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Abstract: Chlorophyll-a (chl-a) levels in lake water could indicate the presence of 

cyanobacteria, which can be a concern for public health due to their potential to produce 

toxins. Monitoring of chl-a has been an important practice in aquatic systems, especially in 

those used for human services, as they imply an increased risk of exposure. Remote sensing 

technology is being increasingly used to monitor water quality, although its application in 

cases of small urban lakes is limited by the spatial resolution of the sensors. Lake 

Thonotosassa, FL, USA, a 3.45-km2 suburban lake with several uses for the local population, 

is being monitored monthly by traditional methods. We developed an empirical bio-optical 

algorithm for the Moderate Resolution Imaging Spectroradiometer (MODIS) daily surface 

reflectance product to monitor daily chl-a. We applied the same algorithm to four different 

periods of the year using 11 years of water quality data. Normalized root mean squared errors 

were lower during the first (0.27) and second (0.34) trimester and increased during the third 

(0.54) and fourth (1.85) trimesters of the year. Overall results showed that Earth-observing 

technologies and, particularly, MODIS products can also be applied to improve 

environmental health management through water quality monitoring of small lakes. 
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1. Introduction 

Besides traditional multiple uses of inland waters by mankind, urban lakes also provide services, such 

as storm-water buffer, waste removal and recreation [1]. Because of such multiple uses and services, the 

deterioration of water quality in urban lakes has been a serious ecological and social problem that can 

severely affect human health [2]. Indeed, the public health implications of surface water quality are 

among the main concerns related to aquatic systems. In inland waters in general, one of the greatest 

problems is the eutrophication process caused by the increase of nutrient inputs. This process has  

been affecting the ecological health of many shallow lakes worldwide [3], and urban lakes are not  

an exception in this category. This condition is enhanced by the increasing shortage of available water 

resources, growing urbanization and the lack of a water governance system, which affects mainly 

recently urbanized countries. These and other human-related factors, along with climate variations and 

rising temperatures, have been suggested as possible factors triggering an increasing trend in 

cyanobacteria abundance [4]. Among the problems caused by eutrophication, special interest is placed 

on the toxins and taste and odor production by some species of algae and cyanobacteria. Such toxins can 

enter the body via oral, dermal and inhalation routes through drinking water, freshwater food 

consumption and recreational water activities. Moreover, they can poison or even kill humans and 

animals that consume contaminated water and food [2,3]. Although low concentrations of toxins from 

cyanobacteria and algae may be adequately removed from the source water by conventional water 

treatment, the same may not be the case with high initial concentrations [5]. In Florida, an increased risk 

for liver cancer has been associated with residence within the area served by a surface water treatment 

plant as compared with residents living in contiguous areas [6]. 

The first scientific report of animal contamination from a harmful algal bloom (HAB) related to 

cyanobacteria occurred in 1878 by George Francis [7]. He reported a HAB in Lake Alexandrina 

(Australia) and observed that after animals drank its water, they were poisoned and rapidly died. The 

author even observed the time that cyanotoxins took to cause death in different animals: in sheep, from 

six to eight hours; in horses, from eight to twenty-four hours; in dogs, from four to  

five hours, and in pigs, from three to four hours. One of the first reported cases of human casualty 

associated with cyanobacteria and their toxins came about in 1996, in the city of Caruaru, PE, Brazil, 

where exposure through kidney dialysis led to the death of approximately fifty patients [8].  

This disaster raised the awareness of water quality managers, environmental agencies, policy makers 

and the general public to the problem of HABs. Likewise, this incident warned about the need for  

a reliable and constant monitoring of HABs by environmental and public health programs. The World 

Health Organization’s (WHO) Working Group on the Protection and Control of Drinking Water Quality 

identified cyanotoxins as an issue requiring urgent attention. In the United States, 22 hospitalizations out 

of two hundred and ninety-six cases were reported by the Center for Disease Control and Prevention (CDC) 

during the years 2009–2010 [9]. 
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Phytoplankton primary production has been regarded as a reliable and accurate indicator to monitor 

eutrophication and HABs [3]. In turn, several research studies have confirmed that chlorophyll-a  

(chl-a) is a universally acknowledged indicator of phytoplankton abundance and trophic state due to its 

visible manifestation and for being part of the eutrophication process [10,11]. Thus, chl-a concentration 

has been long applied as an indicator for water quality monitoring of inland waters. Although chl-a is 

relatively easily measured in comparison to algal biomass, traditional methods consist of field water 

sampling and laboratory analysis, which are usually costly and time consuming [12]. Consequently, 

water quality monitoring is not conducted with enough regularity, which, in turn, may lead to limitations 

in the study of the environmental dynamics. 

Because of these facts, there is rapidly growing interest in the application of satellite remote sensing 

technology in environmental management. The reasons for such interest are based on several advantages, 

such as: (1) the synoptic view of the satellite images, which allows the user to retrieve information from 

large geographic areas; (2) the acquisition of data from places that are otherwise difficult to access;  

(3) the temporal resolution, which can provide a historical dataset allowing the users to retrieve 

information from the past [13]. Consequently, remote sensing technology has been increasingly used to 

facilitate the decision-making process of environmental managers and policy makers. 

Numerous studies have focused on deriving chl-a concentration information from remote sensing 

satellites in inland water bodies [11,12,14,15]. However, there are several limitations related mainly to 

the sensor resolutions required to monitor aquatic systems with such high spatial irregularities and often 

small areas. Ogashawara et al. [14] addressed the problem of spatial, temporal and spectral resolutions 

of satellite images in the monitoring of inland waters. Regarding spatial resolutions, the authors studied 

a small water body in which the use of a sensor with low spatial resolution caused high interference in 

the signal from adjacent (not targeted) features. The authors also discussed the importance of spectral 

resolution, since for turbid inland waters, the bio-optical models are usually based on the optical properties 

located at the red and near-infrared (NIR) regions of the spectrum [16–18]. These algorithms used the ratio 

of the chl-a reflectance peak around 700 nm (NIR) to the reflectance near 675 nm, which is the red  

chl-a absorption band [19,20]. The temporal resolution is also a very important aspect of remote sensing 

estimation of chl-a in aquatic systems, because of the quick responses of chl-a to changes in the 

environment; thus, a good temporal resolution is crucial for consistent water quality monitoring.  

The objective of this study was to assess the applicability of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) daily product of surface reflectance (MOD09GA) to detect chl-a 

concentration in a small inland lake, using as a case Lake Thonotosassa, a suburban lake in Tampa, FL, 

USA, which has experienced episodic blooms of blue-green algae (cyanobacteria) [21]. We justify the use 

of the MOD09GA by its spatial resolution (500 m), which is higher than the spatial resolution of the 

spectral bands usually used in ocean color algorithms. Moreover, since this is a daily product, it could 

improve the temporal monitoring coverage for algal blooms in this aquatic system, which currently 

occurs on a monthly basis for three sampling stations by traditional methods. Besides ecological 

concerns for this lake’s water quality, there are public health concerns related to its designated use for 

human recreation and the fact that the outflow of this lake discharges into the Hillsborough River and, 

ultimately, into the water reservoir that provides the drinking water supply to the City of Tampa.  

