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Abstract: Graphs have become ubiquitous structures to encode geographic knowledge
online. The Semantic Web’s linked open data, folksonomies, wiki websites and open
gazetteers can be seen as geo-knowledge graphs, that is labeled graphs whose vertices
represent geographic concepts and whose edges encode the relations between concepts.
To compute the semantic similarity of concepts in such structures, this article defines the
network-lexical similarity measure (NLS). This measure estimates similarity by combining
two complementary sources of information: the network similarity of vertices and the
semantic similarity of the lexical definitions. NLS is evaluated on the OpenStreetMap
Semantic Network, a crowdsourced geo-knowledge graph that describes geographic
concepts. The hybrid approach outperforms both network and lexical measures, obtaining
very strong correlation with the similarity judgments of human subjects.
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1. Introduction

Computing the similarity of concepts in a knowledge-representation structure is a cornerstone
for a wide variety of advanced tasks in geographic information science (GIScience), geographic
information retrieval, geoparsing, natural language processing and artificial intelligence. In this article,
we combine network similarity and lexical similarity measures into a hybrid measure in order to
compute the similarity of geographic concepts in graph-based structures that represent geographic
knowledge, showing empirically that both aspects of similarity increase the performance. Because of
their simplicity and their adherence with human semantic intuition, graphs have been the most popular
knowledge-representation structure over the past 30 years [1]. A wide variety of geographic knowledge
bases rely on some form of graph-based representation, ranging from gazetteers, geo-databases,
location-based social media and wikis, to the linked open data cloud that emerged from Semantic Web
research [2] (http://lod-cloud.net).

At the core, these structures can be seen as geo-knowledge graphs (GKGs). In this article, we
define a GKG as a representational artifact that contains geographic concepts, their mutual relations,
and their lexical descriptions. GKGs do not necessarily attach formal constraints to their concepts and
relations. Please note that GKG is a general term that does not refer to Google’s Knowledge Graph
(http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html). Formally, a
GKG is a directed graph whose vertices correspond to concepts and whose edges are relations. Lexical
descriptions of concepts are associated with vertices. Hence, such knowledge-representation structures
are ubiquitous: even websites can be seen as GKGs, in which each page is a concept, and hyperlinks
represent a generic, unspecified relation. More complex logic formalisms, such as conceptual graphs
and ontologies, still contain GKGs.

Figure 1. Fragments of geo-knowledge graphs (GKGs) extracted from Wikipedia and the
OpenStreetMap (OSM).

Traditionally, knowledge-representation artifacts were built by experts for specific scientific or
engineering purposes, such as the lexical database WordNet [3] and the artificial intelligence project Cyc
(http://www.cyc.com). With the emergence and sophistication of volunteered geographic information
(VGI) [4], GKGs are often characterized by highly variable coverage and quality [5]. GeoNames
(http://www.geonames.org) can be seen as a GKG, in which the gazetteer entries are concepts connected
through hierarchical and other relations. GKGs are found in the hyperlinked graph of Wikipedia articles,
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as well as in cartographic projects, such as OpenStreetMap, which focuses on spatial vector data (see
Figure 1).

In the context of such knowledge-representation graphs, given two concepts in a GKG (or in different
GKGs), a semantic similarity measure aims at quantifying their similarity as a real number, typically
normalized in the interval ∈ [0, 1]. Typically, the computation of semantic similarity is not an end in
itself, but is an intermediate task necessary to enable other tasks. For example, in a given GKG, the
concepts “river” and “canal” might have similarity 0.75, whilst “river” and “restaurant” score only 0.05.
If a measure mimics human judgment to a sufficient degree, these similarity values can be used for query
relaxation in geographic information retrieval, including canals in the results for a query aimed at rivers,
as well as for conceptual alignment, detecting high similarity between different representations of the
concept river in two geo-databases [6,7].

In our previous work, we investigated the application of network-based and lexical similarity
measures to compute the semantic similarity of geographic concepts, in the context of a crowdsourced
semantic network [8–10]. The original contribution of this article builds upon and extends this body
of work in several respects. First, we devise a hybrid semantic similarity measure, the network-lexical
similarity measure (NLS), which combines two pillars of the similarity of concepts in GKGs. We define
the first pillar as the concept’s topological location, i.e., its structural relations with other concepts.
The second pillar is based on the semantic similarity of concepts’ lexical definitions, expressed in
natural language. NLS combines network and lexical similarity measures, and both aspects contribute
to increasing the cognitive plausibility of the measure, i.e., the ability of the measure to mimic human
judgments. To the best of our knowledge, NLS is the first approach to semantic similarity that combines
these two aspects.

Second, the cognitive plausibility of NLS is thoroughly evaluated on a real-world GKG, the
OpenStreetMap (OSM) Semantic Network [5], which contains about 5000 concepts extracted from
crowdsourcing project OpenStreetMap. This GKG allows a detailed assessment of NLS in the context
of a geographic knowledge-representation artifact, enabling a critical discussion on the limitations of
network and lexical similarity measures. As ground truth, this evaluation utilizes the geo-relatedness
and similarity dataset (GeReSiD) [10], providing a more reliable and extensive evaluation, and allows a
detailed comparison of the measures. These results are compared with those obtained with the dataset
used to evaluate the matching-distance similarity measure (MDSM) [11]. The empirical results of this
study further the assessment of the cognitive plausibility of network and lexical measures and confirm the
high cognitive plausibility of NLS, which consistently outperforms both network and lexical measures.

The remainder of this article is organized as follows. Section 2 surveys relevant literature on semantic
similarity. Section 3 outlines NLS, the proposed hybrid measure of semantic similarity. Subsequently, a
detailed empirical evaluation of the measure is presented and discussed (Section 4). We conclude with a
summary and discussion of directions for future research (Section 5).

2. Background

Semantic similarity is a specific type of semantic relatedness, based on subsumption relations
(is a) [10]. For example, “fuel” is semantically related to “car”, while “bus” is semantically related and
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similar to “car”. Given the fundamental nature of semantic similarity, it is difficult to provide a definition
without circularity, and several terms have been used to discuss it. “Semantic distance” is used to refer to
the distance between two concepts represented in a geometric semantic model [12]. Depending on what
attributes and relations are considered, semantic similarity can be computed as inversely proportional to
semantic distance. Furthermore, the term “semantic association” is used to define semantic relatedness,
in particular in human memory retrieval processes. “Taxonomical similarity”, on the other hand, is
equivalent to semantic similarity [13]. In a GKG, concepts are connected through relations that express
their general semantic relatedness.

