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Abstract: Mobile Laser Scanning (MLS) systems are widely applied for spatial data 

collection and support applications in many aspects. In recent years, MLS technology had 

been introduced to railway applications and greatly enhanced the spatial detail and efficiency 

when compared to traditional approaches. However, the advance of MLS technology is not 

completely applied to railway environment. Typical MLS systems rely on integrated 

navigation through the use of Inertial Navigation Systems (INS) and Global Navigation 

Satellite Systems (GNSS) for geo-referencing, while operation under long-term GNSS 

outages or even GNSS-free environments, such as underground railway or long tunnels, 

remains a challenging issue due to the degraded operation of standalone inertial navigation. 

Commercial MLS systems usually employ high performance inertial measurement units 

(IMU) and various strategies to manage GNSS outages, but GNSS components are still 

necessary prior to and after experiencing the loss of GNSS signals. To tackle the problem of 

permanent GNSS outages, alternative methods are introduced to replace the GNSS and so 

allow the use of MLS systems in GNSS-free underground railway environments. Such 

approaches encourage the MLS systems to be developed into the Underground Railway 

Laser Scanning (URLS) systems, which may provide several alternative operational 

functions for the management of underground railway operation. 

Keywords: mobile laser scanning; underground railway; GNSS outage 

 

OPEN ACCESS



ISPRS Int. J. Geo-Inf. 2015, 4 186 

 

 

1. Introduction 

Mobile Laser Scanning (MLS) systems have been developed as rigorous solutions for dynamic spatial 

data acquisition. In general, MLS systems employ laser profilers, digital frame cameras, and other 

devices for measurements. The measurements are georeferenced by time-tagged trajectory which is 

maintained by a Position and Orientation System (POS). Nowadays, commercial MLS systems can be 

extensively used for engineering topographic surveys, as-built surveys, structures and clearance surveys, 

deformation surveys, environmental surveys, or urban modeling. The fundamentals of MLS technology 

have been reviewed in detail [1–3]. MLS systems are also widely applied to railways for rail track 

surveys, clearance measurements, infrastructure reconstruction and tunnel mapping [4–7]. However, 

such applications predominantly rely on a POS for navigation, and thus geo-reference performance is 

diminished with Global Navigation Satellite System (GNSS) outages. Since the systems depend on 

GNSS conditions, additional control surveys and post-process adjustments are usually necessary to 

achieve required accuracy. The usability and practicability of applications are limited. Some system 

configurations have been simplified and decomposed into subsystems and are capable of non-rigorous 

online applications in railways without inertial navigation [8,9], but the functions are restricted by the 

system design. To enhance the system performance in underground railways, available information and 

infrastructure in railway systems are alternatives to replace GNSS components. For example, overhead 

power lines and gantries, track configuration and alignment data, route assignment information, control 

and signaling systems, tunnel structures, and platforms can be employed. Furthermore, the development 

of continuous operation will expand the extent of system applications. This study firstly reviews current 

solutions for managing GNSS outages and then presents alternative solutions to be incorporated into an 

integrated Underground Railway Laser Scanning (URLS) system for use in GNSS-free environments. 

Secondly, the scope of development and application of continuous URLS systems are discussed along 

with the benefits such a technology would bring to the management of underground railway assets. 

2. Solutions for Bridging GNSS Outages 

In recent years, some commercial MLS systems such as Optech’s Lynx Mobile Mapper, IGI’s 

RailMapper, and Riegl’s VMX-450-Rail, have been adapted for railway applications through the use of 

high-end POS architectures and sophisticated data processing techniques to minimize the negative 

impact of GNSS outages on data accuracy. These approaches are outlined in the following section. While 

such systems are appropriate for aboveground railways where GNSS outages may last for certain periods 

of time, a totally GNSS-free environment exists in underground railway systems. Consequently, 

alternative solutions are required to replace the GNSS component and are outlined in Section 2.2. 

2.1. Current Strategies to GNSS Outages 

The majority of land-based MLS systems employ a POS for the estimation of navigation trajectory. 

Some existing strategies such as various POS architectures, smoothing algorithms, velocity updates, 

landmark updates, photogrammetric bridging and system simplification are currently adopted to 

maintain system performance during GNSS outages, which are summarized here. 
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2.1.1. POS Architecture 

There are various ways the Inertial Navigation System (INS) and GNSS may be coupled when forming 

a POS, with three of them being: loosely coupled, tightly coupled and deeply coupled. Tightly coupled 

integration is employed by the majority for commercial navigation systems, due to its advantage of 

utilizing the measurements from less than a sufficient number of satellites for GNSS positioning [1,10]. 

