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Abstract: Geographical masks are a group of location protection methods for the 

dissemination and publication of confidential and sensitive information, such as health- and 

crime-related geo-referenced data. The use of such masks ensures that privacy is protected 

for the individuals involved in the datasets. Nevertheless, the protection process introduces 

spatial error to the masked dataset. This study quantifies the spatial error of masked datasets 

using two approaches. First, a perceptual survey was employed where participants ranked 

the similarity of a diverse sample of masked and original maps. Second, a spatial statistical 

analysis was performed that provided quantitative results for the same pairs of maps. Spatial 

statistical similarity is calculated with three divergence indices that employ different spatial 

clustering methods. All indices are significantly correlated with the perceptual similarity. 

Finally, the results of the spatial analysis are used as the explanatory variable to estimate the 

perceptual similarity. Three prediction models are created that indicate upper boundaries for 

the spatial statistical results upon which the masked data are perceived differently from the 

original data. The results of the study aim to help potential “maskers” to quantify and 

evaluate the error of confidential masked visualizations. 

Keywords: location privacy; geographical masks; crime data; spatial error; 

perceived similarity 
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1. Introduction 

Thematic maps of point distributions appear in research studies to assist in visualizing micro-level 

analysis, in media releases and in online mapping platforms to provide information to the public. At the 

same time, the number of scientific publications that contain maps of confidential information has 

recently increased [1]. The same can be expected in public platforms, because geographical information 

technology is an effective tool to provide detailed information for community purposes. Confidential or 

sensitive types of location information appear usually in an obfuscated form to protect individual 

privacy. The obfuscation process results in visualizations with spatial error compared to the original 

data. The aim of this paper is to calculate the amount of spatial error that can be introduced to the 

obfuscated visualization without altering the essential information that the actual data portray. 

The necessity of calculating the error of obfuscated visualizations is due to the fact that confidential, 

sensitive and private information is constantly being visualized via point maps by three main sources: 

(1) newspapers’ releases; (2) scientific publications; and (3) crime mapping websites. 

1.1. Examples of Obfuscated Point Maps for Privacy Protection 

In some cases, geographical masking techniques are used to protect the visualized confidential topic. 

Geographical masks are a group of location protection methodologies that were first introduced by 

Armstrong et al. [2] as approaches to mask specific confidential locations of individuals. So far, they 

have been used in a variety of scientific publications to protect the locations of health-, crime- or  

privacy-related information [1]. Location protection methods are not limited to geographical masks  

only [3,4], but these type of methods seem to be preferred for the protection of discrete point data. In the 

field of epidemiology, Wheeler [5] randomly shifted cases of childhood leukemia from their true 

locations to preserve data confidentiality. Almanza et al. [6] used a similar approach to map a child’s 

level of physical activity in different locations. Furthermore, Vieira et al. [7] employed a random 

displacement within 1.2 km2 to present locations of residencies of breast cancer in Cape Cod, 

Massachusetts. The audience of these publications may be primarily the scientific community (experts 

of the topic) and, at a later stage, the public. 

Furthermore, certain organizations responsible for disseminating information to the public publish 

protected data. An example of this practice is the Police.uk website that publishes crime data at a national 

level in the U.K. To protect the identity and privacy of individual victims, all crime data are masked 

using a specific “location anonymization” technique [8]. The “location anonymization” technique seems 

to be in line with the guidelines that have been proposed in the code of practice report from the  

non-departmental public body “Information Commissioner’s Office” [9] and the report by the U.S. 

Department of Justice about the publication of spatial crime data [10]. Furthermore, policing initiatives, 

such as crime mapping, improve people’s perceptions of their neighborhood and of the local police and 

are perceived as informative and trustworthy [11]. On the other hand, Chainey and Tompson [12] argue 

that the quality and cartographic visualization of the published information needs to be improved, and 

social media should get involved to enable a dialogue on crime issues. Regarding the risk of privacy 

violation from re-identification, the participants of a survey that was conducted in London, U.K., 
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expressed a preference for a medium-risk protection method (from eight to 20 addresses) that indicates 

the need for street-level protected resolutions, such as geographical masks [13]. 

1.2. Examples of Point Maps Where a Confidential Theme is not Obfuscated 

A considerable amount of publications presented confidential locations unmasked (real locations in 

point maps). A striking example is an interactive map pinpointing the locations of gun owners in two 

suburban counties in New York that was published in December 2012, by “The Journal News” [14,15]. 

