM 

A number of recent OSM research studies focused on data quality aspects such as completeness, 

positional accuracy, and timeliness. The VGI data quality inherently depends on contribution patterns 

and behavior. Heipke [18] states that people who collectively carry out a mapping project share more 

than just mapping behavior and thus form a socially linked group. The paper provides a classification of 

crowdsourcing mappers based on their motivation and interaction with each other. The classification 

includes casual mappers (e.g., hikers), experts (leading map contributors in organizations like mountain 

rescue), media mappers (potentially large groups, activated sporadically by media campaigns), and 

passive mappers (involves passive data collection about the position of individuals, e.g., through cell 

phones). Neis and Zipf [17] classify OSM contributors based on the number of nodes they contributed 

into senior mappers, junior mappers, nonrecurring mappers, and members that made no node contributions. 

Rehrl et al. [21] and Gröchenig [22] classify OSM data edits into operations, actions, and activities. 

Operations describe changes of a single OSM feature through any of the three basic operations: create, 

modify, and delete. Examples are creating a new node with a new feature ID (create), updating 

coordinates of a node (modify), or deleting a way (delete). Create, modify, and delete can be applied to 

nodes, ways, and relations, and be extracted from OSM full history dumps. A VGI action denotes  

a sequence of consecutive operations by a single voluntary contributor within a limited time span, such 

as creating a way, which includes operations creating a new way feature, adding nodes, and adding  

a primary tag. A VGI activity is a sequence of actions by a single voluntary contributor or a group of 

voluntary contributors, which typically follows a certain motivation, such as the improvement of 
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positional accuracy. Steinmann et al. [23] analyzed the temporal development of OSM editing operations 

for Germany, Austria, and Switzerland between 2005 and 2011, and found that the “create” operation is 

most prominent in early years, whereas the proportion of “modify” and “delete” operations increases 

over the years once an area has been initially mapped. Steinmann et al. [24] generated editing profiles 

through k-means clustering that is applied to actions and feature types affected by these actions.  

The resulting profiles include 10 contributor groups for actions, such as basic creator, updater, or basic 

all-rounder, and 10 contributor groups for feature types, including highway mapper, building mapper, 

or amenity mapper. 

The completeness and positional accuracy of OSM road data in comparison to governmental or 

proprietary datasets for different countries has been investigated in numerous studies [25–27].  

The results highlight the heterogeneity of the OSM data quality within each country, with a clear pattern 

of higher OSM member contributions in urban areas compared to rural areas. OSM contributors tend to 

add more detailed pedestrian information than commercial and governmental providers in urban areas [28] 

which can also lead to a more realistic estimation of pedestrian accessibility to transit stations [29]. 

A recent study assessed the completeness of bicycle features, i.e., on-street bicycle lanes and off-road 

trails, between selected urban areas in the United States [30]. Results showed that off-road trails were 

more completely mapped than on-street bicycle lanes. A possible explanation for the latter is that trails 

have their own geometry apart from roads, whereas a bicycle lane is coded as a road attribute without its 

own geometry. Thus, newly mapped trail features are visually more distinct than mapped lanes, which may 

result in a higher motivation for an OSM mapper to add bicycle trails rather than on-street bicycle lanes. 

Other studies that focused on the applicability of VGI also revealed the potential of OSM during 

disaster relief efforts [31] or when deciding whether VGI or professional geographic information (PGI) 

serve as a better data source when planning outdoor activities [32]. The importance of VGI and PGI data 

sources for map design purposes and users’ perception of information was also investigated in more 

detail [33,34]. The results showed that GIS designers can rely on a level of detail in VGI in selected 

regions that is unlikely to arise through PGI. 

Based on the results of an extended quality analysis of the French OpenStreetMap dataset, Girres and 

Touya [35] suggest that due to the lack of quality measures in OSM a balance needs to be found that 

maintains the free approach to data contributions but also respects certain data specifications to improve 

data quality. Similarly, Mooney and Corcoran [36] found that the lack of a strict mechanism to evaluate 

whether contributed keys and values adhere to OSM controlled vocabulary causes spelling errors and in 

consequence decreases OSM data quality. The assumption that the number of contributors increases the 

quality is known as “Linus’ Law” within the open source community. Haklay et al. [25] found that the 

law generally applies to OSM positional accuracy. However, Linus’ Law could not be confirmed in the 

context of road attributes in another study that analyzed heavily edited objects in OSM. It found no 

strong relationship between the numbers of contributors editing a given object and the amount of 

attribute information assigned to it [13]. In an effort to understand whether collaboration between OSM 

contributors that exists within selected areas could potentially result in an increase of data quality, 

another study showed that many heavy contributors to OSM prefer to work on their own while also 

making edits to features that were added by less active contributors [20]. Kessler et al. [37,38] highlighted 

the importance of trust as a proxy measure for VGI quality estimation. The results of the analysis 
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provided support for the hypothesis that feature-level VGI data quality can be assessed using  

a trust model based on data provenance. 