The specific goals of this study were: (1) to evaluate the use of the most common ocean color 

algorithms applied on MODIS Level 0 products for the estimation of chl-a estimations; (2) to evaluate 
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the use of 1-km spatial resolution MODIS spectral bands in the retrieval of chl-a; and (3) to propose  

an empirical algorithm for chl-a concentration estimation in Lake Thonotosassa with seasonal calibrations 

using the MOD09GA product. These goals were motivated by our intention to propose a more consistent 

monitoring of chl-a (both temporally and spatially) for public health management in this lake, further 

developing a methodology that could be applied to generate the appropriate algorithms to be used in 

similar lakes in other areas. 

2. Materials and Methods 

2.1. Study Site 

The study site for this research is Lake Thonotosassa (28°03′N, 82°16′W), which is located in  

a suburban area in Hillsborough County, Florida, USA (Figure 1). The lake is supplied mainly by the 

runoff from surrounding citrus groves and from Baker Creek, an improved drainage canal originating in 

Dover, Florida [22]. The lake has a surface area of 3.45 km2, with a mean depth of 3.5 m and  

a maximum depth of 5.1 m. The water temperature in Lake Thonotosassa varies from 14 to 34 °C during  

the year, with a mean of approximately 25 °C. Short-term thermal stratification (less than 5 °C from the 

surface to bottom) and hypolimnetic oxygen deficits occur in the deeper parts of the lake during the 

warmer months (May–October) [23]. Cowell et al. [22] showed that the lake was in advanced stages of 

eutrophy by analyzing its limnological characteristics. The authors observed that the eutrophication 

process occurred because of 15 years of artificial enrichment by organic wastes from domestic sewage 

and citrus processing plants. Their findings showed that inorganic nutrient levels were high, as well as 

oxygen deficits in the hypolimnion and at the mud-water interface. The phytoplankton community was 

large and dominated by cyanobacteria that generate a primary productivity rate comparable to those of 

grossly polluted lakes. 

The high eutrophication levels in Lake Thonotosassa got the attention of policy makers, and 

consequently, the Environmental Protection Commission of Hillsborough County (EPCHC) has 

monitored its water quality since 1975. According to the Southwest Florida Water Management District 

(SFWMD) [21], the annual averages for total phosphorous concentrations for Lake Thonotosassa for the 

period of 1992–2000 varied from 0.3 to 0.77 mg/L. Average annual total nitrogen for the same period 

ranged from 1.8 to 4.1 mg/L. These high concentrations of nutrients led to high algal biomass (chl-a 

concentrations), which has ranged from 62 μg/L to 179 μg/L during the same period. Under current state 

standards, average chl-a levels greater than 20 μg/L are considered indicative of poor water quality for 

aquatic life in Florida lakes [24].  

2.2. Dataset 

2.2.1. Limnological Dataset 

The water quality data from Lake Thonotosassa used in this study were collected and provided by the 

EPCHC. Data were collected monthly as part of routine water quality monitoring programs from three 

sampling stations, one located at the inlet, another at the middle and a third one at the outlet regions of 

the lake (see Figure 1 for the locations). Such a monitoring program also covers Tampa Bay and water 
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bodies in its watershed. In this study, we used measurements of total phosphorus (TP), total nitrogen 

(TN) and chl-a concentration, which were collected during the time period between 2001 and 2011. 

Monthly water samples were analyzed by the EPCHC laboratory, which is a National Environmental 

Laboratory Accreditation Program (NELAP) certified laboratory. Water quality analyses were conducted 

using a combination of Environmental Protection Agency (EPA) and American Public Health 

Association (APHA) standard methods, following quality assurance and quality control (QA/QC) 

guidelines from both methodologies and all NELAP QA/QC rules. The TP concentration was determined 

following the EPA 365.4 methodology; the TN concentration were calculated by the sum of the total 

Kjeldahl nitrogen (TKN) and nitrate/nitrite nitrogen, where TKN was determined by EPA 351.2 and the 

nitrate/nitrite nitrogen concentration by Standard Methods 4500 NO3 F (SM 4500 NO3 F) [25]. The  

Chl-a concentration was determined by Standard Methods10200 H (SM 10200 H) [25], using acetone 

and a tissue grinder. More details on the methods of the laboratory analysis and sampling of in situ data 

have been described previously [18,26,27]. 

Figure 1. Location of Lake Thonotosassa in the State of Florida, USA, and the location of 

sampling points from the Environmental Protection Commission of Hillsborough County. 

 

2.2.2. Remote Sensing Products  

The remote sensing dataset consisted of two MODIS products. The following MODIS data were used: 

Level 0 MODIS data (L0_LAC) at a 1-km spatial resolution and Surface Reflectance Daily L2G at  

a 500-m spatial resolution (MOD09GA). MODIS L0 data were provided by NASA’s Ocean Color 

Products through their web portal [28]. MOD09GA data were provided by NASA’s Earth Observing 
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System Data and Information System (NASA/EOSDIS) through the Reverb web [29] portal. To process 

the L0 MODIS products to Level 3 products, we used the SeaWiFS Data Analysis System  

(SeaDAS) [30]. The MODIS Reprojection Tool (MRT) was used to re-project the MOD09GA dataset 

to the UTM coordinate system with the WGS-84 datum as the reference. The reflectance values were 

calculated using the scale factor of MOD09GA for the MOD09GA Collection 5 products acquired on 

the same day of the limnological collection from 2000 to 2011. 

2.3. Ocean Color Algorithms Evaluation 

Ocean color algorithms for MODIS usually use the spectral bands with 1-km spatial resolution. As is 

widely known, such a resolution is not useful for retrieving information from small inland aquatic systems, 

due to the mixing signal from other targets being different from the intended water body. Nevertheless, 

we used them for the purpose of comparison with our proposed algorithm. We evaluated three ocean 

color algorithms implemented in SeaDAS to show how MODIS 1-km bands could not retrieve 

geochemical data from Lake Thonotosassa. 

2.3.1. Algorithms Used for Evaluation 

We evaluated three existent chl-a algorithms, which are freely available from SeaDAS: the ocean color 

3-band ratio (OC3M) [31], the Garver-Siegel-Maritorena model (GSM) [32] and the generalized inherent 

optical property (GIOP) [33]. OC3M is a fourth-order band ratio algorithm of remote sensing reflectance 

(Rrs), which can use two different band ratios: Rrs443/Rrs547 or Rrs448/Rrs547 [31]. The GSM is  

an optimized semi-analytical algorithm that simultaneously retrieves inherent optical properties (IOPs) 

from spectral measurements of normalized water leaving spectral radiance (nLw(λ)) [32]. The GIOP 

model uses the spectral behaviors of several optically-active constituents (OACs) in the water column  

to apply in an inversion process. This process is based on finding the optimum set of eigenvalues between 

the modelled Rrs and MODIS Rrs using the Levenberg-Marquardt optimization scheme [33]. These three 

algorithms are presented and described in Table 1. 