Residents objected to their information being published and claimed that the map would prompt 

burglaries, because burglars are now aware of where weapons might be found [16]. Former burglar 

Walter T. Shaw confirmed that such information would be highly useful to burglars and to either avoid 

such residencies or to locate available weapons [17]. Another example is a map depicting the exact 

locations of deaths caused by Hurricane Katrina that was published in a local newspaper in Baton Rouge, 

LA, USA [18]. Last, Kounadi and Leitner [1] found 41 scientific articles that displayed actual 

confidential, sensitive or private information on maps. 

The risk of re-identification when confidential residential information is disclosed and unmasked may 

be unknown to the public, but scholars have tried to raise awareness of it. The process of obtaining 

further information about individuals from maps that present exact confidential locations has been 

described as the “transgressor’s scenario” by Kounadi et al. [19]. Furthermore, Leitner, Mills and  

Curtis [20] examined the accuracy of the reverse engineering process that is the process of extracting 

geographic coordinates from a point distribution on a digital map. From the perspective of location 

trajectories (e.g., GPS data), Krumm [21] showed how individuals’ names and phone numbers can be 

retrieved from such data. The examples of unmasked releases of confidential data and the findings from 

the studies of re-identification indicate the necessity of employing geographical masks for visualization. 

1.3. Calculating the Error of Obfuscated Locations 

The disadvantage of geographical masks is that by altering the original locations, the masked 

locations will be somehow different from the original ones. Even more, custodians of masked data do 

not evaluate and report the spatial error of their visualizations. Failure to analyze and assess this error 

may lead to inaccurate visualizations and misconceptions about the specificity of the original patterns. 

Of course, scholars who published on geographical masks have examined the spatial information loss 

of masked data using different metrics and approaches. Armstrong et al. [2] examined whether several 

geographical masks preserve the spatial characteristics of the original pattern (i.e., pair-wise relations, 

event-geography relations, trends, anisotropies, clusters’ existence, clusters’ actual locations and 

clusters’ relative locations). While this approach is useful to understand the effects that the application 

of different geographical masks will have on the original point pattern, it does not allow quantifying this 

effect. For instance, the “random perturbation” mask (i.e., introducing a random error in both the distance 

and direction of an original point) preserves approximately the clusters’ actual locations; however, one 

cannot answer the question: How much does a geographic mask preserve its original locations? On the 

other hand, Kwan et al. [22] quantified the geomasking effects on the original spatial pattern by 

performing point pattern analysis methods to both original and masked datasets and then compared the 

results. The methods that they used included visualization of point patterns, visualization of 2D and 3D 



ISPRS Int. J. Geo-Inf. 2015, 4 575 

 

 

density surfaces, examination of maps of density differences and cross K function analysis. Additionally, 

other scholars used spatial statistics to quantify the effects and, in particular, cluster indices, such as the 

clusters’ sensitivity, specificity, detection rate, accuracy and the most significant cluster [23–26]. 

Most of the effects’ detection techniques compared the performance of different masks to the same 

dataset in order to identify the mask that yields the least spatial error for the masked dataset. The study 

by Kounadi and Leitner [27] had the same objective and employed two “divergence indices”. 

“Divergence” describes the distortion or difference of a masked point pattern with an original point 

pattern using spatial statistics. In addition, the results of the divergence indices can be used to compare 

errors to other masked datasets or visualizations. The divergence indices consist of two composite 

indicators. These are: (1) the “Global Divergence Index” (GDi) that calculates the divergence of the 

masked points’ centrographic analytical results from the original points’ centrographic analytical results; 

and (2) the Local Divergence Index (LDi) that calculates the divergence of the masked points’ hotspots 

analytical results from the original points’ hotspots analytical results. Hotspots are areas or points of 

high density of incidents. To this extent, hotspots are statistically significant areas resulting from spatial 

clustering methods that measure the local characteristics of a point pattern. For the examined masks and 

their parameters, the masked data altered notably the local characteristics of the original data. On the 

other hand, the masks introduced trivial errors to the global characteristics of the original data. 

Finally, Leitner and Curtis [28] added an important factor to their method for examining the masks’ 

spatial error, namely the map viewer. The authors wanted to find out what the visual impact of the masks 

was on the point pattern distribution and hot spots identification as compared to the original distribution 

and hot spots. More specifically, they employed a survey where participants made visual observations 

and ranked the similarities of masked and original point patterns. Furthermore, participants drew hot 

spots into the original or masked point pattern, which allowed the authors to visually compare the 

differences of the hot spots’ drawings. This is an important approach, because people (experts or  

non-experts) are those who will be ultimately exposed to masked maps. Consequently, when confidential 

location information is published, the perceptual spatial error should be taken into consideration, as well. 