Nevertheless, the coupling configuration has no effect on the system performance under total GNSS 

outages. For a totally GNSS-free environment, the architecture should be redesigned to replace the 

GNSS by coupling the INS with other sources of positioning information. 

2.1.2. Optimal Smoothing Algorithm 

An optimal smoothing algorithm, such as forward-backward smoothing, or Rauch-Tung-Striebel 

Smoothing [11], is a post-processing technique adopted by most commercial MLS systems to bridge GNSS 

outages and reset the INS by combining and smoothing the forward and backward propagation [12–14]. 

With proper system initialization and finalization with GNSS positioning, centimeter to sub-decimeter 

level accuracy can be achieved for long periods of GNSS outages by combining other methods [15]. 

However, undetected errors would still be accumulated during GNSS outages and cannot solve the 

standalone INS problem independently, especially for a MLS system with a low cost IMU. 

2.1.3. Velocity Updates 

In addition to the POS architecture, a wheel-mounted Distance Measuring Indicator (DMI) is 

commonly employed for independent velocity measurements [2], which supports accurate velocity 

update or Zero Velocity Update (ZUPT) through the INS/GNSS processor. It can be applied in any 

GNSS conditions, but is important to control the integration drift of the INS during GNSS outages. For 

specific MLS applications, alternative instruments or techniques are used for the velocity update. While 

it controls position and velocity drifts, absolute position errors and attitude errors cannot be reset. In 

railway environments, velocity update is one of the fundamental approaches for positioning the vehicle 

along the track. 

2.1.4. Landmark Updates 

To control position errors, Landmark Updates (LMU) are commonly applied to support the MLS 

navigation by correcting the vehicle position with measurements to landmarks or control features [14,16,17]. 

This approach is usually implemented with photogrammetric or laser scanning measurements and serves 

as intermittent Coordinate Updates (CUPT) to maintain accuracy during GNSS outages. The solution is 

usually post-processed and its accuracy depends on control surveys, MLS system measurements, and 

the available intervals of control features. Results have shown that the overall accuracy is significantly 

improved to centimeter level accuracy with 25 m control interval by using commercial MLS  

systems [15,16]. 
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2.1.5. Photogrammetric Bridging 

Photogrammetric bridging is a solution without the need of additional control surveys for landmarks, 

which is applied to bridge the GNSS outages through relative orientation of image pairs [18–20]. Under 

normal conditions, INS/GNSS is used for navigation updates and determining the camera Exterior 

Orientation Parameters (EOP) through the Kalman filter. During GNSS outages, photogrammetric 

adjustment is capable of updating the EOPs through the relative orientation of stereo-overlapped images 

for INS error estimation. A similar approach using video imagery is also a common solution for some 

MLS systems [21,22]. In general, photogrammetric bridging cannot maintain long term accuracy, while 

its performance is limited by environmental conditions, such as illumination and operation speed. 

Nevertheless, these criteria are significantly deficient inside railway tunnels. 

2.1.6. Simplified Mobile Profile Scanning 

For some applications, the MLS systems are decomposed into subsystems and employed for tunnel 

profile scanning in railway [8,9]. The simplified configuration does not rely on INS for geo-reference, 

but only reference to local system with respect to rail track. Such a simplified system is combined with 

railway localization and capable of real-time operation, which is used for monitoring the condition of 

railway infrastructure. 

Although the profile scanning does not depend on GNSS condition and is able to work as a real-time 

solution, it is not a rigorous solution and is limited to certain purposes. The orientation of the scanning 

unit is limited in vertical direction to minimize the errors due to reference uncertainty, but attitude 

variation and train body motion are ignored. 

2.2. Alternative Approaches for URLS Systems 

The majority of current strategies are implemented with the presence of intermittent GNSS outages. 

Their performance depends on the duration of GNSS outages, and the quality of the IMU and auxiliary 

measurement devices. None of them is capable of compensating for the total loss of GNSS data. Instead, 

alternative methods for GNSS substitution are introduced for the development of URLS. To achieve 

consistent and reliable performance, the GNSS component has to be replaced by the rail track and other 

alternatives. This section outlines various possible approaches to the development of GNSS-free  

URLS systems. 

2.2.1. Localized Tunnel Projection 

For local referencing, tunnel geometry serves as a nominal constraint for adjusting the navigation 

trajectory and the mapping data [23]. Since the INS usually maintains short-term precision (depending 

on the IMU’s quality), the relative precision within a segment of point cloud data is sufficient to describe 

the mapped object. Point cloud segmentation provides independent trajectory adjustment with respect to 

the tunnel geometry and the entire tunnel is divided into sections for storage and analysis. 