In the context of GIScience, measures of semantic similarity and relatedness are widely applied in
geographic information retrieval, data mining and geo-semantics [6,14]. Specific measures of semantic
similarity tailored to geographic concepts have emerged [15]. Rodríguez and Egenhofer [11] have
extended Tversky’s ratio model, taking context explicitly into account, by selecting a subset of features
based on user needs. Janowicz et al. [14] have developed a similarity measure for geographic concepts
based on description logic (DL), a family of Semantic Web languages. Such measures can only be
applied to concepts expressed in specific formalisms, such as DL. Hence, in the context of GKGs, these
measures are not directly applicable, and different approaches are needed.

2.1. Network Similarity Measures

This section describes existing techniques to compute the similarity of vertices in graphs, the first
component of NLS. These approaches to similarity are based on some form of structural distance
between nodes, such as edge counting, sometimes adding additional parameters to weight the paths [16].
Such network-based techniques have been applied to well-defined, expert-generated semantic networks
in which the edges are expressed in some formal semantics, such as WordNet. However, the GKGs we
are focusing on do not present such a semantically-rich structure, but encode knowledge in the form of
simple graphs of inter-linked objects. Given the popularity of networks in many fields, several algorithms
have emerged to identify similar objects exclusively on their link patterns in graphs that do not explicitly
formalize relations.

Small [17] devised the seminal “co-citation” algorithm. Given a graph representing scientific
articles and their mutual references, this measure models the similarity between two given papers
by the frequency in which they are cited together. Extending co-citation to a recursive form, Jeh
and Widom [18] created SimRank, an approach to calculating vertex similarity in directed graphs.
The underlying circular intuition is that two objects can be considered similar if they are referenced by
similar objects. The P-Rank algorithm [19] further extends co-citation by taking into account outgoing
links. Previous network similarity algorithms, such as the original co-citation [17], Coupling [20] and
Amsler [21], are specific cases of P-Rank. In our previous work, we showed that, when applied to
geographic concepts, SimRank and P-Rank tend to reach higher plausibility than the other network
measures [8].
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2.2. Lexical Similarity Measures

The general objective of lexical similarity measures is the quantification of the similarity of two lexical
units, typically as a real number. A lexical unit can be either an individual word, a compound word or
a segment of text [22]. Approaches to compute the semantic similarity of individual words (as opposed
to larger semantic entities) can be classified into two main families: knowledge-based and corpus-based.
Knowledge-based techniques utilize manually-generated artifacts as a source of conceptual knowledge.
Under a structuralist assumption, most of these techniques observe the relationships that link the
terms, assuming, for example, that the ontological distance is inversely proportional to the semantic
similarity [23]. WordNet [3] has been used to compute lexical similarity with a variety of methods, as
shown in Table 1 [24–30]. These measures obtain varying plausibility depending on the context and can
be combined into ensembles to obtain higher plausibility [31]. Corpus-based techniques, on the other
hand, do not need explicit relationships between terms and compute the semantic similarity of two terms
based on their co-occurrence in a large corpus of text documents [32,33].

Table 1. WordNet-based similarity measures. lcs: least common subsumer.

Name Description Name Description

path [23] Edge count wup [24] Edge count between lcs and terms
lch [25] Edge count scaled by depth hso [26] Paths in lexical chains
res [16] Information content of lcs lesk [27] Extended gloss overlap
jcn [28] Information content of lcs and terms vector [29] Second order co-occurrence vectors
lin [30] Ratio of information content of lcs and terms vectorp [29] Pairwise second order co-occurrence vectors

Semantic similarity can be computed between segments of texts, in a linguistic problem called
“paraphrase detection”. For example, the sentence “Any trip to Italy should include a visit to Tuscany
to sample their wines” bears high semantic similarity with and is a paraphrase of “Be sure to include
a Tuscan wine-tasting experience when visiting Italy”. To tackle this issue, Corley and Mihalcea [34]
developed a knowledge-based bag-of-words technique to paraphrase detection, which relies on some
of the WordNet measures. In our previous work, we developed a similarity measure geared towards
lexical definitions [9]. In terms of precision, the knowledge-based measures generally outperform the
corpus-based ones [35]. Although numerous semantic similarity measures exist, to the best of our
knowledge, no hybrid measure has been proposed that combines network and lexical similarity for
GKGs. The next section outlines NLS, our approach to filling this knowledge gap.

3. The Network-Lexical Similarity Measure

The general problem that network-lexical similarity measure (NLS) aims at solving is the
quantification of semantic similarity in a GKG. Formally, a GKG is a labeled graph G(V,E, L), with a
set of vertices V (concepts), a set of directed edgesE (relations) and a set of labels L (lexical definitions).
A labeling function V → L associates the vertices with labels. A label l ∈ L contains a segment of text
and can be empty. A directed edge e ∈ E associates two nodes e = {u, v}, where u, v ∈ V . Given
two concepts a and b ∈ V , the objective of a semantic similarity measure is to compute a similarity
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score s(a, b) ∈ <. To ease their interpretation, the scores are normalized in the interval ∈ [0, 1]. It is
important to note that similarity scores are not meaningful in isolation, but convey useful information
when compared with other pairs of concepts.

In order to compute the semantic similarity in GKGs, NLS rests on two pillars: network similarity
snet and lexical similarity slex. The network similarity of two concepts is extracted from their
topological location in the graph, observing the link structure of G. On the other hand, the
lexical similarity focuses on the labels in L that contain segments of text describing the concepts.
Natural language processing techniques can thus be used to measure the semantic similarity of segments
of text. These two perspectives on concept similarity are not mutually exclusive, and NLS considers
them as complementary. NLS should be seen as a general framework to compute semantic similarity,
combining complementary aspects of similarity in GKGs.