1.4. The Study’s Objective 

Two recent studies examined the error of masked datasets for certain spatial analyses. The first study 

by Heydrich, Burgert and Emch [29] examined the offset of locations from Demographic and Health 

Survey (DHS) clusters (clusters are locations) that are displaced using a specific random perturbation 

mask. The masked clusters are provided by the organization to researchers for spatial analysis. The 

second study by Tompson et al. [30] examined the spatial resolution that is adequate for analysis if 

masked crime data that are available from the Police.uk website were to be used for research. Both 

studies provided guidelines on the appropriate usage of these masked datasets with the perspective of 

further research. The guidelines are specific to these masked datasets and cannot be applied for other 

datasets or geographical masks. 

On the other hand, the visualization error of masked data has yet to be addressed, even though pure 

visualization and information dissemination seems to be the main usage of masked datasets. What is 

missing in the current literature is a generally applicable approach that not only calculates the spatial 

information loss of masked data, but also sets a threshold value up to which the spatial error cannot alter 
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in a meaningful way the characteristics of the original pattern in the final visualized form. Hence, there 

is a need to define a maximum acceptable level of spatial error below which the spatial error cannot be 

visually observed. The study’s objective is to propose a method for potential “maskers” to quantify the 

spatial error and, based on this error, to evaluate the quality of their confidential masked visualizations. 

To address this issue, we assume that visual observations are strongly related to statistical results. In 

other words, the public’s perceived similarity of point patterns can be associated with the statistical 

similarity between the same point patterns. This is the main hypothesis of this research. This means that 

the higher the spatial error is that masked data have compared to original data, the less likely it will be 

that people would perceive the masked point pattern as being similar to the original one. If this 

hypothesis is confirmed, then the perceived similarity of future visualizations could be estimated by 

calculating the spatial error of masked data. 

2. Analytical Strategy 

To define a threshold value for the maximum spatial error of masked data, we employed a strategy 

that involves three phases. In the first phase, a perceptual survey was conducted. In the second phase, a 

spatial statistical analysis was performed. The last phase involved the comparison of statistical and 

perceptual results using logistic regression analysis. 

As part of the first phase, we had to recruit participants that belong to either of the two groups:  

(1) experts, i.e., people who are customarily working with spatial data; and (2) non-experts in handling 

spatial data. Because spatial data experts are a very small subgroup of the population, we employed the 

snowball method to obtain a large enough sample. Snowball sampling is a non-probability sampling 

technique where participants recruit more participants from among their acquaintances [31]. It is used 

to identify potential subjects in studies where subjects are difficult to sample by using common random 

sampling methods. In our study, online questionnaires were distributed through e-mail lists among 

friends, colleagues, as well as in posts in Facebook groups related to GIS or GIS University Departments. 

Then, the approached participants could re-distribute the survey’s link to other people. The redistribution 

was allowed without restrictions, because both “experts” and “non-experts” were required. The 

participants’ task was to rank the similarity of pairs of maps. For each pair, there was one map showing 

the original distribution of the points and one map showing the masked distribution. The participants 

ranked the similarity of the maps by choosing one of the following ordered responses: “very similar”, 

“similar”, “slightly similar”, “different”, and “very different”. The level of similarity was designed as a 

Likert-type scale format [32]. These ordinal categories were decided upon testing the survey’s design 

with some of our colleagues. It was emphasized to the participants that there were no correct or wrong 

answers about the individual’s perception of similarity. Last, to ensure that the respondents will focus 

on the comparison of the point patterns only and that no other factors will influence their judgements, 

all maps had the same symbology and cartographic design. In addition to that, no information about the 

area and the theme of the distribution was given. 

For each map pair, the spatial error of the masked distribution was calculated using the “spatial 

information divergence” approach by Kounadi and Leitner [27]. According to the authors, some of the 

advantages of this approach are that it shows the magnitude of distortion of the original value of a spatial 

statistic to the masked value and it allows comparisons to be made about the distortions between different 
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areas and datasets. For reasons mentioned in the Introduction, only the “local divergence index (LDi)” 

was applied, that is the divergence of the masked hotspots (hotspots of the masked points) to the original 

ones (hotspots of the original points), and it can be calculated using the following formula:  ܔ܉܋ܗۺ	܍܋ܖ܍܏ܚ܍ܞܑ܌ = 	 ܿ݅ݎݐ݁݉݉ݕܵ	 ݁ܿ݊݁ݎ݂݂݁݅݀ ݂݋ ܣ ܽ݊݀ ܣ	ܤ + ܤ 	× 100 (1)

where A = area of original hotspots and B = area of masked hotspots. 