Table 1. Functional form of MODIS chl-a algorithms. OC3M, ocean color 3-band ratio; 

GSM, Garver-Siegel-Maritorena; GIOP, generalized inherent optical property. 

Algorithm Reference Functional Form 

OC3M [31] ܿℎ݈ − ܽ = 10(௔భା௔మோା௔యோమା௔రோయା௔ఱோర) 
GSM [32] ܽ௣௛௬,௜ = ܿℎ݈ − ܽ ∙ ܽ௣௛௬∗  

GIOP [33] ܿℎ݈ − ܽ = ܽ௣௛௬,௜௜ܽ௣௛௬∗  

From the table, R is the chosen band ratio; a1, a2, a3, a4 and a5 are coefficients from the polynomial 

equation with the following values: 0.2424, −2.7423, 1.8017, 0.0015 and −1.2280, respectively; aphy,i is 

the absorption coefficient of phytoplankton, which is substituted in the GSM model for the functional 

form; aphy,ii is the absorption coefficient of phytoplankton derived from the GIOP model (Equation (2)); 

and aphy
* is the average specific absorption coefficient of phytoplankton calculated from Morel [34] and 

implemented in SeaDAS. 
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The GSM uses Equation (1) to retrieve the chl-a concentration, absorption coefficient for dissolved and 

detrital materials (aCDM) and the particulate backscatter coefficient (bbp) at 443 nm. The parameters for 

the algorithm (Equation (1)) were obtained through simulated annealing, which is a global optimization 

technique [32]. ܮఠே(ߣ)= ௪ଶ݊(ߣ)଴ܨݐ ෍݃௜ ቊ ܾ௕௪(ߣ) + ܾ௕௣(ߣ଴)(ߣ ⁄଴ߣ )ିఎܾ௕௪(ߣ) + ܾ௕௣(ߣ଴)(ߣ ⁄଴ߣ )ିఎ + ܽ௪(ߣ) + ܿℎ݈ܽ௣௛ ∗ (ߣ) + ܽ஼஽ெ(ߣ଴)݁ߣ)ܵ−)݌ݔ − ଴))ቋ௜ଶߣ
௜ୀଵ (1)

where t is the sea-air transmission factor; F0(λ) is the extraterrestrial solar irradiance; nw is the index of 

the refraction of the water; gi is a fitting coefficient from Monte Carlo simulations of an idealized ocean 

by Gordon [35]. The GIOP algorithm uses the GSM algorithm [32] estimations of several inherent 

optical properties, such as: the aphy
*, the specific absorption coefficient of non-algal particles (aNAP

*), the 

specific absorption coefficient of colored detrital matter (aCDM
*), the colored detrital matter absorption 

coefficient slope (SCDM), the particle-specific backscattering coefficient (bbp) and the backscattering 

coefficient slope (Sbp). 

2.3.2. Level 0 MODIS data (L0_LAC) 

The three previously described SeaDAS chl-a algorithms were evaluated using MODIS-Aqua L0 

products. The products were atmospherically corrected by the Management Unit of the North Sea 

Mathematical Models (MUMM) algorithm using its default settings. This model for atmospheric 

correction was chosen because of its application for turbid waters, which is enhanced by the replacement 

of the usual assumption of zero water-leaving radiance in the NIR bands. Thus, it is substituted by the 

assumption of the spatial homogeneity of the reflectance ratio (748/869), which is used for aerosol and 

water reflectance within an image [36]. 

2.4. Algorithm Development 

As the goal of this research, we developed an empirical algorithm for Lake Thonotosassa, FL, USA. 

The development process was divided into two parts: the band selection and the calibration and validation 

of the algorithm.  

2.4.1. Band Selection 

Once the evaluation of the three algorithms implemented with L0_LAC data was completed, we 

evaluated the use of MOD09GA data, which has a spatial resolution of 500 m, to estimate the chl-a 

concentration. In order to select the spectral bands from MOD09GA (Band 1 to Band 7) to be used in 

the algorithm, we firstly divided the images into 4 periods: January to March; April to June; July to 

September; and October to December. We used this seasonal distribution of the data, because  

aquatic systems respond differently to weather and seasonal conditions. Therefore, for each period, we 

analyzed the correlation among the spectral bands and chl-a concentration. We also evaluated the  

use of band ratios through the web tool, Interactive Correlation Environment (ICE), available at 

www.dsr.inpe.br/hidrosfera/ice [37]. This web tool builds a two-dimensional correlation plot of the 
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radiometric measurement (i.e., surface reflectance from the MOD09GA) and its relation to the interesting 

biogeochemical component (i.e., chl-a). This two-dimensional correlation plot is important for band 

selection, because of its capability to cover all possible band ratios, making it a useful tool for the analysis 

of hyperspectral measurements with a large number of spectral bands. 

2.4.2. Model Evaluation 

We split the dataset in two groups: the first one using MOD09GA products from 2000 to 2007, which 

was used to calibrate the models; and the second using MOD09GA products from 2008 to 2011. Thus, 

we validated the calibration coefficients derived from a linear regression of the calibration dataset in the 

validation dataset. We also used error estimators, such as the bias, normalized bias (NBias), root mean 

squared error (RMSE) and normalized root mean squared error (NRMSE), which were calculated 

according to the equations in Table 2. The described methodology (Section 2) of this work is summarized 

in Figure 2, which shows a schematic flowchart of the entire work. 

Table 2. Error estimators used in this study. NBias, normalized bias. 

Estimator Formulas 

Bias (ݕ௜ −  (௜ݔ
NBias (ݕ௜ − ௜,௠௔௫ݕ(௜ݔ −  ௜,௠௜௡ݕ

RMSE ܴܧܵܯ = ඩ1݊෍(ݕ௜ − ௜)ଶ௡ݔ
௜ୀଵ

NRMSE ܴܰܧܵܯ = ௜,௠௔௫ݕܧܵܯܴ −  ௜,௠௜௡ݕ

Note: yi and xi are the measured and predicted chl-a concentration, respectively. In the i-th sample, yi,max and 

yi,min are the maximum and minimum chl-a concentrations, respectively. 

Figure 2. Flow chart of the methodology used to develop an empirical model for chl-a 

estimation in Lake Thonotosassa. SeaDAS, normalized bias; ICE, Interactive  

Correlation Environment. 
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3. Results and Discussion 

3.1. Environmental Characteristics 

The limnological variables in the water column for the 11 years of monthly analysis showed different 

responses in the three stations located in Lake Thonotosassa. The average chl-a concentration was lower 

(15.37 μg/L) at the inlet and higher (154.68 μg/L) at the outlet of the lake. The same pattern  

was observed for the average TN concentrations for the three sampling stations—a low (1051.07 μg/L) 

concentration at the entrance and a high (2785.69 μg/L) concentration at the outlet. For the average TP 

concentration the opposite pattern was found with a high average TP concentration (535.04 μg/L) at the 

entrance and a low concentration (329.20 μg/L) at the outlet. Table 3 summarizes the statistics  

for these variables. The mean ratio TN:TP was very low at the inlet (1.96) and almost four-times higher  

at the middle (8.82) and outlet (8.46) sampling points. Such increasing ratios of TN:TP along the transect 

between the inlet and the outlet indicate an increasing trend in the TN concentration, while  

a decreasing trend in the TP concentration along the same transect. Table 3 summarizes the statistics for 

the limnological variables used in this manuscript. 