3.1. Network Similarity (snet)

The network similarity function snet(a, b) aims at quantifying the structural similarity of vertices
in graph G. Because GKGs do not encode the formal semantics of the relations between concepts,
suitable measures have to consider edges as indicators of general relatedness. If either a or b is not
connected to other nodes, snet(a, b) is undetermined, and NLS relies only on slex(a, b). Based on previous
work on the cognitive plausibility of co-citation measures in the context of conceptual graphs, we
adopt six state-of-the-art network similarity measures [8]. In particular, we consider P-Rank, a generic
co-citation algorithm [19]. As discussed in Section 2.1, fordifferent parameters, P-Rank is equivalent
to earlier algorithms, including Co-citation [17], Amsler [21], Coupling [20] and SimRank [18] and
rvs-SimRank [19]. In this context, we adopt a formulation of P-Rank in linear algebra [8], discussing in
detail the meaning and impact of its parameters (K, λ and C).

P-Rank is a recursive measure of similarity, based on the combination of two recursive assumptions:
(1) two entities are similar if they are referenced by similar entities; and (2) two entities are similar if they
reference similar entities. P-Rank is calculated iteratively, choosing a number of iterations K ∈ [1,∞).
The higher K, the better the approximation of the theoretical solution to P-Rank. In this context, C is
the P-Rank decay factor ∈ (0, 1). Coefficient λ is the P-Rank in-out balance constant, in the interval
[0, 1]. When λ = 1, only the incoming links are considered, and when λ = 0, only the outgoing links are
included in the computation. Hence, we define snet as follows:

snet(a, b) = lim
k→∞

Rk(a, b) (1)

Rk = C(λ ·TiRk−1T
′
i + (1− λ) ·ToRk−1T

′
o) + Θ

where K is the P-Rank maximum iterations (K ∈ [1,∞)). Matrix Rk is a P-Rank score matrix at
iteration k. Matrix Ti is a transition matrix of G constructed on I(a). In addition, To is the transition
matrix of G constructed on O(a), and Θ is a diagonal matrix, so that ∀k, when a = b, Θ(a, b) +

Rk(a, b) = 1. All P-Rank iterations with k > 0 can be expressed as a series of iterations converging to
the theoretical similarity score. Based on the optimization devised by Yu et al. [36], the computational
complexity of this measure has the upper bound O(n3 +Kn2).
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3.2. Lexical Similarity (slex)

The purpose of similarity function slex(a, b) is the quantification of the semantic similarity of two text
segments la and lb ∈ L, which represent the lexical definition of nodes a and b in a GKG. Each concept
is associated with a set of definitional terms ta1...tan that describe the concept. If la or lb are empty,
slex(a, b) is undetermined, and NLS has to rely only on snet. In order to compute slex between two
segments of text, we adopt the knowledge-based technique that we developed in our previous work [9].
The basic intuition behind this lexical similarity measure is that similar terms are described using similar
terms. This bag-of-words measure computes the semantic similarity of two terms s(a, b) based on input
parameters {POS,C, simt, simv}: a part-of-speech (POS) filter, which consists of a set of POS tags
(e.g., nouns and verbs); a corpus C; a term similarity function simt; and a vector similarity function
simv. The four steps of the similarity algorithm are as follows:

1. Given two concepts a and b, lemmatize and POS-tag their terms in labels la and lb.
2. Construct semantic vectors ~a and~b, based on definitional terms having POS contained in the POS

filter. For each definitional term t, retrieve weights wt from corpus C. A common approach to
computing the weight of the definitional terms is the term frequency-inverse document frequency
(TF-IDF). A relatively infrequent term in corpus C is expected to bear a higher weight than a
frequent one.

3. Construct matrices Mab and Mba. Each cell of these similarity matrices contains a term similarity
score simt(tai, tbj). In principle, any term-to-term semantic similarity measure might be adopted
as simt (see, for example, Table 1).

4. Compute similarity score slex(a, b) from the similarity matrices using vector similarity simv, based
on paraphrase-detection techniques, such as those by Corley and Mihalcea [34] or Fernando and
Stevenson [37].

Having constructed the semantic vectors ~a and ~b and the matrices Mab and Mba, the vector-to-vector
similarity simv in Step 4 deserves particular attention. First, an asymmetric similarity measure of
semantic vectors sim′v(~a,~b) can be formalized as follows:

sim′v(~a,
~b) =

|~a|∑
i=1

wai · ŝ(tai,~b,Mab), sim
′
v(
~b,~a) =

|~b|∑
i=1

wbi · ŝ(tbi,~a,Mba) (2)

sim′v(~a,
~b) 6= sim′v(

~b,~a), sim′v(~a,
~b) ∈ [0, 1]

where function ŝ returns a similarity score between a definitional term and a semantic vector, based on
a similarity matrix. Two functions can be adopted as ŝ: either ŝcom (based on Corley and Mihalcea [34])
or ŝfes (based on Fernando and Stevenson [37]). Finally, a symmetric measure slex ∈ [0, 1] can be easily
obtained from sim′v as the average of sim′v(a, b) and sim′v(b, a). This knowledge-based approach relying
on semantic vectors enables the computation of the lexical similarity in NLS. In terms of computational
complexity, the upper bound of this measure is O(n3). As shown in the next section, to obtain a more
plausible measure of similarity in GKGs, this component of semantic similarity can be combined with
the network similarity.
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3.3. Hybrid Similarity (shyb)

In general, the limitations of computational approaches to the same problem can be overcome by
combining them into an appropriate hybrid measure. In a GKG, some concepts might be situated in a
densely-connected area of the network, while having sketchy labels. By contrast, other concepts can be
poorly linked, but have richer lexical labels. This phenomenon sets upper bounds for network and lexical
similarity, limiting the overall cognitive plausibility of the similarity measures.