Not all contributions to OSM can be accredited to member activity, but may be the result of data 

imports from third party data providers. One prominent example of such a bulk upload is the import of 

the US governmental TIGER/Line dataset into OSM. A longitudinal study that analyzed the impact of 

the TIGER/Line 2005 dataset import on OSM data quality found that many errors were associated with 

the outdated and erroneous 2005 TIGER/Line road dataset for motorized traffic that have so far not been 

corrected by the community [39]. As opposed to this, significant contributions could be observed in 

pedestrian related network data in OSM compared to the originally imported TIGER/Line data.  

In another study for Florida it was found that points of interest (POI) that were imported from the 

Geographic Names Information System (GNIS) database into OSM were subsequently updated by the 

OSM community [40].  

The contribution pattern of the OSM community varies largely between different cities of the  

world [19]. Some of these cities rely on the concept of so called mapping parties to improve the data 

quality in selected regions through gatherings of volunteers [41]. However, although European cities 

tend to be mapped through larger amounts of VGI data from a higher number of contributors, it was also 

shown that certain cities, such as Istanbul, heavily rely on data contributions by external members whose 

main activity area is not closely located to the city [19]. For that study, the home area of each contributor 

was determined through a Delaunay triangulation for all nodes created by an individual member, or the 

center points of changesets, respectively, from which subsequently all triangle edges and their points 

were removed if the edge lengths were longer than 1 km [17]. An extension to this approach is to retain 

only the triangle mesh that encompasses the largest number of changeset centroids as a single home region 

in case there are several disconnected graphs. This approach was implemented on http://hdyc.neis-one.org. 

In our study, we compare the resulting home regions from that website with home region polygons 

identified in the proposed two-tiered areal delineation approach. 

3. Areal Delineation of OSM Contributor Information 

3.1. Data Preparation and Contributor Selection 

As of August 2014, the OSM project has more than 1.7 million registered members with only  

a small percentage actively contributing to the dataset on a regular basis [17]. To test the proposed 

approach for delineating home and external region we chose 13 highly active OSM members, 

representing an adequate sample size to conduct a qualitative analysis and allowing for the evaluation 

of the feasibility of the proposed method. Each of the selected members collected information in three 

or more countries and has been actively contributing to the project for more than 50% of the days  

since his or her registration to the project. Further, to exclude users with edits originating from bots, 

automated scripts or imports, we compared the number of created and modified nodes with the  

number of changesets for each remaining member and excluded those contributors where the number of 

contributed or changed nodes per changeset exceeded a value of 4000 which seemed unreasonable for 

manual editing. A changeset stores all data modifications done by one contributor during one session 

and its extent encompasses all the changes made to the OSM database in that particular session. From this 
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list of 141 users, 13 were randomly chosen, and their contribution data utilized for further analysis. We 

limited the number of analyzed users to 13 since the focus of this study was to determine the feasibility 

of the proposed cluster methodology, which required testing various cluster approaches and manual 

evaluation steps. Thus, this study is meant to be of exploratory nature, and the method, whose initial 

results are analyzed for the 13 chosen users, could then be automated in the future for  

a more stringent quantitative analysis. Table 1 summarizes the data collection efforts for the 13 selected 

contributors which were extracted from the OSM full history dump file dated 2 August 2013. 

Table 1. Selected OpenStreetMaps (OSM) contributors with their activity statistics. 

OSM Member 
Created 
Nodes 

Modified Nodes
No. of  

Changesets
No. of Countries 

Active 
Days 
(abs.) 