Table 3. Summary statistics for chl-a (μg/L), total nitrogen (TN) (μg/L), total phosphorus 

(TP) (μg/L) and the ratio TN:TP for the monthly water samples analysis of Lake 

Thonotosassa from 2000 to 2011.  

 Inlet Middle Outlet 

 Mean ± SD (Min–Max) Mean ± SD (Min–Max) Mean ± SD (Min–Max) 
chl-a 15.37 ± 25.91 (0.3–163.54) 146.48 ± 57.45 (4.4–373.8) 154.68 ± 61.30 (2.2–339.4) 

TN 
1051.07 ± 429.80  

(31–3010) 
2675.10 ± 1,215.92 (843–9300)

2785.69 ± 1,342.21  
(978–9159) 

TP 535.04 ± 263.48 (58–1994) 302.96 ± 158.46 (47–1030) 329.20 ± 171.93 (40–1204) 
TN:T

P 
1.96 ± 1.15 (0.61–7.21) 8.82 ± 4.25 (0.10–23.51) 8.46 ± 4.32 (2.45–22.26) 

To relate these limnological analyses to cyanobacteria biomass (CBB), we applied an empirical 

algorithm developed by Beaulieu et al. [38] to predict CBB. Such an algorithm was developed based on 

data from approximately 1100 lakes from the entire continental United States. The authors divided the 

dataset according to basin type (shallow or deep lakes, as well as natural ones or reservoirs). For each of 

these basin types, it was possible to generate several relations, that of a shallow natural lake being the 

one corresponding to Lake Thonotosassa. The predictive models of CBB based on the shallow natural 

lake type and TN and TP concentrations (in μg/L) are shown in Equations (2) and (3), respectively. ܤܤܥ = −1.08 + 1.17 logଵ଴ ܤܤܥ(2) ܰܶ = 1.19 + 0.76 logଵ଴ ܶܲ (3)

Figure 3 shows the results of the application of both equations for the three sampling points for the 

estimation of CBB. Based on TN, Figure 3A shows a lower CBB concentration at the inlet (blue line) as 

compared with that at the middle (green line) and the outlet (red line). Figure 3B represents the CBB 

estimation based on TP, which shows the TP trend line at the inlet (blue line) being the highest during 
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most of the study period. For both cases, an estimation of CBB concentration for any time point with 

TN and/or TP data was observed. Since we do not have in situ data for cyanobacteria, these results, 

together with the data on chl-a concentrations (Figure 3C) and the history of cyanobacteria bloom in the 

lake, strongly suggest the presence of cyanobacteria.  

Figure 3. Time series of cyanobacteria biomass (CBB) estimations from (A) TN and (B) TP 

at the three sampling points, (C) data on measured chl-a concentrations. 

 

However, Figure 3A,B shows different patterns for the cyanobacteria presence among the three 

regions. Figure 3A, based on Equation (2), showed a lower CBB at the inlet as compared with the other 

two monitoring sites, while Figure 3B shows the opposite. To better evaluate the presence of cyanobacteria 

in Lake Thonotosassa, we analyzed the TN: TP ratio (shown in Table 3), since TN:TP ratios have been 

associated with the concentration of cyanobacteria in lake water [5]. Although it has been proposed that 

low ratios of TN:TP lead to a higher cyanobacteria concentration [39,40], the opposite case has also been 

proposed, where low ratios of TN:TP may rather be the result of a high cyanobacteria presence,  
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due to the possible ability of cyanobacteria to pump out phosphorus from enriched sediments [41]. 

Furthermore, other studies have supported alternative explanations, according to which other factors, such 

as nutrient variations, rather than low ratios of TN:TP, could be the main triggers of higher cyanobacteria 

concentration or toxic blooms [42]. 

In our study case, Table 3 shows the inverse relationship between the trends in TN and TP along the 

inlet-outlet transect and the direct relationship between the trends of chl-a and TN along it. This could 

in fact suggest that cyanobacteria are an important contributor in the overall chl-a concentration in the 

water column of the lake. Such a hypothesis could be explained as a consequence of the well-known 

ability of cyanobacteria to fix nitrogen [39]. Cyanobacteria would be favored over other species of 

phytoplankton by conditions of relatively limited nitrogen and abundant phosphorus in the water supply 

to the lake [43,44]. Depending on nutrient fluxes and the sink capacity of the sediments, it is possible 

that as water flows from the inlet to the outlet of the lake, the ratio between TN and TP in the water 

column gradually changes as cyanobacteria uptake TP from the solution and fix nitrogen in solution. 

Indeed, it can be noticed from Table 3 that both the TN:TP ratio and the chl-a concentration are lowest 

at the inlet, presumably because at that site, the inflow water with the lowest TN:TP ratio has just entered 

the lake and has not had enough retention time yet to affect the cyanobacteria; thus, the chl-a 

concentration is low. The middle and outlet sites monitor lake water with a longer retention time; thus, 

there is a longer opportunity for cyanobacteria to increase in abundance by taking advantage of the still 

low TN:TP ratio. Although such a ratio has increased by the time the water reaches the middle and outlet, 

it is still low and, therefore, still nitrogen limiting and, consequently, favorable for cyanobacterial growth. 

This could explain the higher chl-a concentration at the middle and outlet sites.  

According to the nutrient limitation criteria suggested by Brezonik [45] and the results of Table 3, 

Lake Thonotosassa is a nitrogen-limited environment. Such criteria propose that lakes with TN:TP ratios 

less than 10 are nitrogen-limited, while those lakes with ratios greater than 30 are phosphorus-limited, 

and those ranging between 10 and 30 are balanced (both nutrients are limiting). This, along with the 

episodic blooms of cyanobacteria reported at the lake [21], agree with the associations reported in the 

literature between cyanobacteria and low TN:TP ratios [5,40]. Furthermore, the fact that both the  

TN: TP ratio and chl-a concentration increase together from the inlet to the middle does not coincide 

with the proposition of Xie et al. [41] that a low TN:TP ratio is a result of a high cyanobacteria 

concentration, in which case, a lower TN:TP ratio would be expected with more chl-a.  

It seems plausible that the TN:TP ratio has indeed an effect on the cyanobacteria in the lake water, 

which would be mostly the case from the TN:TP ratio of the inflow water [43,44]. This highlights the 

importance for management plans to focus on the reduction of phosphorus inputs as a way to prevent 

cyanobacteria blooms and consequent public health issues. As we have indicated, since it is highly 

plausible that in our study case that the chl-a is importantly composed of cyanobacteria, the importance  

of monitoring chl-a in a more consistent manner as a way to monitor the effectiveness of such 

management plans is evident. 