Considering two concepts a and b in graphG, we have defined a network similarity measure snet(a, b)
and a lexical similarity measure slex(a, b). Both measures quantify the concept similarity with a real
number in the interval < ∈ [0, 1], where 0 means minimum similarity and 1 maximum similarity.
In order to obtain a combined measure of similarity shyb(a, b), we define two combination strategies:
score combination (ssc) and rank combination (srk). The score combination ssc consists of the linear
score combination of network and lexical similarities, weighted by a combination factor α ∈ [0, 1]:

ssc(a, b) =
α · snet(a, b) + (1− α) · slex(a, b)

2
(3)

The rank combination srk, on the other hand, is the linear combination of the pair rankings,
normalized on the cardinality of the pair set:

rkcomb(a, b) = α · rk(snet(a, b)) + (1− α) · rk(slex(a, b)) (4)

srk(a, b) =
|P | − rkcomb(a, b)

|P | − 1

rkcomb ∈ [1, |P |], srk ∈ [0, 1]

where rk is a ranking function, P a set of concept pairs and α is the combination factor. While ssc is
a continuous function, srk is discrete. For example, in a set P of ten pairs, a pair of concepts (a, b) can
have snet = 0.7, resulting in rk(snet) = 3 in the pair set. The lexical score slex = 0.45 might correspond
to rk(slex) = 8. Fixing the value of α to 0.5, the score combination is ssc = 0.57. The rank combination
amounts to rkcomb = 5.5; therefore, srk = 0.5. The next section describes an empirical evaluation of
NLS in a real-world scenario.

4. Evaluation

In this section, NLS is evaluated in a real-world scenario. The key purpose of this evaluation is the
validation of the intuition underlying NLS: the complementary nature of network and lexical similarity
in GKGs. These empirical results indicate that the hybrid measure can overcome the limitations of
network and lexical measures. As ground truth, we selected the OSM Semantic Network, a GKG, and
a corresponding dataset of human-generated similarity judgments, described in the next section. In the
evaluation, we show that existing WordNet-based similarity measures are not sufficient to compute the
semantic similarity in the context, and we analyze in detail the performance of the two components of
NLS, assessing the superior plausibility of the hybrid measure. These results are then compared with
those reported in our previous work, against the dataset defined in [11] to evaluate the matching-distance
similarity measure (MDSM), a similarity measure for geographic concepts.
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4.1. Ground Truth

As an evaluation testbed for NLS, we selected a GKG, the OSM Semantic Network [8]. This GKG
contains a machine-readable representation of geographic concepts, extracted from the crowdsourced
cartographic project OpenStreetMap. For example, the concept canal is represented by a vertex linked
to concepts waterway and river (http://github.com/ucd-spatial/OsmSemanticNetwork). To date, the
network contains about 5000 geographic concepts, linked by 19,000 edges. The OSM Semantic Network
is a suitable choice, because it consists of a graph containing inter-connected concepts and whose
concepts are associated with lexical descriptions. To evaluate NLS, we adopted the cognitive-plausibility
approach, i.e., the similarity judgments generated by the measure are compared against judgments
obtained from human subjects.

Table 2. Human-generated similarity scores (Hsc) and rankings (Hrk) on 50 concept pairs,
with 0 ties.

Concept A Concept B Hsc Hrk Concept A Concept B Hsc Hrk

motel hotel 0.9 1 picnic site stream 0.37 26
theater cinema 0.87 2 city railway station 0.33 27

public transport station railway platform 0.81 3 heritage item,area valley 0.29 28
basketball court volleyball facility 0.78 4 car store/shop cycling facility 0.27 29

floodplain wetland 0.77 5 office building academic bookstore 0.27 30
stadium athletics track 0.76 6 canoe spot hunting shop 0.24 31

tram way subway 0.76 7 school toy shop 0.22 32
bay body of water 0.76 8 post box town 0.21 33

art shop art gallery 0.75 9 supermarket surveillance camera 0.2 34
historic battlefield monument 0.67 10 arts center currency exchange 0.16 35

restaurant beverages shop 0.65 11 ambulance station city 0.15 36
historic castle city walls 0.64 12 shelter agricultural field 0.15 37

administrative office town hall 0.62 13 bed and breakfast school building 0.14 38
tower lighthouse 0.62 14 panoramic viewpoint race track 0.12 39

police station prison 0.61 15 football pitch corporate office 0.11 40
canal dock 0.59 16 beauty parlor fire station 0.09 41

glacier body of water 0.56 17 fashion shop swimming spot 0.08 42
church historic ruins 0.53 18 vending machine gate 0.08 43

barracks shooting range 0.51 19 city suburb antiques furniture shop 0.07 44
mountain hut hilltop, mountaintop 0.49 20 community center stream 0.06 45

industrial land use landfill 0.44 21 water ski facility office furniture shop 0.05 46
swimming pool water reservoir 0.42 22 interior decoration shop tomb 0.05 47
managed forest lone, significant tree 0.4 23 greengrocer aqueduct 0.03 48

sea island 0.39 24 political boundary women’s clothes shop 0.02 49
speed bump car park 0.39 25 nursing home continent 0.02 50

As a set of human psychological judgments, we selected the geo-relatedness and similarity dataset
(GeReSiD) (http://github.com/ucd-spatial/Datasets) [10]. This dataset provides a set of human-generated
similarity scores Hsc on 50 concept pairs rated by 203 human subjects, then ranked as Hrk, covering in
total 97 concepts. Because semantic relatedness is outside the scope of this study, we considered only
semantic similarity judgments. Following Resnik [16], we consider the upper bound for the cognitive
plausibility of a computable measure to be the highest correlation obtained by a human rater with the
dataset’s means (Spearman’s ρ = 0.93). In other words, this upper bound represents the empirical best
results that human subjects obtained when rating the similarity of the concept pairs. Table 2 includes all
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50 concept pairs, with the similarity score and ranking assigned by the human subjects, utilized in the
next sections as ground truth.

4.2. WordNet-Based Experiment

This experiment aims at investigating the cognitive plausibility of WordNet-based similarity measures
when applied directly to the concepts contained in GeReSiD. In order to evaluate the WordNet similarity
measures directly on the concepts, the 97 OpenStreetMap concepts contained in GeReSiD were manually
mapped to the corresponding WordNet synsets. The ten WordNet-based measures, summarized in
Table 1, were computed on the 50 pairs. The resulting correlations of these similarity scores with the
GeReSiD human scores obtain correlations with human similarity in the range [0.53, 0.18]. While some
measures obtained relatively high plausibility (e.g., hso, ρ = 0.53), others resulted in weak correlations,
showing very low cognitive plausibility. The statistically-significant results at p < 0.05 indicate
ρ in the interval [0.33, 0.53]. The top performing measures are hso, vector and vectorp, obtaining
ρ ∈ [0.43, 0.53]. The other measures obtain a considerably lower cognitive plausibility (ρ < 0.34),
indicating no convergence towards the human-generated dataset. This experiment shows the inadequacy
of WordNet-based measures applied directly to this GKG and the need for a more plausible measure.