Active 
Days 
(%) 

1 325,139 145,951 2369 12 1456 57% 
2 429,962 146,510 3811 15 1084 82% 
3 917,417 164,612 4486 13 833 77% 
4 402,783 119,269 6915 8 1280 87% 
5 333,075 101,109 7470 3 896 56% 
6 779,798 338,749 14,810 11 1586 86% 
7 573,133 79,008 4577 4 722 87% 
8 920,702 112,489 20,398 14 1827 84% 
9 774,395 299,257 16,340 7 1402 87% 

10 475,366 2,090,481 21,188 4 1979 88% 
11 949,472 330,927 5946 4 1298 81% 
12 471,268 60,759 1137 3 727 84% 
13 340,912 200,771 2260 11 625 85% 

After processing the full history dump file, the data was imported into a PostgreSQL database for 

further analysis as a table that included all features with their versions. Figure 1 shows the workflow of 

data processing, areal delineation and hierarchical cluster analysis of editing profiles following the 

selection of 13 active OSM contributors and the import of OSM raw data into the database. A Java tool 

was used to extract the operations on point or line features for each selected contributor. For this purpose, 

all adjacent versions of each feature created by any OSM member were compared and evaluated regarding 

any type of edits between them. The data edits carried out by the contributor of interest were then 

summarized as a number of operations for each feature. In OSM coding, features (nodes, ways, and 

relations) are described through tags. Each tag consists of a key and a value and is written as key = value. 

A key broadly describes an element (e.g., a highway) or attribute associated with an element (e.g., speed 

limit), and the value more specifically describes its accompanying key. OSM uses a total of 26 suggested 

primary feature keys, including building, highway, or landuse. 

The first set of operations that were considered for area delineation include common editing tasks for 

nodes and ways, such as adding a primary key-value pair to a point (e.g., amenity = school) or adding a 

node to a way feature. This set of operations is referred to as core edits from now on. Table 2 lists which 

operations for nodes and ways were considered for core edits. The first three operations (first line) refer 

to edits of keys or values on any tag (except for primary key or value or source tag), and the next three 
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operations refer to operations on primary key-value tags only. This is followed by two geometry 

operations and two way specific operations. 

Figure 1. Data analysis flowchart. 

 

The data were also specifically examined for operations on feature attributes that would presumably 

require local knowledge and could not be performed based on information from aerial images. Although 

some of this information, such as street name and address could be looked up from alternative sources, we 

believe that the majority of the OSM data contributors are committed to collecting data  

on their own and providing first-hand information to the OSM project. The feature attributes under 

consideration are listed in the lower portion of Table 2. Some of these attributes have a corresponding 

key in the OSM feature documentation, such as name or surface, whereas other attributes in the table 

consider several OSM tags simultaneously for comparison and detection of a change in attributes.  

For example, general restrictions for a road (last row in Table 2) include, among others, keys maxheight 

(maximum height), maxspeed (maximum speed), or maxwidth (maximum width). A change in any of 

these values would count as an update for this attribute. 
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Table 2. Operations considered for the identification of home and external region. 

 Operations Node Way 

Core edits Remove/add/update tag x x 
 Remove/add/update primary tag x x 
 Add geometry (new feature) x x 
 Change geometry position x  
 Remove node from way  x 
 Add node to way  x 

Attribute changes Name x x 
 Address x x 
 Traffic signs x  
 Crossing x  
 Cycleway  x 
 Surface  x 
 Foot  x 
 Oneway  x 
 Restrictions motorized  x 
 General restrictions  x 

To exclude minor edits on attribute value information from counting, such as changing the capitalization 

in a street name between two versions of a feature (which would not require local knowledge), only 

attribute changes were considered where a Levenshtein distance larger than three was detected between 

both compared string values of an attribute.  

3.2. Clustering Step 1: Spatial Delineation of Activity Areas through k-Means Clustering 

The fundamental idea of the proposed areal delineation approach of home and external region is that 

editing patterns of an individual contributor are different between these regions, where editing patterns 

can be analyzed separately for node or way features. Edits to a feature can occur along any of the 

operations listed in Table 2 and be stored for the feature as an n-dimensional vector containing  

0 and 1 values, where n is the number of operations under consideration. Similarly, one can also analyze 

which keys or key-value pairs of edited features are affected by edits. Thus, the n-dimensional vector 

can be extended by the number of key or key-value categories if they are considered. Such a vector 

represents then an editing profile for an individual feature.  