The tunnel projection simplifies the adjustment and the representation of measurement results. It is 

designed for tunnel surveys and works in GNSS-free railways, but does not provide geo-referenced 

solutions, and absolute accuracy of measurement is not maintained. 
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2.2.2. Rail-Bound Navigation 

Train positioning in a railway system relies on the alignment of the rail, which serves as a continuous 

control feature for CUPT and substitutes the GNSS component. Since the train movement is pre-defined 

and bounded by the rail track, the train position tracking is reduced to one-dimensional distance with 

respect to rail alignment data. The position and orientation of a train is approximately defined through a 

reference axle if the axle’s chainage is accurately determined, as illustrated in Figure 1. 

 

Figure 1. Configuration of Rail-bounded Navigation. 

Unfortunately, a train car is not a rigid body and the motion of the reference axle varies with the upper 

car body where the MLS system components are typically attached, meaning that direct employment of 

track alignment would introduce additional position errors. Relative motions between the axle and train 

body are potentially caused by various issues, such as train acceleration, centrifugal force, passenger 

movements, vibration at track junctions, and rail defects, etc. The problem of relative motion between 

the reference axle and MLS system mount is described by Equation (1). The nominal three-dimensional 

offset between MLS body center and the reference axle ܚ௥ଶ௜௔  in alignment frame is calibrated and 

constant. The dynamic correction ∆ܚ௥ଶ௜௔ ሺ݀ሻ between MLS estimated position ܚ௜௠௨௡  and track alignment 
estimated position ܚ௥௘௙௡ ሺ݀ሻ is recorded for updates and adjustment in repeated operations. It is smoothed 

or modeled by a polynomial with respect to alignment chainage, or recorded at nominal intervals. ܚ௜௠௨௡ = ௥௘௙௡ܚ ሺ݀ሻ + ۱௔௡ሺ݀ሻ൫ܚ௥ଶ௜௔ + ௥ଶ௜௔ܚ∆ ሺ݀ሻ൯ (1)

where ܚ௜௠௨௡  is the estimated position of IMU center, ܚ௥௘௙௡ ሺ݀ሻ is the position of axle from reference 

alignment, ۱௔௡ሺ݀ሻ is a horizontal rotation from alignment frame (ܽ) to navigation frame (݊), ܚ௥ଶ௜௔  and ∆ܚ௥ଶ௜௡ ሺ݀ሻ are the nominal offset and dynamic offset measured in alignment frame, and ݀ is the reference 

distance which refers to sectional chainage. 
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2.2.3. Dual-IMU Architecture 

In addition to rail-bound navigation, the errors caused by inaccurate track geometry data or 

inconsistent offsets between repeating runs limit the system performance. This problem is resolved by a 

dual-IMU architecture using an additional IMU on the reference axle. The processing strategy for this 

architecture is summarized in Figure 2. The reference IMU processor handles the alignment data and 

velocity updates, which supports the main processor independently. 

 

Figure 2. Dual-IMU Architecture. 

Although the rail track and alignment data are refined by the additional reference IMU, the train 

motions caused by various effects of train axle compensators are uncertain. The consistency of 

navigation accuracy is limited. In addition to attitude and lateral position control from track alignment, 

the position and velocity errors along the rail track is still uncertain. 

2.2.4. Velocity Updates 

As mentioned in the previous section, Velocity Updates or ZUPT are important to control the velocity 

errors of inertial navigation. If the MLS is operated during normal train service, ZUPT can be 

implemented at stations or temporary stopping before the junctions. It is easily implemented through 

Kalman filter processors without any requirement of additional equipment for intermittent updates. 

For normal trains, tachometers are usually installed for speed measurement and support train-borne 

positioning (linear distance) through the cumulative distance integrated from speed. Other techniques, 

such as transponder/balise [24], Doppler RADAR [25], eddy current sensing [26], or inertial 

measurement are possible methods fulfilling the positioning accuracy for current train operation. 

Numerous techniques and sensors are applicable for speed measurements with corresponding levels of 

precision. Simple averaging/weighted averaging, consensus sensing, or Kalman filtering are the possible 

approaches for the sensor fusion [27]. 

In addition to the sensor fusion, the patterns of operation speed are applicable for velocity estimation. 

For normal train service, the acceleration and deceleration of trains are usually gradual to maintain 
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passengers’ comfort and operational safety. The navigation control is supported by the knowledge of 

train speed behavior through its modeling. 