4.3. Evaluation of Network Similarity

This section reports on the evaluation we conducted to assess the network component of NLS snet.
In order to evaluate the cognitive plausibility of co-citation measures applied to GKGs, an experiment
was set up following and extending the approach that we adopted in [8]. The scores generated by the
co-citation algorithms were compared with the similarity scores of the 50 pairs contained in GeReSiD,
assessing their cognitive plausibility.

Network experiment setup. As discussed in Section 3.1, the recursive co-citation algorithm P-Rank
includes a number of co-citation algorithms [19], including, among others, Coupling [20], Amsler [21]
and SimRank [18]. To explore the performance of these network similarity measures, the following
P-Rank parameters were selected:

• λ (P-Rank in-out link balance): 11 discrete equidistant levels ∈ [0, 1].
• C (P-Rank decay constant): nine discrete equidistant levels ∈ [0.1, 0.9]. C = 0.95 was also

included, being the optimal value for the domain [8].
• K (P-Rank iterations): 40 P-Rank iterations.

These parameters resulted in 4400 unique combinations of λ,C and K. The similarity scores were
then obtained for the 50 concept pairs in GeReSiD, applying P-Rank for all of the 4400 combinations.
The resulting 4400 sets of similarity scores were subsequently compared with the similarity scores
of GeReSiD. The tie-corrected Spearman’s rank correlation coefficient ρ was utilized to assess the
correlation between machine and human-generated scores, on the 50 pair rankings without ties.

Network experiment results. The experiment resulted in 4400 correlations between co-citation
similarity scores on the OSM Semantic Network and the corresponding similarity scores in GeReSiD,
with p < 0.01 in all cases. All of the correlation tests were conducted on the 50 concept pairs, with a
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number of ties varying from zero to nine, 2.3 on average. In order to identify general trends in the results,
the correlations are grouped by the three P-Rank parameters. As K increases, the similarity scores are
closer to the theoretical, asymptotic value of P-Rank. In the results, the correlations quickly converge
with K ∈ [1, 10], followed by a slow decline in the interval [11, 20], with K > 20, the correlations
remain stable, around the mean ρ = 0.62, with standard deviation (SD) equal to 0.1.

The constant C determines how fast the similarity decays during the iterations. When C → 0, the
decay is fast, while C → 1 implies a slow decay. For all of the values of C, the average correlation
remains in the range [0.55, 0.62], with SD = 0.11. Low values of C ([0.1, 0.4]) correspond to the lowest
plausibility in the experiment (ρ < 0.65). The best results are obtained when C ∈ [0.5, 0.9], with a
peak at C = 0.8 (ρ = 0.62) and a drop when C = 0.95. The third parameter that influences the results
of P-Rank is λ, the balance between in- and out-links in the semantic network. When λ = 0, only the
out-links are considered, while λ = 1 includes only in-links.

Figure 2 shows the impact of λ on the cognitive plausibility of P-Rank. Each point on the plot
represents the average of 410 correlations, falling in the range [0.48, 0.65], with SD ≈ 0.1. The
performance of the algorithms improves steadily as λ moves from zero to 0.9, with a peak at λ = 0.9

(mean ρ = 0.69). When λ = 1, the performance decreases suddenly (ρ = 0.63), indicating that
out-links provide useful information. Hence, focusing on the best approximations to the theoretical
value of P-Rank (K = 40), the most plausible results against GeReSiD are located in the intervals
C ∈ [0.5, 0.8], λ ∈ [0.8, 0.9]. In this region, the mean correlation with the human rankings reaches
ρ = 0.73. Table 3 summarizes the results of this evaluation, comparing the cognitive plausibility of the
snet algorithms against GeReSiD, including the results with the MDSM evaluation dataset from [8].
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Figure 2. Experiment results grouped by P-Rank in-out link factor λ.

Network dataset comparison. Although the GeReSiD results show substantial agreement with
the MDSM evaluation dataset, differences between the two datasets exist. The optimal performance
of P-Rank in GeReSiD is obtained with parameters C = 0.8, λ = 0.9. By contrast, the MDSM
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evaluation dataset is best approximated when C = 0.9, λ = 1, corresponding to the SimRank algorithm.
The plausibility of P-Rank suddenly drops when λ = 1 in GeReSiD, which does not occur in the MDSM
evaluation dataset. This difference is due to the limited information problem that affects SimRank, as
Zhao et al. [19] pointed out. As SimRank only relies on in-links, vertices that have only out-links
cannot obtain a similarity score. The different coverage in the two datasets can also help explain
these differences. While the MDSM evaluation dataset contains 29 concepts, GeReSiD covers 97
OpenStreetMap concepts, including more concepts affected by the limited information problem.

Table 3. Cognitive plausibility of network similarity measures snet. Sim stands for similarity.
MDSM results from [8]. * Best performance.

K λ C Network MDSM GeReSiD
[1,∞) [0, 1] (0, 1) Measure Sim ρ Sim ρ

1 0 − Coupling [20] 0.55 0.5
1 0.5 − Amsler [21] 0.67 0.53
1 1 − Co-citation [17] 0.72 0.61

10 0 0.9 rvs-SimRank [19] 0.57 0.46
10 0 0.5 − 0.57 0.5
10 0 0.1 − 0.6 0.51
10 0.5 0.9 P-Rank [19] 0.76 0.64
10 0.5 0.5 − 0.73 0.62
10 0.5 0.1 − 0.67 0.6
40 0.9 [0.5,0.8] − − [0.72,0.73 *]
10 1 0.9 SimRank [18] 0.85 * 0.65
10 1 0.5 − 0.78 0.64
10 1 0.1 − 0.75 0.64