3.2. Ocean Color Algorithms Performances 

Figure 4 shows the application results from the three algorithms, used for comparison, in  

a MODIS-Aqua L0 image acquired on 14 April 2006, over the State of Florida. As expected, none of 
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the three algorithms were able to retrieve chl-a concentrations from Lake Thonotosassa. The OC3M was 

the only algorithm that could perform chl-a estimation in the MODIS L0 product (Figure 4). However, 

such an estimation was not useful for inland aquatic systems, mainly due to the size of the water body and 

consequent issues with spatial resolution. Accordingly, this algorithm has been reported previously to be 

able to retrieve some variation of chl-a in Tampa Bay, Florida, a body of water covering about 1000 km2 

at a high tide, but even in that case, its performance was considerably lower as compared with a 1-km 

spatial resolution MODIS chlorophyll fluorescence line height (FLH) product [18]. The use of GSM and 

GIOP could not retrieve any spatial variation of the chl-a concentration. These results agree with those 

found by Tilstone et al. [46], who evaluated the same algorithms for the eastern Arabian Sea coast and 

similarly found that OC3M had the best performance among the same three algorithms. These 

observations highlight the need to develop water quality products with a higher spatial resolution for the 

study and monitoring of small aquatic systems.  

Figure 4. OC3M application using SeaDAS 7.02 on a MODIS-Aqua L0 product.  

 

3.3. Locally-Tuned Algorithm 

3.3.1. Band Selection 

Upon confirming the unsatisfactory results from the MODIS-Aqua L0 1-km product, we used the 

MOD09GA product with a spatial resolution of 500 m to develop empirical models. However, the single 

spectral bands from the MOD09GA product were not suitable for water color studies either, since they 

cannot detect the small spectral variations required [14]. We compared chl-a concentration against 

MOD09GA reflectance to analyze their relationship using the reflectance from single bands. Table 4 

shows the correlation for each spectral band of MOD09GA (days without cloud cover over Lake 

Thonotosassa) to the chl-a concentration per period of the year using the calibration dataset.  

As shown in Table 4, algorithms based on a single band were not useful for estimating the chl-a 

concentration in Lake Thonotosassa during the last six months of the year.  
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Table 4. Coefficient of determination (R2) for chl-a (μg/L) and reflectance values from each 

band for four periods of the year: January to March (JFM), April to June (AMJ), July to 

September (JAS) and October to December (OND). 

 JFM AMJ JAS OND 

Band 1 (620–670 nm) 0.07 0.67 0.00 0.00 
Band 2 (841–876 nm) 0.00 0.71 0.01 0.01 
Band 3 (459–479 nm) 0.15 0.62 0.01 0.00 
Band 4 (545–565 nm) 0.25 0.58 0.00 0.00 

Band 5 (1230–1250 nm) 0.03 0.67 0.00 0.01 
Band 6 (1628–1652 nm) 0.02 0.70 0.00 0.00 
Band 7 (2105–2155 nm) 0.01 0.71 0.00 0.01 

Different spectral bands were found to be the most correlated for each period. The highest correlations 

were observed in the April to June (AMJ) period, which is also the period of the year with higher chl-a 

concentrations (179.36 μg/L). For the periods with a low chl-a concentration, July to September (JAS) 

(126.83 μg/L) and October to December (OND) (132.12 μg/L), the R2 was low. Finally, the January to 

March (JFM) period, which presented a higher R2 as compared to JAS and OND, but lower R2 as 

compared to AMJ, presented a chl-a concentration greater than that of JAS and OND, but lower than 

that of AMJ (148.49 μg/L). These observations demonstrate the need for seasonal calibrations of the 

empirical algorithms.  

To understand the physical principles behind the algorithm development, we plotted the average 

reflectance spectrum for each period (Figure 5). No relationship between chl-a concentration and the 

reflectance peak at Band 2 (in the NIR) was observed. The highest reflectance value was detected in the 

OND period, with an average chl-a concentration of 132.12 μg/L, followed in order by the JAS, AMJ 

and JFM periods with average chl-a concentrations of 126.83 μg/L, 179.36 μg/L and 148.49 μg/L, 

respectively. It was concluded from this lack of correlation that single bands were not useful for the 

estimation of chl-a concentration. 

As a next step, band ratios among the seven spectral bands were tested. The importance of using band 

ratios lies in the fact that the specular reflection from water under wavy conditions gets suppressed by the 

ratio architecture of this type of algorithm, which cancels out the specular reflection from the  

two bands used in the ratio [47]. To analyze all possible band ratios, we used the ICE [37] to generate  

two-dimensional correlation plots of the R2 between chl-a concentration and band ratio values. ICE was 

previous described in Section 2.4.1, and more information can be found in [37]. Figure 6 shows the plots 

for the four seasons analyzed using the calibration dataset. 

As shown by the four 2D correlation plots in Figure 6, the best performances are obtained from the 

ratio between Band 1 and Band 4 or Band 4 and Band 1 (the highest R2 on the 2D color correlation plot 

for all of the periods; Figure 6A–D). Band 1 is located in the red channel around 675 nm, where there is 

an important chl-a absorption feature. Another reflectance peak of chl-a is located at Band 4 in the green 

channel around 550 nm. With attention to this, the algorithm we proposed here for all four seasons is 

shown in Equation (4): ܥℎ݈ − ܽ ≈ ଵܤ − ଵܤସܤ + ସ (4)ܤ
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where B1 is related to MOD09GA reflectance from spectral Band 1 and B4 is related to MOD09GA 

reflectance from spectral Band 4. 

Figure 5. Average reflectance spectra of MOD09GA for each seasonal period. 

 

Figure 6. 2D correlation plots of MOD09GA spectral bands using ICE [37]. (A) JFM;  

(B) AMJ; (C) JAS; (D) OND. 

 

3.3.2. Calibration and Validation 

The algorithm was seasonally calibrated using MOD09GA data from 2000 to 2007. A linear calibration 

was performed for each period to retrieve its slope and intercept. Table 5 shows the calibrations coefficients, 
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indicating an average performance for most of the periods, with R2 of 0.53, 0.56 and 0.67 for the JFM, 

AMJ and JAS periods, respectively. Nevertheless, a clearly lower R2 (0.06) was detected for the linear 

calibration in the OND period. 

Table 5. Calibration coefficients for the algorithm for each period. 

 R2 Slope Intercept p-Value
JFM 0.53 −426.81 144.78 0.003 
AMJ 0.56 −289.51 137.72 0.008 
JAS 0.67 357.46 137.18 0.012 

OND 0.06 −148.15 125.87 0.440 

It can be observed from the 2D correlation plots in Figure 6 that the relationship between reflectance 

and chl-a concentration in the OND period did not present any R2 higher than 0.08. The same was 

observed by applying the proposed algorithm with a very low R2 with a very high p-value (0.440).  

As can be appreciated from Table 5 and Figure 7, the models were better calibrated for the first  

three periods: JFM, AMJ and JAS. Figure 7C shows a positive slope during the JAS period, while all of 

the others figures (Figure 7A–C for periods JFM, AMJ and OND, respectively) present a negative slope. 