2.2.5. Coordinate Updates 

To control the growth of position errors, CUPT is implemented by external position information 

independent of the INS estimation. For general MLS systems, GNSS positioning provides continuous 

CUPT, which has to be substituted by alternative methods for operation in a GNSS-free environment. 

In underground railways, intermittent CUPT is available when the train is approaching a stop at a 

certain location to allow accurate positioning in the direction of the rail alignment. Since the railway 

systems follow a regular operation pattern, the temporary stopping positions are approximately known, 

such as rail junctions and stations. Strips of reflectors can be installed at the stopping zones and are 

scanned in high-density point clouds when the train decelerates. The scanned targets serve for CUPT 

and align for point cloud registration. Since the scanned details increase at a lower train speed, a potential 

improvement in positioning accuracy is expected. In addition, other static positioning methods are also 

applicable to reset position errors during the stop. The level of position accuracy can reach centimeter 

level or better depending on accuracy of control information and the choices of alternative methods. 

Besides static positioning methods, unique vibration patterns from inertial measurements created by 

junctions and track joints are identifiable from the post-processed trajectory and recorded with position. 

To maintain the continuous system performance, CUPT implementation by continuous LiDAR 

measurement is an alternative. In the railway environment, rail track is the essential feature, which is 

continuously measurable for URLS. From the scanning data, the two rail tracks are extracted and 

compared with estimated parameters from reference alignment, such as position of center line, alignment 

orientation, gradient, super-elevation and rail track offsets. As illustrated in Figure 3, the mismatched 

position and attitude errors perpendicular to the track alignment are detectable, but errors in the 

alignment direction are not. 

 

Figure 3. Position Control from LiDAR Data. 
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A railway’s infrastructure, such as railway station platform, trackside instrument or tunnel surface, is 

stable to be the reference landmark. Certain configuration of laser profilers further improves the results 

by inter-matching the LiDAR data within a single run as shown in Figure 4. After the first pass, features 

are extracted from scanning data and act as control features. The features are identified and matched 

with measurements in repeated runs for semi-continuous CUPT. However, conventional processing 

approach may not be suitable for on-the-fly operation. 

 

Figure 4. Inter-matching of LiDAR Data. 

Simultaneous Localization and Mapping (SLAM) is a technique conventionally applied to robotic or 

autonomous vehicle systems for real-time applications, which aims at mapping the environment and 

localizing itself within the map simultaneously. It replaces the CUPT and enhances localization and 

orientation through the mapping data for MLS systems. The implementation of SLAM is currently 

emerging and intensively researched [28–31], while the point cloud quality is optimized through Iterative 

Closest Point-type (ICP) algorithms as illustrated in Figure 4 [30,31]. 

The SLAM algorithm is an ideal GNSS-free approach for URLS, which can better integrate the 

navigation estimation and spatial data measurements. The major difficulty of using SLAM in 

underground railway tunnels is lack of loop closure within a single journey, and so the navigation 

trajectory strongly relies on inertial navigation quality or pre-surveyed landmarks. As mentioned in 

previous paragraphs, the rail track can be used as the necessary landmarks. Other unique and identifiable 

infrastructures are also applicable in the SLAM process. 

2.3. Integrated Approach for URLS 

To develop the URLS system, rail track geometry and the train movement estimation are the main 

issues for navigation control. Although there are various shortcomings for individual approaches, the 

potential performance of the system would be further enhanced through their integration. 

The integrated approach is simplified and illustrated in Figure 5. Independent fusion and adjustment 

for various sources of velocity measurements (1) serves for precise chainage estimation and velocity 

updates of INS. The correction from designed alignment data to physical track alignment is estimated 
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through rail-bound navigation approach (2). The refined alignment describes the rail track orientation 

and position, and is utilized for continuous CUPT through laser scanning measurements or implemented 

through SLAM (3). Supplementary intermittent CUPT can be implemented through landmarks or 

vibration patterns from inertial measurements (4), while any stationary positioning method (5) is also 

integrated to the processor for accuracy enhancement. However, the fundamental architecture for URLS 

process involves various sub-systems, which may be too complex for real-time operation. 

 

Figure 5. Simplified Architecture for URLS. 

To enhance the real-time availability, the configuration of an URLS system can be decomposed and 

simplified by dropping and replacing the inertial navigation by alternative components. Low cost Mobile 

Mapping solution has demonstrated the quality of simplified direct geo-reference solution by single 

frequency GNSS receiver, one axis gyroscope and odometer [32]. To simplify the URLS configuration, 

the positioning and orientation tracking is replaced by the rail-bound navigation with integrated velocity 

updates. The simplified approach is represented in Figure 5 by the processing paths depicted in red. 