Network similarity limitations. Although optimal parameters lead to strong correlation for
similarity (ρ ≈ 0.7), it is beneficial to assess the cases in which the network similarity measures show
a considerable discrepancy with the human-generated rankings. When K = 40, C = 0.8 and λ = 0.9,
concept pair<arts center, bureau de change> is ranked 35th in the set of 50 pairs by the human subjects,
while the pair is ranked sixth by P-Rank. This wide gap is due to the high structural similarity of the
two concepts, which are both linked to the key amenity, and are not densely linked to other concepts
that might help the algorithm reduce their semantic similarity. The opposite case arises with two pairs
<city, railway station> and<heritage item, valley>, which are ranked respectively 27th and 28th by the
human subjects and are ranked 44th and 45th by P-Rank. These weak relations are not captured by the
link structure in the OSM Semantic Network, and therefore, P-Rank fails to find any similarity between
the pairs.
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4.4. Evaluation of Lexical Similarity

This section discusses the evaluation that we have conducted on the lexical similarity component slex
of NLS, outlined in Section 3.2, using GeReSiD as ground truth. This approach consists of extracting
vectorial representations of the lexical definitions and then comparing them using term-to-term semantic
similarity measures. The overall label-to-label similarity measure is subsequently obtained by combining
the term similarity matrix using paraphrase detection techniques.

Lexical experiment setup. The experiment consists of a set of 180 combinations of the technique’s
four input parameters {POS,C, simt, simv}, detailed in Table 4. All of the rankings generated in this
phase contained no ties and were compared with the GeReSiD using Spearman’s ρ.

Table 4. Lexical experiment setup: resources included as input parameters. POS,
part-of-speech.

Param # Description

POS 3 POS filters (NN, VB, NN VB). Adjectives (JJ) were initially included, but most measures simt

are designed to handle only nouns and verbs, making a direct comparison difficult.
C 3 We collected two corpora: the OSM Wiki website and a set of random news stories from the

newspaper, Irish Independent. Both contain about 2.5 M words. The Nullcorpus corresponds to
constant weights, i.e., a constant w > 0.

simt 10 The term-to-term similarity function simt is used to construct the similarity matrices needed to
compute the similarity: hso, jcn, lch, lesk, lin, path, res, vector, vectorp and wup(see Table 1).

simv 2 Two vector-to-vector similarity measures, originally developed to detect paraphrases, were
included: com [34] and fes[37]

Total 180 |POS| · |C| · |simt| · |simv|

Lexical experiment results. The results are summarized in Table 5, which for each parameter reports
median, quartiles and maximum ρ. As the distributions of ρ for the algorithm parameters tend to be
heavily skewed, we adopt the median ρ̃ as a robust estimator of central tendency, reporting the 25%
and 75% quartiles for each parameter. As already noted in relation to the results in [9], verbs used in
isolation (POS = VB) do not show correlation with the human dataset, resulting in ρ ∈ [0.01, 0.16],
with p > 0.1. Similar issues apply to the fesvector-to-vector measure, which obtained ρ̃ = 0.26, with
p > 0.05. Hence, these non-significant results were excluded from the analysis. For all of the other
cases, the correlations were statistically significant with p < 0.001.

Overall, the lexical component of the NLS approach to computing semantic similarity in a GKG
obtains a median ρ̃ = 0.61, with the upper bound being ρ = 0.74. The four parameters that influence
the algorithm results are {POS,C, simt, simv}. The vector-to-vector measure simv determines the
strategy to compute the similarity of semantic vectors. While fes did not show satisfactory cognitive
plausibility, com obtained more plausible results. The POS filter selects the terms to be included in
the semantic vectors. Excluding the analysis of verbs in isolation (VB), NN and NN VBshow a very
close cognitive plausibility (ρ̃ = 0.61). The text corpus C is utilized to assign semantic weights to the
terms. The cognitive plausibility obtained by the Null and OSM Wiki corpora is largely comparable
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(ρ̃ = 0.58). By contrast, the corpus extracted from the Irish Independent, containing news stories,
outperforms the other corpora, resulting in a higher cognitive plausibility (ρ̃ = 0.64), showing that the
non-domain-specific corpus supports the computation better than a domain-specific corpus.

Table 5. Results of the lexical similarity experiment. MDSM results from [9].
* Best performance. GeReSiD, geo-relatedness and similarity dataset.

MDSM GeReSiD Sim

Param Param Median Median 25%–75% Max
Name Value ρ̃ ρ̃ Quartiles ρ

simv

com 0.7 0.61 0.56 0.64 0.74
fes 0.66 − − − −

POS
NN 0.68 0.61 * 0.56 0.64 0.74 *

NN VB 0.7 0.61 * 0.56 0.64 0.73
VB − − − − −

C

Irish Indep 0.7 0.64 * 0.62 0.72 0.74
Null 0.7 0.58 0.54 0.62 0.64

OSM Wiki 0.67 0.58 0.52 0.62 0.65

simt

vector 0.62 0.64 * 0.64 0.71 0.74 *
path 0.7 0.64 * 0.64 0.71 0.73
lch 0.74 0.62 0.62 0.7 0.73
hso 0.71 0.61 0.61 0.66 0.71
wup 0.74 0.6 0.57 0.62 0.66
res 0.72 0.6 0.59 0.62 0.64
lesk 0.48 0.56 0.56 0.62 0.64

vectorp 0.57 0.54 0.52 0.6 0.64
jcn 0.75 0.5 0.49 0.55 0.59
lin 0.67 0.48 0.45 0.5 0.56

all – 0.69 0.61 0.56 0.64 0.74

The fourth parameter, which has a high impact on the results, is the term-to-term measure simt.
Measures vector, path, lch and hso fall in the top tier, with an upper bound ρ ≥ 0.7 and a median
ρ̃ > 0.6. All of the other measures perform in a less satisfactory way, with a lower median in the interval
[0.48, 0.6] and an upper bound ρ ∈ [0.56, 0.66]. After the top cluster of these four term-to-term measures,
the performance drops visibly, reaching a minimum with lin (median ≈ 0.47, upper bound ≈ 0.55).
The other measures (wup, res, lesk, vectorp and jcn) fall between the top four, reaching intermediate
results. The lexical similarity measures slex outperform the basic WordNet-based measures, with an
upper bound ρ = 0.74). The top performance is reached with the following parameters: POS = NN,
C = Irish Indep, simv = com, simt = {vector, path, lch, hso}). In such cases, the cognitive plausibility
ρ falls in the interval [0.61, 0.74], showing a statistically-significant strong correlation with GeReSiD.
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Lexical dataset comparison. Table 5 includes the median ρ̂ that we obtained with the MDSM
evaluation dataset in [9]. The cognitive plausibility obtained in these two evaluations shows common
trends, but also a divergence for certain parameters. This fact is consistent with the evaluation of
network similarity, in which co-citation approaches performed better on the MDSM evaluation dataset
than on GeReSiD. This difference is mostly due to the structure and coverage of the MDSM evaluation
dataset (29 concepts structured in five sets) and GeReSiD (97 concepts in one set). While the overall
trends in the two experiments on lexical similarity are consistent, the effect of individual parameters
{POS,C, simt, simv} varies.