The local divergence index ranges from zero to 100. The maximum divergence is equal to 100 when 

original and masked hot spots are completely disjoint. On the other hand, the divergence is equal to zero 

when the masked and original hotspots are identical. In total, we calculated three local divergence 

indices: (1) Nnh.di, the index of the hotspot areas’ divergence using the nearest-neighbor hierarchical 

spatial clustering; (2) Gi*.di, the index of the hotspot areas’ divergence using the Getis-Ord Gi* statistic; 

and (3) Ans.di, the index of the hotspot areas’ divergence using the Anselin Local Moran’s I  

statistic [33–35]. Hence, for one map of each pair of maps, the local divergence index was calculated 

three times using one clustering method per time. 

In the last phase, we tested our hypothesis using logistic regression analysis, which is considered an 

important and useful model for categorical response data [36]. We defined the hotspot divergence to be 

the independent variable that can predict the perceived similarity, as this was the dependent variable. 

However, variations in the predictability of each clustering method (nearest-neighbor hierarchical spatial 

clustering, Getis-Ord Gi*, Anselin Local Moran’s I), as well as in the responses between the two sample 

groups (“experts” and “non-experts”) may exist. Hence, the following nine combinations were tested: 

(1) the similarity responses of “experts” with the results of one of the three clustering methods (three 

combinations); (2) the similarity responses of “non-experts” with the results of one of the three clustering 

methods (three combinations); and (3) the similarity responses of all participants with the results of one 

of the three clustering methods (three combinations). 

Preparation of Original and Masked Maps 

The location data that are used in this study are vehicle thefts in Vienna, Austria, from January 2007, 

until June 2007. The data were provided by the Criminal Intelligence Service Austria. The dataset is 

appropriate for this study for two reasons. Vehicle thefts tend to be spatially clustered similarly to other 

confidential data (e.g., patients’ locations for a particular disease) or sensitive data (e.g., locations of 

residential burglaries). On the other hand, vehicle thefts are neither confidential nor sensitive, because 

the majority of their locations cannot be associated with individuals’ addresses. Exceptions involve thefts 

where the vehicle is stolen from the garage or the parking lot associated with a single family home. 

Nevertheless, this type of incident is not distinguished from the others in the dataset. Furthermore, the data 

are already seven years old, so the information is not really relevant anymore and of little use to somebody 

trying to inverse address-match the locations to re-identify people living at that address. Thus, such maps can 

be safely disseminated for the purposes of the study without disclosing private information. 

For the maps’ creation, we aimed at a variety of maps that represent different scenarios of point 

patterns that a viewer may come across. First, we extracted from the original dataset the following 

subsets: one set per month (six in total), one set per week (24 in total) and one set for the entire period. 

Furthermore, we overlaid a 7 × 7 grid over the study area (city of Vienna) and extracted the cells that 
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contained 50 or more thefts (22 cells/ subsets). From the collection of 52 subsets, we selected ten subsets 

that vary in three spatial characteristics: (1) locations’ density; (2) locations’ clustering degree; and 

(3) the trend of the distribution. The final ten sets vary in the following ways: (1) the points’ density 

ranges from 50 incidents to 8627 incidents; (2) the clustering degree calculated by the nearest neighbor 

index (NNI) ranges from 0.34 to 0.83; and (3) the point patterns have six different trends (five grid areas 

and the city of Vienna). From the ten sets, we created ten original maps that will be compared against 

their masked maps. The final ten original maps are presented in Figure 1. 

 

Figure 1. Original maps. The five maps at the top cover the entire city of Vienna 

(414.67 km2) and vary in terms of the density of the points. The five maps at the bottom are 

squared areas in Vienna, each 13.65 km2 large, and varying in terms of the distribution of 

the points and the clustering degree (NNI, nearest neighbor index). 

The “circular mask” was employed to create the masked sets [22]. This geographical masking method 

displaces the original points at a fixed predefined distance (radius) and at a random direction (0° to 360°) 

on a circle’s circumference. The method was selected due to its simple implementation; however, any 

other method could have been used instead. The parameter of the geographical masks that determines 

the magnitude of the spatial error that is introduced to the data is called the “masking degree”. For the 

“circular mask”, the masking degree is the size of the radius. Previous findings showed that by increasing 

the masking degree, the masked point pattern tends to be more spatially different from the original point 

pattern [22,23,37]. Because the original maps have two different scales (five maps depicting the entire 

city of Vienna with an area of 414.67 km2 and five maps at a larger scale, depicting a portion of Vienna 

with an area of 13.65 km2), the same masking degree would affect the larger scale maps more than the 

smaller scale maps. Furthermore, the application of the mask should yield a wide range of “local 

divergence” results (0–100). In other words, a mixture of masked maps with a small error that could be 

perceived as similar from the participants’ point of view, as well as masked maps with a large error that may 

be perceived as different. To ensure a variety of results, we masked the original datasets using three radii. 
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Figure 2. Three pairs of original versus masked maps of different masking degrees. 