Such a negative slope can be explained by the algorithm structure, which is sensitive to the absorption 

of phytoplankton in the red channel, as well as the phytoplankton reflectance peak in the green channel. 

Conversely, a positive slope indicates an increase in the signal in the red channel, which is related to a 

cyanobacteria pigment known as phycocyanin (PC) with a fluorescence peak at 650 nm. Such a 

fluorescence peak is close to the center of MODIS Band 1. This circumstance causes an increase in the 

signal of this band at high cyanobacteria concentrations. Moreover, the JAS period is usually related to 

the summer, where several cyanobacteria cases are reported mainly due to the high temperature observed 

in this season. 

The linear calibrations depicted in Figure 7 were used in the validation process with MOD09GA data, 

which covered the period from 2008 to 2011. The coefficients of the calibration (slope and intercept 

from Table 5) were applied on the surface reflectance data derived from the MOD09GA product. The 

error estimators in Table 2 were used to evaluate the performance of the model. Table 6 shows the error 

estimators for the four periods of the year. 

Table 6. Errors estimators used in the validation dataset for each period. 

 JFM AMJ JAS OND 
Bias 38.58 91.46 52.94 25.53 

NBias 0.23 0.27 0.46 1.74 
RMSE 45.2 112.08 62.02 27.16 

NRMSE 0.27 0.34 0.54 1.85 

The variation in the error estimator from period to period of each year can be appreciated in Table 6. 

Both NBias and NRMSE indicated lower error estimators for the periods with higher chl-a concentrations 

(JFM and AMJ) as compared with those periods with lower chl-a concentrations (JAS and OND). These 

errors could be related to the atmospheric correction of the MOD09GA product, which is based on the 

utilization of look-up tables (LUTs) of top of atmosphere (TOA) reflectance values [48]. This is needed 

to retrieve surface reflectance properties on the basis of given TOA reflectance values and atmospheric 
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parameters [48]. Hence, the accuracy of using MOD09GA depends on several aspects, such as the 

accuracy of sensor calibration, input atmospheric parameters, LUTs and operational implementation of 

correction for bidirectional reflectance distribution function effects [49]. More details about the 

atmospheric correction used in the MOD09GA product can be found in Vermote et al. [48]. The NRMSE 

results, though, agree with Cowell et al. [22], which identified more abundant green algae 

(Chlorophyceae) in Lake Thonotosassa during the spring and early summer months, while blooms of 

blue-green algae (mainly Anabaena spiroides) were during the summer. This phytoplankton dynamic 

enhanced the accuracy for the first two trimesters, which received lower errors. During the third and 

fourth trimester, Cowell et al. [22] identified the occurrence of diatom blooms (mainly Stephanodiscus 

hantzschii). This could explain the high errors, since diatoms have a different spectral shape with higher 

reflectance values, and their steep spectrum decreases from 412 to 510 nm [50]. As shown by 

Ogashawara et al. [14], this range of estimator errors for chl-a concentration estimation from a MOD09GA 

product is reasonable. This assumption is mainly based on the spectral resolution of the seven first 

MODIS bands, which were not the ideal for water color studies, since they are not able to collect the 

signal from important sections of the water leaving radiance spectra. 

Figure 7. Linear regression plots of the calibration between model values and chl-a 

concentration for each period of the year. (A) JFM; (B) AMJ; (C) JAS; (D) OND. 

 

Moreover, several studies using more appropriate MODIS spectral bands for water color analysis still 

have presented similar or poorer error estimator results. Le et al. [51] used MODIS Bands 11 (526–536), 

12 (546–556) and 14 (673–683), which have a narrow range that meets the chl-a-specific spectral range 
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of reflectance and absorption. Using these spectral bands, the authors produced an RMSE (%) of 36.5%, 

and they also attributed a value of 39.6% of the error to the red-green ratio algorithms as acceptable  

for estuaries.  

3.4. Possible Applications 

The development of empirical algorithms for the monitoring of chl-a concentration for Lake 

Thonotosassa can lead to several environmental and public health applications. Ogashawara et al. [14] 

demonstrated the usefulness of applying empirical algorithms to retrieve a time-series of chl-a 

concentration to improve the monitoring in regions with a considerable lack of data acquisition. 

Although Lake Thonotosassa is monitored monthly, the possibility of having more frequent data is 

important, because water quality parameters can change rapidly. Furthermore, a monitoring method 

based on fixed locations may not be representative of the mean chl-a concentration in the lake, as other 

locations of potential interest within the lake are not considered. Thus, the use of MOD09GA, which is 

a daily product, can improve the frequency of monitoring water quality, mainly algal blooms, further 

providing the feasibility to cover areas within the lake not included in the routine monitoring plan.  

As indicated by calculations according to Beaulieu et al. [38] and by the analysis of in situ data for 

TN:TP ratios, there is an important indication that cyanobacteria are a core component of the chl-a 

present in Lake Thonotosassa. As growing populations in urban and suburban areas increasingly rely on 

lakes for ecosystem services, such as recreation, aesthetics, culture and storm-water drainage and 

treatment [1,52], the use of practical time- and cost-effective methodologies to monitor water quality is 

accordingly becoming more imperative. The risk of cyanobacteria presence in urban lakes and consequent 

potential danger to public health amply justify the implementation of water quality monitoring programs. 

These programs are important, since human intoxication from cyanotoxins, such as microcystin, does not 

occur only through the ingestion of drinking water or food. It can also occur through recreational dermal 

contact during aquatic activities, such as practicing aquatic sports, bathing, swimming and diving [53]. 

Moreover, these activities also promote accidental ingestion of water, which is a concern, since ingestion 

of even a small quantity of cyanotoxins can have serious health consequences [54]. Therefore, in a 

broader scope, chl-a monitoring in general is an increasingly important need. The web tool procedures 

and remote sensing techniques used in this study were shown to be useful for applications to water chl-a 

monitoring or algal bloom identification in Lake Thonotosassa. Furthermore, the proposed approach and 

procedures can also be applied to develop customized remote sensing methodologies in other lakes with 

similar environmental conditions. This initiative can improve local water governance systems, as well 

as can be an important tool for environmental and public health managers. Additionally, the community 

as the major stakeholders could be trained in the use of remote sensing technology to be involved in the 

monitoring process in a sustainable low-cost approach.  

4. Conclusions 

Our analysis of in situ data of the changes in TN: TP ratios and chl-a concentration along the flow 

transect covering the three monitoring sites suggests the presence of cyanobacteria in Lake Thonotosassa. 

To validate these findings, an analysis through the TN and TP relations established by Beaulieu et al. [38] 

along with chl-a concentration highlighted the presence of cyanobacteria. Considering that some 
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cyanobacteria species have the ability to produce toxins (which can be dangerous to human health 

through different routes of entry) along with the potential risk of exposure (as this lake is located in  

a suburban area and discharges into the Hillsborough River, which is the main source of municipal water 

supply for the City of Tampa), the importance of implementing monitoring programs in this water body 

is clear. Such a practice could anticipate and prevent related health issues in the community interacting 

with the lake. 