We expect that clustering of features based on their associated editing profiles will reveal a separation 

between features located in the home and external region. Although some edits will be primarily found 

in home regions only, such as adding a speed limit tag to a road, this number of edits will be small 

compared to all edits being made in any region. Therefore, as some tests revealed with the available 

dataset, clustering applied at the feature level, e.g., using the TwoStep clustering algorithm [42], did not 

result in distinct patterns between regions but a cluttered appearance of home and external regions. It is 

more informative to capture the characteristics of feature edits within pre-defined areas through 

summarizing the edits on features in these areas (first step), which gives an aggregated editing profile 

for each area. Next, one can cluster the pre-defined areas based on the similarity between aggregated 

editing profiles using non-spatial attributes only (second step). Thus, the first step consists of spatially 
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clustering edited nodes (or midpoints of way features, respectively) using Easting and Northing 

coordinates of features. Although more advanced clustering approaches exist, such as spectral clustering, 

we used k-means clustering, which makes the proposed method more widely applicable. Also, although 

k-means clustering limits the detection of clusters to convex shapes [43] this should not be a problem 

for this type of analysis when choosing k sufficiently large to cover areas of city size or smaller, since 

home regions, which are typically found in urban areas, can be expected to be of convex shape. That is, 

even if a data contributor performs daily activities at different locations in a city, e.g., home, work, 

shopping or leisure, and collects data associated with these locations, the mapped areas can be 

circumscribed through a convex polygon.  

For the data preparation, line geometries for ways were replaced with their midpoints. Further, each 

feature was mapped only once, even if it had several versions in the history dump file. We tried different 

k-values (i.e., spatial clusters) for nodes and ways of each of the 13 contributors, and started off with 

relatively small k-values (in the range of 5–10) that seemed to visually provide a meaningful spatial 

grouping of nodes. Later on, in combination with step 2 of the clustering approach, we increased k-values 

to be able to obtain a more spatially refined delineation of the home region. Figure 2 shows the regions 

generated through k-means clustering on nodes (a) and way midpoints (b) for one of the selected 

13 contributors.  

Figure 2. Generated k-means clusters for (a) nodes (5 groups) and (b) ways (seven  

groups—only five shown in the visible extent) for a selected OSM contributor. 

(a) (b) 
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Summarizing edit counts for each k-means cluster of a user gave k aggregated editing profiles vectors, 

i.e., one profile for each pre-defined area. Each aggregated profile vector is thus a row with n columns, 

where n is the number of operations, key, and key-value categories under consideration.  

The numerical values in a row were computed as the total number of edits for a cluster falling into the 

editing category under consideration, followed by division by the number of rows of edits in that  

k-means cluster. This was repeated for all k groups to give a matrix of aggregated profile vectors. Table 

3 shows part of such a matrix of node edits for one OSM contributor. In this example, the  

spatial delineation led to five k-means groups. The value of 0.012, e.g., found in the first row under  

the “AddTag” column indicates that in k-means cluster #1 1.2 percent of edits included adding  

a non-primary key tag. 

Table 3. Example editing profile for a selected contributor. 

K_grp 
K_grp 

Size 
Rem 
Tag 

Add 
Tag 

Upd 
Tag 

… 
Key 

Sum1
Key 

Sum2
… 

KeyVal 
Sum1 

KeyVal 
Sum2 

… 

1 245 0.000 0.012 0.000 … 0.000 0.992 … 0.000 0.976 … 
2 97 0.000 0.010 0.010 … 0.000 0.763 … 0.000 0.763 … 
3 91 0.000 0.000 0.000 … 0.000 0.989 … 0.000 0.989 … 
4 231 0.000 0.013 0.000 … 0.000 0.961 … 0.000 0.887 … 
5 1662 0.016 0.223 0.076 … 0.002 0.764 … 0.001 0.487 … 

3.3. Clustering Step 2: Identification of Home and External Region through Hierarchical Clustering of 

Region-Based Editing Profiles 

Next, a hierarchical cluster analysis was applied to the k clusters (called cases) with their aggregated 

editing profiles, where the last two clusters in the agglomeration schedule would be expected to show 

the home region (ideally consisting of only one case) and the external region (the cluster with the 

remaining cases). We tested different subsets of operations (see Table 2) and key-value information to 

be used as information in the aggregated editing profiles in the hierarchical clustering process, which 

are (1) core edits; (2) keys; (3) key-value pairs; (4) attribute changes; and (5) some combinations  

of this information. While attribute changes resulted in a cluttered cluster pattern of pre-defined regions 

with regards to separating home and external region, methods (1) to (3) and their combination provided 

generally better results, most of which were in-line with those of prior approaches to home area 

delineation [17]. Several hierarchical clustering methods, such as Ward’s method or Average Linkage 

between groups were applied, but no effect on the sequence of clustering in the agglomeration schedule 

was observed.  