 

Figure 3. The analytical strategy of the study. 

To select appropriate sizes for the radii, we consulted estimations of the spatial errors of different 

masking degrees that were proposed in previous studies [7,22,37,38]. Based on these studies, we selected 

one radius that is assumed to have a small effect on the masked point pattern (200 meters), one that is 

assumed to have a large effect (1000 meters) and one in the middle (600 meters).The masking procedure 

resulted in 30 masked maps that are compared against the 10 original maps. Figure 2 above shows three 
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out of the 30 pairs that were used in the analysis. Lastly, Figure 3 demonstrates a summary of the 

analytical strategy in five steps. Each step describes the input, output and processes that were involved. 

3. Results 

This section is organized into three parts. First, we analyze the survey’s results with respect to the 

participants. Second, we compare the statistical (LDi) with the perceptual results (survey’s responses of 

perceived similarity) in order to identify the clustering method that can best estimate the perceived 

similarity. Finally, using the optimal clustering method, we develop models to predict the 

perceived similarity. 

3.1. Survey Results and Participants 

The survey was conducted in two weeks from 14 through 26 July 2014. In total, 398 questionnaire 

responses were collected. The design of the questionnaire was initially tested by a selected group of the 

authors’ colleagues. It was suggested that the number of pairs of maps should be restricted to 15 per 

questionnaire in order to facilitate the tedious task of repetitively ranking the similarity of pairs of images 

that have a similar format. Hence, the 30 pairs of maps that formed 30 questions were divided into two 

online questionnaires of 15 questions each. The pairs of maps were randomly selected and reordered 

within the questionnaires. In addition to the main questions (ranking of similarity), four more questions 

were asked regarding the characteristics of the participants. These were: gender, age, nationality and 

profession. The profession question was formulated as follows: Do you work in academia, industry or a 

public sector related to geodesy, geomatics, geoinformatics, geography, urban planning or environment 

(Yes/No)? The aim of these questions was firstly to separate the “experts” from the “non-experts” group 

and, secondly, to explore variations of responses with regard to the demographic aspects of our sample.  

The characteristics of the survey’s sample are summarized in Table 1. The profession group is 

represented with 210 participants related to spatial science (“experts”) and 148 participants not related 

to spatial science. Furthermore, the majority of the participants were between 20 and 39 years old 

(76.1%), and their nationality was Greek, Austrian, German or Croatian (59.5%; altogether, 

42 nationalities were represented). Furthermore, 40 out of 398 participants did not respond to the 

“profession”, “sex” and “age group” questions, and 57 out of 398 participants did not respond to the 

“nationality” question. 

Additionally, statistical tests were conducted with the categories of the groups to examine statistically 

significant variations in perceived similarities. The tests that were employed were the Wilcoxon 

matched-pair test for groups of two categories and Friedman’s test for groups of three categories [39,40]. 

Each category is considered as a paired sample and was examined to detect if the categories’ ratings are 

consistent with each other (e.g., do women rank similarity differently than men?). For age and nationality 

groups, we examined the categories for which we had more than 30 participants. For each category and 

pair of maps, we calculated the mode perceived similarity, which was coded as follows: 1 = very similar, 

2 = similar, 3 = slightly similar, 4 = different, 5 = very different. Table 2 shows the mean of all pairs of 

map modes and the tests’ statistical significance by category. Apart from nationality, all other groups 

gave statistically different responses among their categories. The perceived similarity of participants 

who belong to the categories “experts”, male and the age group “21–29” is statistically lower than those 
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who belong to the categories “non-experts”, female and the age groups “30–39” and “40–49”. The highest 

difference is observed in the profession group, thus justifying the logic of creating separate models. 

Table 1. Characteristics of participants (No = 398). a Nationalities in the U.K. are aggregated 

to “British” citizenship, since participants used different wording to describe their nationality; 
b nationalities with less than 10 participants per nationality (in total, 36 nationalities). 