3. Potential Development and Applications 

The previous sections outline various approaches to replacing the GNSS component in an 

Underground Railway Laser Scanning system. Apart from the intrinsic use of an URLS system in 

recording the rail system in point cloud form, such a system has the potential to enhance underground 

railway operations in other ways. Some of them are introduced in the following sections.  

3.1. Real-Time or Near Real-Time Monitoring 

After the establishment of railway point cloud database, the URLS has the potential to maintain its 

functions without relying on inertial navigation as mentioned. The rail tracks and/or the over-head power 

cables are the continuous features to assist the preliminary trajectory recovery in alignment frame and 

maintain the relative accuracy of point cloud data. Hence, the tunnel conditions such as the main 

structure and the existence of unexpected objects are immediately inspected before post-processing. The 

SLAM-based approach solely requires the laser scanning devices and velocity information such that 

continuous tunnel monitoring and train positioning are conducted in real-time and refined by sectional 



ISPRS Int. J. Geo-Inf. 2015, 4 194 

 

 

key point registration with a database. The point cloud data can be directly transmitted to a control center 

for post-processing and structural analysis, or temporarily stored on board for real-time visualization and 

condition monitoring. 

In addition to the existing tunnel monitoring systems, a URLS can open up an integrated solution for 

mapping and monitoring most of the underground infrastructure by a single measurement system, such as 

tunnel structure, rail track, overhead cable, point machine, wayside equipment, etc. It may replace part of 

the existing monitoring systems, or extend and visualize different monitoring results. Moreover, URLS 

would provide a dynamic solution for improving the availability and the flexibility of railway monitoring. 

3.2. Train-Borne Hazard Detection 

Different methods for train-borne obstacle detection have been extensively studied in computer vision 

or related aspects [33–36]. In addition, research has illustrated the efficiency of train collision detection 

using the MLS technique [37], which is a more comprehensive and multi-purpose solution. Collision 

detection is not the only function of URLS, nevertheless, the conditions of different sections of the 

railway tunnel are simultaneously monitored by any train equipped with URLS systems; the risk of 

collision with trackside objects or equipment damages would be better assessed through their use. URLS 

systems provide an alternative to achieve a higher level of service reliability and safety through risk 

management and hazard detection in railway operation. 

3.3. Train Localization 

The method for train localization is a critical issue for safety and train regulation in railway systems. 

Traditional methods usually rely on trackside equipment for back-up solutions that are costly to install 

and maintain. Modern signaling systems requires dynamic train positioning to facilitate the efficiency 

with moving block signaling control, which is implemented by train-borne localization methods or train 

detection with loops. 

A real-time URLS solution is an alternative to current train localization methods, which supports the 

train positioning with surrounding spatial measurements. Such a characteristic is particularly useful 

when the railway signaling system has failed. It can aid the train to localize itself for system initialization. 

In the meantime, URLS systems have the function of train detection to prevent rear-end collision under 

a diminished mode of train operation. 

3.4. Train Control Automation 

The train control and signaling system is a vital and key component to modern railway systems, which 

provides the fundamental signaling, control and protection to trains and interface to the supervision of 

train network for safety and efficiency. Advanced Train Control System (ATCS), Chinese Train Control 

System (CTCS) or European Train Control System (ETCS) are the examples of national standards 

designed to unify the safety systems for railways. The standards are usually specified at different levels 

according to the integrity of train control and supervision. 

For underground railways, the degree of automation is a critical issue to railway operation, since the 

operation safety, line capacity and service stability have to be maximized by rigorous train control and 
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supervision. URLS systems support the automatic train control by detection and identification of 

obstacles, which makes it possible to support driverless train operation or unattended train operation. 

4. Conclusions 

In this study, the concept of a GNSS-free URLS system that aims at replacing GNSS components and 

integrating the MLS and underground railway systems was introduced. Current strategies for GNSS 

outages were briefly reviewed and modified for the GNSS substitution. In order to minimize the 

deficiencies, an integrated approach is suggested for the configuration of URLS, which is possible to be 

simplified into real-time approach without inertial measurements. It is believed that the URLS solution 

would enhance the safety and management of underground railway systems with applications such as 

the improvement of monitoring systems, assisting train automation, and in safety enhancement. 

In addition, URLS can act as an example for the further development of self-contained GNSS-free MLS 

systems in general. 
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