Figure 3 shows point clusters and dendrograms as a result of the hierarchical clustering process of 

node edits for one selected contributor, using core edits (a), keys (b) and key-value pairs (c). We considered 

those cases of the dendrogram as home region that were part of the two final clusters in the agglomeration 

schedule and within the cluster containing the smaller number of cases. In this example, the core edit 

information identified two smaller clusters as home regions, which include one somewhat dispersed 

cluster in eastern Austria (Figure 3a) (cluster #3, 8 points) and one in the US (cluster #6, 1 point).  

This seemed unlikely to be a home region both based on the spatial distance between the two clusters 

but also because of the small number of nodes in both clusters. This example demonstrates a limitation 
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of the proposed clustering approach, which is that k-means groups consisting of very small point 

numbers may have a distinct profile due to a few edits which are then in the hierarchical cluster process 

identified as home region. Thus, one should keep a minimum number of points in each  

k-means region before the hierarchical cluster analysis.  

Figure 3. Results of hierarchical cluster analysis using core edits (a) (only cluster #3 shown 

in the visible extent), key (b) and key-value (c) information of edited nodes. 

 
(a) 

 
(b) 

 
(c) 
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Another approach to avoid this problem is to remove spatially isolated points before the cluster 

analysis, since a home region would consist of more than just a few points.  

The key information of edited features helped to delineate two of the pre-defined clusters in the greater 

Kufstein (Austria) area (Figure 3b) as home region (cluster #2 and #7). Next, using the key-value 

combination as characteristics in the hierarchical clustering process, the potential home area is narrowed 

down to just one region, i.e., the close vicinity of Kufstein (cluster #2 in Figure 3c).  

Table 4 describes how many cases (i.e., pre-defined k-means areas) are part of the smaller of the two 

final clusters in the dendrograms (denoting the home region) as a result of hierarchical clustering applied 

to edits of nodes and way midpoints. A dash (-) indicates that no plausible home region could be 

identified based on the hierarchical cluster process, which were either disconnected areas or remote areas 

with only few points. An example that showed both these effects was provided in Figure 3a.  

If not caused by just a few isolated points, disconnected regions appearing as cases in the final  

cluster indicate in general that there is no single geographic home region but that the user is travelling 

and performing similar data edits and contributions in different parts of the mapped regions.  

Such a situation may, for example, occur if the user relocates after having joined the OSM community, 

and continues to contribute and edit data. In Table 4, however, disconnected regions found in the core 

edits and keys columns when marked as a dash, are a result of insufficient information to delineate  

a primary activity cluster, both for nodes and ways, as opposed to clustering results obtained through 

consideration of the keys or key-value columns. 

Table 4. Number of identified k-means cluster groups in home regions. 

OSM Member Core Edits Keys Key-Values 

 Nodes Ways Nodes Ways Nodes Ways 

1 - - 2 1 1 1 
2 1 - 1 1 1 1 
3 1 - 1 2 1 2 
4 - - - - 1 1 
5 - - - 1 1 1 
6 1 - 1 1 1 1 
7 - - 1 1 1 1 
8 - - - - 1 1 
9 - 1 1 - 1 1 
10 1 - - - 1 1 
11 - - 1 - - - 
12 - - - - 1 1 
13 - - - 1 1 1 

TOTAL SUCCESS 4 1 7 7 12 11 

The results from the 13 tested contributors showed also that core edits of nodes carry more information 

to distinguish between home and external regions than ways, while this difference could not be observed 

when using keys or key-values. 
  



ISPRS Int. J. Geo-Inf. 2014, 3 1223 

 

 

4. Evaluation 

4.1. Comparison of Cluster Methods 

Since providing one’s home region is not required when signing up for an OSM user account, there 

is no reference dataset available that provides a contributor’s self-defined home region. Therefore, the 

presented areal delineation approach was evaluated by comparing the extent of the identified home 

regions with those extracted from a previously introduced method based on a Delaunay triangulation 

which utilizes the centroids of all changesets created by the contributor under consideration [17]. 