Group No % 

Profession   

non-spatial science 148 37.2% 

spatial science 210 52.8% 

No response 40 10.0% 

Sex   

female 163 41.0% 

male 195 49.0% 

No responses 40 10.0% 

Age group   

<17 1 0.3% 

18–20 8 2.0% 

21–29 170 42.7% 

30–39 133 33.4% 

40–49 32 8.0% 

50–59 10 2.5% 

>60 4 1.0% 

Non-response 40 10.1% 

Nationality   

Greek 104 26.1% 

Austrian 58 14.6% 

German 51 12.8% 

Croat 24 6.0% 

British a 16 4.0% 

American 11 2.8% 

Other b 77 19.4% 

No response 57 14.3% 

Table 2. Significance of differences in similarity perception between the categories of 

each group. a The groups’ categories are statistically different at the 0.05 significance level. 

Group Categories Mean  Test Score p-Value 

Profession a 
spatial science 2.83 Wilcoxon 

matched-pair test 
W = 78 0.001 

non-spatial science 3.23 

Sex a 
female  3.20 Wilcoxon 

matched-pair test 
W = 60 0.007 

male 2.90 

Age group a 

21–29 2.90 

Friedman’s test X2 = 2.81 0.046 30–39 3.17 

40–49 3.17 

Nationality 

Austrian 3.00 

Friedman’s test X2 = 1.86 0.183 German 3.23 

Greek 2.97 
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3.2. Comparing Perceived with Statistical Similarity 

Summarized results of perceived similarity and local divergence indices by area size and masking degree 

are shown in Table 3. The divergence results show the mean value for each clustering method, and the 

similarity results show the mode perceived similarity. To calculate the clusters of each method, we used the 

following parameters: (1) for the nearest-neighbor hierarchical spatial clustering: two standard deviational 

ellipses to outline the clusters, a minimum of five points per cluster, only first-order clusters and a search 

radius based on the random nearest neighbor distance; and (2) for the Getis-Ord Gi* and the Anselin Local 

Moran’s I statistics: Extracting cells where z > 1.65 (p-value < 0.1) of a 150-meter grid square. All original 

sets are characterized by point patterns that are more clustered than dispersed (NNIs range from 0.34 to 

0.83). The parameters were selected so that all sets would return statistically-significant spatial clusters. 

More conservative parameters (i.e., minimum of 20 points per cluster for nearest-neighbor hierarchical 

spatial clustering) would deter sets of low numbers of points and higher NNI values from creating 

significant clusters, even though they are statistically clustered. Other parameters could have been used, 

as well. However, these parameters allow the replicability of this study to areas ranging from small 

neighborhoods to city levels. 

In the previous section, it was explained how the masking degree and the scale affect the magnitude 

of the spatial error in the masked dataset. The results of Table 3 are in line with this explanation for both 

local divergences and perceived similarities. For all clustering methods, the divergence is higher for 

bigger masking degrees of the same area and lower for larger area sizes of the same masking degree. 

Furthermore, on average, a smaller area has higher divergences (area size: 13.65 km2; divergence range: 

65.56–83.29) than a larger area (area size: 414.67 km2; divergence range: 52.21–71.75). Similar 

observations can be made for the perceived similarity. The only exception is that by decreasing the 

masking degree from 1000 meters to 600 meters of the same area, the perception of similarity does not 

change towards a more “similar” opinion. 

Table 3. Perceived similarity and local divergences by area size and masking degree. The 

perception of similarity is compared with the results obtained from three spatial clustering 

methods. Nnh.di is the index of the hotspot areas’ divergence using the nearest-neighbor 

hierarchical spatial clustering. Gi*.di is the index of the hotspot areas’ divergence using the 

Getis-Ord Gi* statistic. Finally, Ans.di is the index of the hotspot areas’ divergence using 

the Anselin Local Moran’s I statistic. The greater the divergence, the higher is the 

dissimilarity between original and masked hot spots. 

 Similarity Nnh.di Gi.di Ans.di 

Area: 13.65 km2, 1,000-meter masking degree different 95.78 81.16 91.19 

Area: 13.65 km2, 600-meter masking degree different 87.07 71.14 89.12 

Area: 13.65 km2, 200-meter masking degree slightly similar 57.32 44.39 69.57 

Area: 414.67km2, 1,000-meter masking degree slightly similar 68.95 60.85 77.09 

Area: 414.67km2, 600-meter masking degree slightly similar 59.83 57.40 74.48 

Area: 414.67km2, 200-meter masking degree similar 43.04 38.39 63.69 

Area: 13.65 km2 different 80.06 65.56 83.29 

Area: 414.67 km2 slightly similar 57.27 52.21 71.75 
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The findings thus far indicate that the perceived similarity of an original versus a masked map is 

somehow relevant to the hotspots’ distortion (LDi) of the masked maps. That is, the more error is 

introduced into the data, the less similar the masked map will be perceived compared to the original one. 