In particular, simt have a major impact on the cognitive plausibility of the algorithm. A high
variability can be noticed between the two experiments, which is not uncommon in the literature on
semantic similarity. In a study by Budanitsky and Hirst [38], measures jcn, hso, lin, lch and lesk
obtain very different cognitive plausibility against two well-known similarity datasets. The measures
that reach the top overall performance are lch, path, vector and hso, with upper bounds in the range
[0.72, 0.75]. The other measures rank lower, falling in the interval [0.62, 0.69]. It is possible to notice
that, although more complex measures can obtain optimal results in certain contexts, simpler shortest
path-based measures, such as path and lch, tend to perform more reliably across the two datasets.

Lexical similarity limitations. Although slex can reach high plausibility, specific cases show high
discrepancy with the human-generated similarity judgments in the set of 50 concept pairs in GeReSiD.
Focusing on the best case (POS = NN, C = Irish Indep, simv = com, simt = vector, with ρ = 0.74), it
is possible to observe that the pair <sea, island> is ranked 24th by human subjects and eighth by the
algorithm. The definitions of these two concepts have large lexical overlap, but they are highly related
(eighth in the relatedness ranking) and not similar. In this case, the algorithm mistakes relatedness
for similarity.

Furthermore, <battlefield, monument> is ranked 10th by the human subjects, and only 36th by the
algorithm. The concepts’ labels share only one term (military), and the other terms do not increase
their similarity. Analogously, the similarity of <industrial land use, landfill> is underestimated, as it is
ranked 21st by humans and 47th by the algorithm. The reason for this wide mismatch lies in the fact that
the label of landfill is extremely short (“where waste is collected, sorted or covered over”) and does not
contain terms that would allow the algorithm to capture some degree of similarity with the context of
industrial production and waste processing. These limitations can be overcome by combining snet and
slex into a hybrid measure, as shown in the next section.

4.5. Evaluation of Hybrid Similarity

As stated in Section 3.3, two methods can be used to combine snet and slex into a hybrid measure:
a score combination ssc and a rank combination srk. This section describes an empirical evaluation of
these two combination techniques, showing that the cognitive plausibility of such hybrid measures is
generally higher than the individual network and lexical measures, supporting the intuition behind NLS.

Hybrid experiment setup. To explore the effectiveness of score and rank combination methods, a
cognitive plausibility experiment was set up using GeReSiD. The most plausible cases were selected for
network snet and lexical measures slex, based on the empirical results shown in Sections 4.3 and 4.4.
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As we are interested in assessing whether the combination methods are able to improve the results
at the top of the range, the selection is restricted to the top 30 cases for both approaches, as a
representative sample of the network and lexical measures. These top cases are not statistical outliers, but
accurately reflect general trends in the empirical evidence collected in the aforementioned experiments.
The experiment was set up with the following input parameters:

• Combination methods: score combination ssc and rank combination srk.
• Combination factor α: ten discrete equidistant levels ∈ [0, 1]. When α = 0, only the lexical

measure is considered; α = 1, on the other hand, corresponds to the network measure.
• Network similarity snet: 30 most cognitively plausible cases when compared with GeReSiD.
• Lexical similarity slex: 30 most cognitively plausible cases when compared with GeReSiD.

For each value of α, each case of snet and slex were combined through ssc and srk. This resulted in the
cognitive plausibility of 18,000 hybrid measures on the 50 concept pairs of the GeReSiD, with p < 0.001

for all of Spearman’s correlation tests, with no ties in the rankings. A hybrid measure is considered
successful if it outperforms both its components snet and slex, i.e., the cognitive plausibility of the hybrid
measure is strictly greater than network and lexical similarity, formally ρhyb > ρnet ∧ ρhyb > ρlex. If the
hybrid measure is lower or equal to any of its components, it has failed.

Table 6. Cognitive plausibility of NLS. Max ρ is the upper bound obtained by an approach.
net: network measure; lex: lexical measure; hyb: hybrid measure. * Best performance.
For all Spearman’s tests, p < 0.001.

Score Comb ssc Rank Comb srk

α ρ Success % ρ Success %

lex 0 0.74 − 0.74 −
hyb 0.2 0.79 74.4 0.79 73.1
hyb 0.4 0.81 87.5 0.83 100.0
hyb 0.5 0.82 * 91.9 0.84 * 100.0
hyb 0.6 0.81 95.6 0.83 100.0
hyb 0.8 0.8 96.9 0.79 86.9
net 1 0.73 − 0.73 −

Hybrid experiment results. Clear patterns emerge from the experiment results. Hybrid measures,
combining network and lexical similarity, show a consistent advantage over their network and lexical
components. The ranking combination srk performs consistently better than the score combination ssc,
obtaining higher plausibility and success rate. Table 6 summarizes the experiment results, contrasting the
upper bound of ρ obtained by net and lex measures in isolation, and hyb when combined. The cognitive
plausibility of hybrid measures is substantially greater than the individual measures, with a peak at
ρ = 0.84 when α = 0.5. This empirical evidence points out that the optimal value of α tends to fall in
the interval [0.4, 0.6], drawing information evenly from the network and lexical components.

The success rate, expressed as a percentage, indicates in how many cases a hybrid measure
outperformed both of the individual measures. As it is possible to notice in Table 6, when α ∈ [0.4, 0.6],
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the success rate is very high, in the interval [87.5%, 100%]. In particular, the rank combination srk

outperforms all individual measures (100%). High success rates are also observable when α ∈ (0, 0.4),
with an average success rate of 82.9%. At the other end of the spectrum (α ∈ (0.6, 1)), the average
success rate is 75%. In none of the cases under consideration was a hybrid measure lower than both
its components.