Remote sensing techniques, such as bio-optical modeling, are an alternative to qualitatively 

monitoring of biological activity through chl-a concentration. Using MODIS-Aqua L0 products and 

SeaDAS, we implemented three ocean color algorithms that resulted in non-suitable products, due to the 

use of spectral bands with low spatial resolution, which were unable to identify small water bodies. Since 

they are global algorithms and originally modeled for oceanic waters, our empirical model especially 

designed for a small inland lake was shown to improve the results. We used MOD09GA (500 m) data to 

develop an empirical chl-a bio-optical model based on the band selection provided by 2D color 

correlation plots of R2 between band ratios and measured chl-a concentration. We grouped 11 years of 

MOD09GA data by trimester and calibrated the algorithm for each of these time periods. The NRMSE 

for the first trimester of the year was 0.27, while for the second, third and fourth trimester, it was 0.34, 

0.54 and 1.85, respectively. These results showed a greater error during the fourth trimester of the year, 

as compared with the other trimesters. This is probably explained by the presence of diatoms during this 

period of time, which shows the need for the development of filters to remove the effect of others water 

constituents. We also highlight here the need for seasonal calibration of bio-optical models, as seasonal 

variability in the aquatic system can change the environment dynamics. Thus, we have shown the 

applicability of remote sensing techniques to monitor water quality, even in small water bodies, such as 

Lake Thonotosassa. Nevertheless, it is clear that the understanding of environmental factors and their 

effects on seasonal variations are crucial for better algorithm calibration. 

Although the spatial resolution from MODIS products is often not suitable for small water bodies, it 

is still possible to acquire daily data to retrieve a long-term time-series from one pixel that fits the 

required conditions. This can be useful to monitor the effects on water quality from human activities in 

the watershed and the progress of environmental management plans aimed at improving water quality. 

This improvement is needed, since an adequate monitoring system for aquatic environments may imply 

high costs that make difficult its implementation difficult. Moreover, immediate management options 

should be available to provide information for the population, especially for those who depend on the 

aquatic environment. Remote sensing techniques showed here a high potential for the environmental and 

public health management of inland aquatic systems. MODIS products constitute a great help in 

understanding environmental dynamics in order to propose better environmental and health policies 

concerning water resources. Thus, remote sensing can be an important tool for environmental decision 

makers, which will influence the environment and human health. 

Acknowledgments 

The authors express their appreciation to the Environmental Protection Commission of Hillsborough 

County (EPCHC) for providing the in situ water quality data and, particularly, to Rick Garrity and 

Richard Boler for facilitating the process of data sharing. MODIS data collection and processing were 



ISPRS Int. J. Geo-Inf. 2014, 3 1252 

 

 

made possible through the efforts of MODIS Adaptive Processing System (MODAPS) services at the 

NASA Goddard Space Flight Center (NASA/GSFC) and NASA’s Earth Observing System Data and 

Information System (NASA/EOSDIS). Also acknowledged is the SeaDAS Development group at NASA 

GSFC for the use of the SeaDAS software to process the MODIS imagery. Special acknowledgment is 

given to Steve Padgett Vasquez for introducing the authors. 

Author Contributions 

Igor Ogashawara and Max J. Moreno-Madrinan conceived of and designed the paper together.  

Igor Ogashawara is the main author of the paper, who performed the RS analyses. Igor Ogashawara and 

Max J. Moreno-Madriñán equally participated in the writing of the manuscript and limnological analysis. 

Max J. Moreno-Madriñán classified the in-situ dataset and revised the entire manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; 

Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 1–14. 

2. Pitois, S.; Jackson, M.H.; Wood, B.J. Sources of the eutrophication problems associated with toxic 

algae: An overview. J. Environ. Health 2001, 64, 25–32. 

3. Mudroch, A., Ed. Planning and Management of Lakes and Reservoirs, An Integrated Approach to 

Eutrophication; UNEP International Environmental Technology Centre: Osaka, Japan, 1999. 

4. O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: 

The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. 

5. Kotak, B.G.; Zurawell, R.W. Cyanobacterial toxins in Canadian freshwaters: A review. Lake Reserv. 

Manag. 2007, 23, 109–122. 

6. Fleming, L.E.; Rivero, C.; Burns, J.; Williams, C.; Bean, J.A.; Shea, K.A.; Stinn, J. Blue green algal 

(cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae  

2002, 1, 157–168.  

7. Francis, G. Poisonous Australian Lake. Nature 1878, doi:10.1038/018011d0. 

8. Azevedo, S.M.F.O.; Carmichael, W.W.; Jochimsen, E.M.; Rinehart, K.L.; Lau, S.; Shaw, G.R.; 

Eaglesham, G.K. Human intoxication by microcystins during renal dialysis treatment in  

Caruaru—Brazil. Toxicology 2002, 181–182, 441–446. 

9. Centers for Disease Control and Prevention (CDC). Recreational Water—Associated Disease 

Outbreaks—United States, 2009–2010. Available online: http://www.cdc.gov/mmwr/preview/ 

mmwrhtml/mm6301a2.htm?s_cid=mm6301a2_w (accessed on 8 May 2014). 

10. Jogensen, S.E.; Bendoricchio, G. Fundamentals of Ecological Modeling, 3rd ed.; Elsevier: New York, 

NY, USA, 2001. 



ISPRS Int. J. Geo-Inf. 2014, 3 1253 

 

 

11. Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the 

potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive 

waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. 

12. Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating 

chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ.  

2009, 113, 1175–1182. 

13. Hadjimitsis, D.G.; Clayton, C. Assessment of temporal variations of water quality in inland water 

bodies using atmospheric corrected satellite remotely sensed image data. Environ. Monit. Assess. 

2009, 159, 281–292. 

14. Ogashawara, I.; Alcântara, E.H.; Curtarelli, M.P.; Adami, M.; Nascimento, R.F.F.; Souza, A.F.; 

Stech, J.L.; Kampel, M. Performance analysis of MODIS 500-m spatial resolution products for 

estimating Chlorophyll-a concentrations in Oligo- to Meso-Trophic waters case study: Itumbiara 

Reservoir, Brazil. Remote Sens. 2014, 6, 1634–1653. 

15. Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K.H.; Karnielli, A.; Kaiser, A. Quantitative 

remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 

14, 1269–1295. 

16. Gons, H.J. Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol. 

1999, 33, 1127–1132. 

17. Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Bowles, J.H.; Povazhnyi, V.; Saprygin, V.; Wagner, E.J.; 

Patterson, K.W. HICO-based NIR-Red models for estimating Chlorophyll-a concentration in 

productive coastal waters. IEEE Geosci. Remote Sens. 2014, 11, 1111–1115. 

18. Moreno-Madriñán, M.J.; Fischer, M.A. Performance of the MODIS FLH algorithm in estuarine 

waters: A multi-year (2003–2010) analysis from Tampa Bay, Florida (USA). Int. J. Remote Sens. 

2013, 34, 6467–6483. 

19. Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation 

of chlorophyll-α concentration in turbid productive waters: Experimental results. Appl. Opt.  

2005, 44, 412–422. 

20. Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in 

reflectance measurements on the remote estimation of chlorophyll-α concentration in turbid 

productive waters: Modeling results. Appl. Opt. 2006, 45, 3577–3592. 

21. Southwest Florida Water Management District. Lake Thonotosassa Surface Water Improvement and 

Management (SWIM) Plan; Southwest Florida Water Management District: Plant City, FL, USA, 2003. 

22. Cowell, B.C.; Dye, C.W.; Ada, R.C. A synoptic study of the limnology of Lake Thonotosassa, Florida. 

Part I. effects of primary treated sewage and citrus wastes. Hydrobiologia 1975, 46, 301–345. 

23. Cowell, B.C.; Vodopich, D.S. Distribution and seasonal abundance of benthic macroinvertebrate in 

a subtropical Florida lake. Hydrobiologia 1981, 78, 97–105.  

24. Florida Department of Environmental Regulation. Integrated Water Quality Assessment for 

Florida: 2012 305(b) Report and 303(d) List Update; Florida Department of Environmental 

Regulation—Division of Environmental Assessment and Restoration: Tallahassee, FL, USA, 2012. 

25. Clesceri, L.S.; Eaton, A.D.; Greenberg, A.E.; Franson, M.A.H.; Eds. Standard Methods for the 

Examination of Water and Wastewater; American Public Health Association, American Water 

Works Association & Water Environment Federation: Washington, DC, USA, 1998.  



ISPRS Int. J. Geo-Inf. 2014, 3 1254 

 

 

26. Moreno-Madriñán, M.J. Analysis of limnological variables associated to water quality in lakes of 

Northwestern Hillsborough County, Florida. Fla. Sci. 2010, 73, 218–224. 

27. Moreno-Madriñán, M.J. Analysis of the relationship between Submerged Aquatic Vegetation 

(SAV) and water trophic status of lakes clustered in Northwestern Hillsborough County, Florida. 

Water Air Soil Poll. 2011, 214, 539–546. 

28. Ocean Color Web. Available online: http://oceancolor.gsfc.nasa.gov/ (accessed on 3 February 2014). 

29. EOS ClearingHouse (ECHO). Available online: http://reverb.echo.nasa.gov/ (accessed on  

3 February 2014). 

30. Fu, G.; Settle, K.; McClain, C.R. SeaDAS: The SeaWiFSData analysis system. In Proceedings of the 

1998 Pacic Ocean Remote Sensing Conference, Qingdao, China, 28–31 July 1998; Secretariat: 

Beijing, China, 1998; pp. 73–77. 

31. O’Reilly, J.E.; Maritorena, S.; O’Brien, M.C.; Siegel, D.A.; Toole, D.; Menzies, D.; Smith, R.C.; 

Mueller, J.L.; Mitchell, B.G.; Kahru, M.; et al. SeaWiFS Postlaunch Calibration and Validation 

Analyses, Part 3, Volume 11; National Aeronautics and Space Administration: Washington, DC,  

USA, 2000. 

32. Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a semianalytical ocean color model 

for global-scale applications. Appl. Opt. 2002, 41, 2705–2714. 

33. Franz, B.A.; Werdell, P.J. A generalized framework for modeling of inherent optical properities  

in ocean remote sensing applications. In Proceedings of the 2010 Ocean Optics, Anchorage, AK, 

USA, 27 September–1 October 2010. 

34. Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I 

waters). J. Geophys. Res. 1988, 931, 10749–10768. 

35. Gordon, H.R. Ocean color remote sensing: Influence of the particle phase function and the solar 

zenith angle. EOS Trans. Am. Geophys. Union 1986, 14, 1055.  

36. Ruddick, K.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid 

coastal and inland waters. Appl. Opt. 2000, 39, 897–912. 

37. Ogashawara, I.; Curtarelli, M.P.; Souza, A.F.; Augusto-Silva, P.B.; Alcântara, E.H.; Stech, J.L. 

Interactive Correlation Environment (ICE)—A statistical web tool for data collinearity analysis. 

Remote Sens. 2014, 6, 3059–3074. 

38. Beaulieu, M.; Pick, F.; Gregory-Eaves, I. Nutrients and water temperature are significant predictors 

of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 2013, 58, 1736–1746. 

39. Smith, V.H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake 

phytoplankton. Science 1983, 221, 669–671. 

40. Orihel, D.M.; Bird, D.F.; Brylinsky, M.; Chen, H.; Donald, D.B.; Huang, D.Y.; Giani, A.; 

Kinniburgh, D.; Kling, H.; Kotak, B.G.; et al. High microcystin concentrations occur only at low 

nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Can. J. Fish. Aquat. Sci. 2012, 69, 

1457–1462. 

41. Xie, L.; Xie, P.; Li, S.; Tang, H.; Liu, H. The low TN:TP ratio, a cause or a result of Microcystis 

blooms? Water Res. 2003, 37, 2073–2080. 

42. Downing, J.A.; Watson, S.B.; McCauley, E. Predicting Cyanobacteria dominance in lakes. Can. J. 

Fish. Aquat. Sci. 2001, 58, 1905–1908. 

43. Schindler, D.W. Evolution of phosphorus limitation in Lakes. Science 1977, 195, 260–262.  



ISPRS Int. J. Geo-Inf. 2014, 3 1255 

 

 

44. Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.;  

Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing 

nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 

105, 11254–11258. 

45. Brezonik, P.L. Trophic state indices: Rationale for multivariate approaches. Lake Reserv. Manag. 

1984, 1, 441–445.  

46. Tilstone, G.H.; Lotliker, A.A.; Miller, P.I.; Ashraf, P.M.; Kumar, T.S.; Suresh, T.; Ragavan, B.T.; 

Menon, H.B. Assessment of MODIS-Aqua chlorophyll-α algorithms in coastal and shelf waters of 

the eastern Arabian Sea. Cont. Shelf Res. 2013, 65, 14–26. 

47. Vincent, R.K.; Qin, X.; McKay, R.M.L.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. 

Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. 

Remote Sens. Environ. 2004, 89, 381–392. 

48. Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of visible to middle-infrared 

EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. 

Res. 1997, 102, 17131–17141. 

49. Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces.  

J. Geophys. Res. 2008, 113, doi:10.1029/2007JD009662. 

50. Alvain, S.; Moulin, C.; Dandonneau, Y.; Bréon, F.M. Remote sensing of phytoplankton groups in 

case 1 waters from global SeaWiFS imagery. Deep Sea Res. I 2005, 52, 1989–2004. 

51. Le, C.; Hu, C.; English, D.; Cannizzaro, J.; Chen, Z.; Feng, L.; Boler, R.; Kovach, C.  

Towards a long-term chlorophyll-α data record in a turbid estuary using MODIS observations.  

Prog. Oceanogr. 2012, 109, 90–103. 

52. Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. 

53. Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health 

Consequences, Monitoring and Management; UNESCO/WHO/UNEP: London, UK, 1999. 

54. World Health Organization. Guidelines for Safe Recreational Water Environments, Volume I: 

Coastal and Fresh Waters; World Health Organization: Geneva, Switzerland, 2003. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