To statistically examine the association of the ordered variable “perceived similarity” with the local 

divergence indices, we performed Kendall’s tau b and Spearman’s rho tests [41,42]. To apply these 

nonparametric methods when one variable is ordinal and the other is ratio scale, the latter variable needs 

to be in the ordinal scale, as well. This means that the local divergence information has to be reduced to 

its ordinal scale of measurement. Consequently, the local divergence variable was ordered as: 1 = 0–25, 

2 = 26–50, 3 = 51–75, 4 = 76–100. For every pair of maps, the mode perceived similarity and the ordered 

category of the local divergence was calculated. From the results of Table 4, we reject the null hypotheses 

of mutual independence between the variables for all of the tests. In addition, for all groups in Table 4 

(all participants, non-experts and experts), Nnh.di has the highest correlation followed by the Gi*.di. 

Ans.di has the lowest correlation of all three divergence indices and among all groups. 

Table 4. Correlation between perceived similarity and local divergence indices. a Correlation 

is significant at the 0.05 level (2-tailed). All other correlations are significant at the 0.01 level 

(2-tailed). 

Correlation Test 
All Participants Non-Experts Experts 

Nnh.di Ans.di Gi*.di Nnh.di Ans.di Gi*.di Nnh.di Ans.di Gi*.di
Kendall’s tau b 0.765 0.467 0.614 0.710 0.397 a 0.492 0.703 0.451 0.583 
Spearman’s rho 0.805 0.499 0.643 0.766 0.423 a 0.523 0.755 0.494 0.631 

3.3. Estimation Models of Perceived Similarity 

Given that the analyses presented above suggest that the local divergence indices could possibly 

estimate the perceived similarity, we use ordinal logistic regression models to examine their 

predictability. We created one model for each group (all participants, experts, non-experts). Rather than 

analyzing the results for all independent variables (local divergence indices), we analyze the Nnh.di, 

which has the strongest correlation with the examined dependent variable (perceived similarity). Similar 

to before, for every pair of maps, the mode perceived similarity was calculated. The nnh.di as an 

explanatory variable created significant prediction models for the following categories: 1 = very similar 

or similar, 2 = slightly similar and 3 = different or very different. The first category “very similar or 

similar” defines the upper boundary of the Nnh.di results and a range of optimal or acceptable results. 

The second category “slightly similar” indicates a range of Nnh.di results, which may not be acceptable 

for visualization; however, they do not indicate a differently perceived visualization as those of the last 

category “different or very different”. The results of diagnostic tests and coefficients of the ordinal 

logistic regression analysis are presented in Table 5. 
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Table 5. Diagnostics and coefficient results for each ordinal logistic regression model. 

Model 
P-Value of Diagnostics 

Model Fit (X2) Goodness of Fit (Pearson) Nagelkerke Test of Parallel Lines 

All Participants <0.01 0.962 0.744 0.838 

Non-experts <0.01 0.902 0.679 0.116 

Experts <0.01 0.930 0.673 0.683 

 Nnh.di Coefficient 

 Estimate SE Wald p-Value 

All Participants 0.157 0.041 14.876 <0.01 

Non-experts 0.133 0.035 14.109 <0.01 

Experts 0.135 0.036 13.962 <0.01 

 

Figure 4. Cumulative percentages of Nnh.di by category of perceived similarity (very 

similar/similar, slightly similar and different/very different) for each group (all participants, 

non-experts, experts). 

Generally, the models show that the Nnh.di is a significant predictor of the perceived similarity of 

masked and original point maps. First, the chi-square tests show that by including the independent 

variable, the models are significantly improved (p < 0.01). Second, Pearson’s chi-square statistics of the 

models are insignificant, which means that the observed data are consistent with the fitted model and 

that the data and the model predictions are similar. The Nagelkerke values (pseudo R-squared) indicate 

that all three models do a good job at predicting the response variable, given that a perfect model fit for 



ISPRS Int. J. Geo-Inf. 2015, 4 585 

 

 

this statistic returns a value of one. The “all participants” model includes all responses from the 

“experts”, the “non-experts”, as well as the participants who did not respond to the respective question 

(in total, n = 398). Finally, the tests of parallel lines, which assume that the variable is proportional across 

the ordinal categories, are insignificant. This means that the ordinal type of regression model is a better 

fit for the dependent variable than a general one. Figure 4 shows the cumulative percentages of Nnh.di 

by category of perceived similarity. In accordance with the tests of parallel lines results, the similarity 

categories are not only well separated within the different ranges of Nnh.di values, but they also seem 

to be equally spaced from each other. However, in the non-experts graph of Figure 4, the “slightly 

similar” category is closer to the “very similar or similar” category than the “different or very different” 

category. This explains why this group has the lowest insignificant value for the test of parallel lines 

compared to the other two (0.116). Still, the ordinal logistic regression model is statistically the most 

appropriate for our data. 