Figure 4. Results of the two-tiered k-means/hierarchical clustering method and the Delaunay 

triangulation method for two selected OSM contributors showing a large overlap (a) and 

clear differences (b) between results from both methods. 

(a) 

(b) 
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Additionally, all 13 contributors were contacted individually via the OSM message system which 

allows OSM members to exchange messages as long as both participants are registered with the project. 

The contributors were asked to verify or disprove the home region visualized by the “How did you 

contribute to OpenStreetMap?” website (http://hdyc.neis-one.org/), which utilizes the aforementioned 

Delaunay triangulation method to determine the home region of a contributor. Seven of the 13 contributors 

responded to the initially sent message and provided a description of their actual home region. 

Figure 4 overlays the delineation results from both methods for two of the selected 13 OSM members. 

The point clouds indicate features (nodes or way mid-points) in the home area region identified through 

the hierarchical clustering approach using key-value information. The polygons with black outline indicate 

the home activity area resulting from the Delaunay triangulation. Figure 4a shows a case where the two 

methods result in the same general home region (Braunschweig, Germany). The 2-tiered clustering 

approach covers, however, a larger area due to the larger pre-defined k-means regions. This example 

demonstrates also a good match between home regions based on node (green) and way (yellow) edits 

within the 2-tiered clustering approach. The dendrogram to the right is shown for node clusters, and 

points of cluster #1 are mapped to the left. Figure 4b illustrates how the use of key-value information 

can help to determine a more refined home area compared to the Delaunay triangulation in some cases. 

While the triangulation polygon covers an area that is almost identical to that of Luxemburg, the point 

cloud for nodes indicates a smaller home area of the contributor in the southwestern region of Luxemburg, 

slightly reaching into Belgium and France. The latter region matched more closely to what the contributor 

of this region defined as one of his main mapping areas in his response. 

4.2. Classification Sensitivity 

A perfect spatial overlap between the two-tiered cluster method and the triangulation method cannot 

be achieved due to the arbitrary choice of k-means cluster regions in the first step, which determines the 

spatial resolution of the hierarchical clustering step. For example, in Figure 5a the identified  

home cluster for nodes (green) based on a low k-value of nine covers Vienna (Austria) and its surroundings 

(cluster #4), whereas Figure 5b with a larger k-value of 30 narrows down the home region to a few city 

districts (cluster #27), matching the information provided by the contributor during the email exchange 

more closely. 

Whereas both dendrograms in this particular case show a distinct pattern with a single cluster as home 

region, the choice of the k-means cluster number must balance two conflicting objectives, which are to 

aim for a high spatial resolution of the home area (i.e., a high k-value), while at the same time obtaining a 

representative aggregated editing profile for each k-means cluster for successful hierarchical clustering 

afterwards (i.e., avoid clusters containing only very few points by choosing a reasonably low k-value). 

Some OSM contributors do not limit their detailed data collection efforts to a single area, in which 

case the areal delineation of a single home region proves to be problematic. Figure 6b,c illustrates  

for OSM member 11 (compare Table 4) how the home region changes when increasing the k-value. 

Using k = 6, the dendrogram (Figure 6b) suggests that the larger St. Petersburg (Russia) area (cluster #4) 

represents the home region of the contributor (Figure 6a, green dots). After increasing the k-value to 50 to 

identify a smaller, more distinct home region, the identified area changes to the eastern part of Cyprus 

(Figure 6d), corresponding to case #45 in the dendrogram (Figure 6c). The truncated dendrogram shows 
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13 of the 50 clusters at the end of the agglomeration schedule of which eight are located in  

the St. Petersburg area and could potentially be merged into one larger home region. However, the  

last 13 cases also include clusters for Tenerife and Moscow, besides Cyprus, revealing no geographically 

distinct home area. 

Figure 5. Improved delineation of home region through an increase of the k-value from 9 (a) 

to 30 (b). 

(a) 

(b) 
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Figure 6. Delineation of multiple home regions through increase of k-value. 

 
(a) 

(b) 

 
(c) 
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The obtained results were confirmed by the contributor, who stated that the delineation of a single 

home area would be problematic in his particular case. Extensive traveling in recent years and similar 

detailed mapping efforts in all of the visited regions make the delineation of a single home region 

difficult. We expect a similar type of cluster results also from contributors who temporarily leave their 

home country to collect OSM data abroad, e.g., for NGO work or for the Humanitarian OpenStreetMap 

Team (HOT) [44], where they would then become “de-facto” locals and reveal similar mapping behavior 

as in their prior home region. The hierarchical clustering analysis would then show different home regions 

based on the selected k-value, indicating that there is no single home region for that user. 