The success rates reported in Table 6 show that, overall, both components strongly contribute to the
cognitive plausibility of NLS. In particular, when using ranking combination srk with optimal values
of α, the hybrid measures obtain a success of >89%. The performance of NLS is depicted in Figure 3,
highlighting the impact of α on the cognitive plausibility, adopting the two combination techniques (ssc
and srk). The roughly symmetrical bell-shaped curves in the figure display the benefit of the hybrid
measures (α ∈ (0, 1)) over the individual measures, at the extremes of the horizontal axis (α = 0

corresponds to lexical measures, α = 1 to network measures).
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Figure 3. Cognitive plausibility of hybrid measures. comb rank: rank combination srk;
comb score: score combination ssc; α ∈ [0, 1].

Hybrid similarity limitations. Considering the best hybrid measures (α = 0.5), it is possible to
observe changes with respect to the rankings generated by individual measures. Only in one case do
the hybrid measures fail to improve on the previous measures, ranking <sea, island> fifth (see Table 2
for a comparison with human rankings). In all of the other cases discussed above, the hybrid measures
provide more cognitively plausible rankings: <arts center, bureau de change> (15th), <city, railway
station> (19th), <heritage item, valley> (28th), <battlefield, monument> (29th), and <industrial land
use, landfill> (44th). In summary, the hybrid measures cannot fully overcome the limitations intrinsic
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to the data source, but they succeed, on average, in bringing the rankings closer to human judgments.
Based on this body of empirical evidence, the hybrid approach is the most suitable to compute semantic
similarity in GKGs.

5. Conclusions

In this article, we described network-lexical similarity measure (NLS), a measure designed to capture
the similarity of concepts in GKGs, knowledge-representation structures used to represent concepts and
their relations. The evaluation on the OSM Semantic Network confirmed the benefits of combining
network similarity and lexical similarity into a hybrid measure, obtaining higher cognitive plausibility.
Compared with the upper bounds for network measures (ρ = 0.73) and lexical measures (ρ = 0.74),
hybrid measures reach a considerably higher upper bound (ρ = 0.84). In order to provide practical
guidelines, Table 7 summarizes the optimal results of the network, lexical and hybrid measures.

Although NLS obtains high cognitive plausibility, overcoming the intrinsic issues of network and
lexical similarities, some limitations remain to be addressed in future research. The network measures
snet that we included in this study have cubic complexity, and substantial spatio-temporal optimization is
needed to apply them to large GKGs [39]. In relation to slex, the paraphrase-detection techniques utilized
in the lexical component need optimizations to be applicable on a very large scale. In addition, WordNet
has limitations in coverage and biases. The method described in slex utilizes a bag-of-words model for
the terms in the lexical descriptions. However, in many cases, the most important terms tend to be located
at the beginning of the descriptions, and taking the term order into account might improve the results,
especially in cases of very long and noisy lexical definitions. Furthermore, fully-corpus-based measures
could be utilized in slex to overcome NLS to increase its coverage, at the expense of some precision.

From a more cognitive viewpoint, the main limitation of NLS lies in the lack of a precise context
for the computation of the similarity measure, as illustrated by Keßler [40]. Other limitations affect
the evaluation of cognitive plausibility that we have adopted in Section 4. Human subjects grasp
semantic similarity intuitively, but the translation of a similarity judgment into a discrete number can
be highly subjective, limiting the inter-rater agreement and the generalizability of the results [41]. In
this article, we evaluated NLS on its ability to simulate human judgments on the entire range of semantic
similarity, i.e., from very similar to very dissimilar concepts. However, many similarity applications need
specifically the top-k most similar concepts to a given concept, rather than the least-similar concepts.
Given that no cognitive plausibility evaluation is fully generalizable, robust evidence can only be
constructed by cross-checking different evaluations. For example, complementary indirect evaluations
could focus on specific similarity-based tasks, such as word sense disambiguation and information
retrieval. The approach to semantic similarity adopted in NLS can be extended to computing measures
of relatedness, which have vast applicability [38].

Our evaluation focused on the OSM Semantic Network as a GKG. While this semantic network shows
typical characteristics of GKGs [8], it is restricted to a very specific domain. Others GKGs suitable
for the evaluation of NLS might be YAGO, DBpedia and other linked open datasets [5]. Moreover,
the general text corpus we used presents a regional bias, and larger, more global corpora might further
improve the results. However, cognitive plausibility evaluations on large, domain-independent GKGs are
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difficult to design, and a trade-off between domain-specificity and result reliability has to be considered.
This future work will strengthen the role of NLS as a generic approach to tackling the challenge of the
computation of semantic similarity, in ubiquitous GKGs, which increasingly contain valuable knowledge
that complements that of traditional geographic datasets.

Table 7. Summary of optimal parameter values for network, lexical and hybrid measures.

Network similarity (snet)
Balance λ Incoming links indicate similarity more than outgoing links.

Optimal λ ∈ [0.9, 1].
Max K Recursive co-citation algorithms reach high cognitive plausibility.

SimRank [18] obtains ρ = 0.65, while P-Rank [19] reaches 0.73.
Optimal K > 20.

Decay C Slow decay is better than fast decay. Optimal C ∈ [0.8, 0.9].

Lexical similarity (slex)
Corpus C The text corpus extracted from the Irish Independent newspaper

outperforms the domain-specific corpus.
POS filter The nouns convey most semantic similarity. Verbs in isolation

obtain low cognitive plausibility. When combined with nouns, verbs
affect the results only slightly.

Term simt Optimal term-to-term similarity measures: lch [25], path [23], and
vector [29]. The other measures simt obtain lower plausibility.

Vector simv Optimal vector similarity measure: com [34]. Measure fes [37] did
not obtain statistically significant correlation.

Hybrid similarity (shyb)
Combination
factor α

Both components, network and lexical, are needed to obtain
cognitively plausible results. Optimal value of combination factor:
α ∈ [0.4, 0.6]

Combination
method s

Optimal combination method: ranking combination srk outperforms
direct score combination ssc.
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