Thus, compared to the purely spatially based Delaunay triangulation method, the integration of editing 

information in combination with k-means clustering provides some additional means to understand 

whether an OSM contributor has a single, cohesive home region or an activity region consisting of 

disconnected parts. More specifically, a variation of k-values and a subsequent review of the resulting 

dendrogram structure can help to differentiate between both situations. That is, if there is an overlap 

between areas identified as home regions based on a small but also on a large k value, this is  

an indication of a single home region. An example is the situation shown in Figure 5, where the home 

region gets refined through an increased k value of 30 and the refined region is still within the more 

coarse area originally identified as home region with an initial lower k value of 9. We expect this kind 

of successive delineation pattern also for users who have a cohesive home region but who contribute in 

those mapping parties where contributors from abroad focus on agreed upon areas and digitize features 

from satellite images [45]. The edits conducted in these mapping parties will be of a similar composition 

as those for other external areas mapped by a user and thus not make users “de-facto” locals. 

As opposed to this, disjoint geographic areas of mapping activities with changed k-values, as shown 

in connection with Figure 6, indicate that there is no single home region. For the same situation, the 

Delaunay triangulation reports St. Petersburg as a home region, which is only partially true since also 

other parts should be considered as home regions. This illustrates one of the advantages of the proposed 

two-tiered clustering approach. 

4.3. Diversity and Activity 

After the areal delineation of the home and external regions, it was analyzed how many different 

feature types were edited and on how many days edits were performed in the home and external region 

for each contributor. A larger diversity of features would imply that the contributor collects more details 

for a particular area of interest, representing the local knowledge that many VGI enthusiasts consider as 

one of the main advantages of the OSM project. It needs to be pointed out that feature type diversity is 

not equally distributed between different geographic regions. More specifically, feature diversity, e.g., 

measured by variety of amenities, is larger in urban environments than in less populated rural areas. 

Thus, an OSM contributor exhibiting a larger diversity of mapped features in a home region that is 

located in an urban environment compared to external regions located exclusively in rural areas would not 

necessary reflect a higher level detail of data collection effort in the home region, but be a product of the 

natural distribution of feature diversity. However, each of the selected 13 mappers, since being highly 

active, contributed data in several distinct densely populated areas. Thus, a larger variety of mapped features 
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in the home region (which comprises typically only one city or city district), indicates in fact a more detailed 

mapping effort than in external regions, which in our analyzed cases, also include (other) urban areas.  

For the 12 successful attempts of areal delineation based on key-value annotations for nodes (compare 

Table 4), the analysis revealed that among almost all contributors home regions had a larger diversity of 

features than external regions (Figure 7), although the spatial extent of home regions is smaller than that 

of external regions. It should be noted that with an increased k-value within the k-means clustering, and 

thus smaller home region compared to external regions, it can be expected that the feature diversity 

decreases for the home region. Thus, the results in Figure 7 are closely tied to k-values chosen for the 

different mappers in this analysis. The smaller feature diversity in external regions can probably be 

attributed to the mapping method, i.e., digitizing of roads, buildings, or landuse information from satellite 

images, which is mostly utilized for remote areas or areas unknown to the contributor. A Wilcoxon  

matched-pairs signed rank test confirmed that the number of feature types mapped in the home  

regions is significantly higher than that mapped in external regions (z = −2.045, p = 0.019, 1-tailed). 

Despite the statistically larger feature diversity in the home regions than in the externals region among 

analyzed datasets, results for the right-most five contributors give a less clear picture. The similar 

diversity rates between home and external regions can be explained by the fact that for these contributors 

the identified home regions were located within urban environments, where external regions in the 

vicinity provide similar features to be mapped. This suggests that the provided cluster method is 

unreliable in identifying crisp boundaries of home regions that are located inside an urban environment 

where the transition between a home and external regions may be gradual.  

Figure 7. Diversity of mapping efforts in home and external regions. 

 

Similar to feature diversity, we assume that the area with the largest number of days dedicated to 

mapping activities identifies a contributor’s main area of interest on a temporal level. For the temporal 

analysis of mapping efforts a similar pattern could be observed (Figure 8). With the exception of two 

contributors, all OSM members dedicated more days to mapping features in their home region than in 

the external region. A Wilcoxon matched-pairs signed rank test confirmed that the number of days with 

mapping activities were significantly higher in the home regions than in external regions (z = −1.961,  

p = 0.025, 1-tailed). The two contributors that did not follow this trend showed a significantly higher 
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value for mapping days in the external region due to the close proximity of home and external regions, 

for instance downtown Vienna (home region) and Vienna suburbs (external region).  

Figure 8. Temporal spectrum of mapping efforts in home and external regions. 

 

The analysis provided in connection with Figures 7 and 8 illustrates why determining the home region 

of OSM contributors is important: It is an indication of improved data quality in a region through increased 

activity (number of mapping days) and larger diversity of feature edits conducted by an individual data 

contributor. Data quality depends, of course, also on the number of different data contributors that share 

the same home region. A higher number of contributors home to the same region can be expected to lead 

to even better data quality than this would be the case with only one contributor. This has not been tested 

in the current study but can be considered as part of future work.  

5. Summary and Conclusions  

OSM contributor patterns can vary significantly between mapped regions of a contributor.  

The two-tiered clustering method proposed in this paper utilizes editing information of OSM objects  

to delineate the home and external region of a contributor. It provides an alternative to existing delineation 

methods that identify a home region solely based on positional information of feature edits, and provides 

some additional insight into the distinction between single clusters versus dispersed home regions.  

The analysis of node feature diversity in home and external regions revealed that most contributors 

edited a larger variety of features in home regions than in external regions. This pattern supports the 

local knowledge connotation that many claim as one of the main advantages of VGI projects, such as 

OSM. Local knowledge can be obtained from being on-site, allowing for more detailed data collection 

efforts than mapping from satellite imagery. Similarly the temporal analysis, focusing on the number of 

days a contributor dedicated to mapping efforts in each region, showed a larger value for home regions than 

external regions for almost all contributors. 

In this study, the proposed two-tiered cluster analysis was conducted manually on a small set of active 

users to assess its potential, strengths, and weaknesses. The sample size of 13 analyzed users is clearly 

too small for a quantitative evaluation of the proposed two-tiered cluster analysis, or a qualitative 

comparison between both discussed cluster methods. Thus, a future task is to automate the two-tiered 
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clustering process to make it applicable to a larger user data set, similar to the Delaunay triangulation 

approach used in [17]. This would also require the automated distinction between a single cluster vs. 

dispersed home region, which in the presented study was done by manual exploration of dendrograms 

and maps by variation of k in the k-means cluster step. For future work, one could consider spatio-temporal 

cluster approaches instead of k-means clustering to identify mapping regions that different spatially and 

temporally, and could then be used for hierarchical clustering. Additionally, the potential relocation of a 

mapper and the corresponding shift of the home region could be investigated in more detail in the near future.  

For the 13 analyzed users, the comparison between the results of the proposed two-tiered clustering 

method and a previously introduced Delaunay triangulation approach showed generally a good match 

between identified home areas. While the triangulation method solely uses geometries as a source, 

the clustering method allows for more in-depth analysis due to the additional information considered, 

such as the edit type or key-value annotations. In cases where the k-means home clusters are too coarse, 

it was demonstrated that an increased k-value can help refine the identification of the home region. 

However, the detection of home regions still proved to be problematic for contributors with disjoint 

mapping area in which detailed mapping efforts took place, such as during holidays or other activities. 

The proposed two-tiered method works well for active mappers where numerous edits in the spatially 

delineated areas generate distinct aggregated editing profiles. As opposed to this, too few edits, or too 

high k-values, respectively, can lead to distinct editing profiles by chance, thus not reflecting a 

contributor’s true home region. However, a remaining research goal for the future is to assess whether the 

proposed method works also for less active mappers. Based on the tested examples, a choice of a k-value 

that results in k-means cluster sizes covering approximately a city or some city districts seems to provide 

meaningful results, thus avoiding the problem of very small point numbers in the profile clustering. One 

can also compare cluster results from both methods, e.g., the Delaunay triangulation and the proposed two-

tiered cluster method, to gain confidence in the detection of the home region. Both methods help to 

delineate home from external contributor areas, which creates the foundation for future research that 

focuses on the interrelation between contributor behavior and quality assessment.  
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