 

Figure 5. Nnh.di results and estimated probability of perceived similarity in three ordered 

categories (very similar/similar, slightly similar and different/very different) for each group 

((A) all participants; (B) non-experts; (C) experts). 
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The lower part of Table 5 shows the estimates of the Nnh.di coefficient. All of them are statistically 

significant at a 99% confidence interval and positively related to the perceived similarity. In other words, 

the higher the Nnh.di value, the more probable it is for the perceived similarity to be in a higher category 

(1 = very similar or similar, 2 = slightly similar and 3 = different or very different). Figure 5 shows the 

estimated probability of perceived similarity for different values of Nnh.di results by each model. The 

trend is the same for all models. The probability of “very similar or similar” responses is decreasing as 

the Nnh.di is increasing. On the contrary, the probability of “different or very different” responses is 

increasing as the Nnh.di is increasing. The “slightly similar” responses are more probable for middle 

values in the range of Nnh.di results. However, the Nnh.di limits for which the probability between 

classes is higher vary among the models. The critical value below which a masked map is more likely 

to be perceived as “very similar or similar” is 51 for the “non-experts” model, 63 for the “experts” model 

and 56 for the “all participants” model. The results are consistent with the Wilcoxon matched-pair test 

results that show that participants related to spatial sciences have a more “lenient” judgement on the 

point patterns’ similarity than the remaining participants. 

4. Discussion 

To determine a threshold value for the spatial error of masked data, we employed a perceptual study 

with the use of an online questionnaire and compared its qualitative results with the quantitative results 

of spatial statistical analysis. Our findings show that the amount of error in locations of masked hotspots 

is highly correlated with people perceiving a distribution to be similar to an original one. Consequently, 

the perceived similarity of a masked versus an original map can be estimated by calculating the 

divergence of the masked hotspots to the original ones (LDi). This allows us to set an upper boundary 

to the amount of error that ensures that the final obfuscated map will not be perceived differently from 

the original map. “Upper boundary” is a critical value of the LDi below which a masked map is more 

likely to be perceived as “very similar or similar” to the original map. Three upper boundaries are 

identified with three prediction models. The first prediction model includes the responses of  

experts—people who are customarily working with spatial data—and the critical LDi value for this 

model is 63. The second prediction model includes the responses of non-experts in handling spatial data, 

and the critical LDi value for this model is 51. The third prediction model includes all responses, and 

the critical LDi value for this model is 56. 

The online questionnaire about the perception of point pattern similarity received a lot of attention, 

and we collected 398 responses from participants of 42 nationalities. Because the perception of spatial 

similarity is yet an unexplored topic, in addition to the objective of this study, we had the opportunity to 

analyze the results by groups of respondents. The categories of age, sex and profession groups gave 

statistically different responses. For example, young people (21–29 years old) gave significantly more 

similar responses than older people (40–49 years old). The mean of ranks for all age groups ranges  

from 2.90 to 3.17, which corresponds to the same response “slightly similar”. Hence, the differences are 

statistically significant, but vary only slightly. That means that even though there are variations in the 

responses, there is still high correlation between all responses and the LDi results. The latter is proven 

by the diagnostics of the “all participants” prediction model (Table 5) that indicate that the model is a 

good fit of the response variable (perceptual similarity). 
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The results of this study can be used in most scenarios where a masking procedure is required. 

However, consideration should be given to four aspects of the masking process: (1) K-anonymity of 

confidential dataset; (2) geographical masking method; (3) calculation of the LDi; and (4) interpretation 

of perceived similarity graphs. 

This paper does not discuss a disclosure threshold value for privacy protection (K-anonymity).  

K-anonymity is the number of cases among which a specific case cannot be reversely  

re-identified [23]. K-anonymity can refer to households, people or even addresses and may vary 

depending on the regulations about a particular type of location dataset. The “masker” has to take into 

consideration the regulations regarding the type of information that is about to be masked and employ a 

geographical masking method with the error that is required to ensure that it is properly protected. 

The selection of the geographical masking method is important for re-using the model’s results. Any 

geographical iso-masks apart from affine transformations [2] or flipping [28] can be used. That is 

because the LDi is not invariant to rotation, scaling or translation. For example, the LDi of masked 

locations from a circular mask may be the same as the LDi of masked locations from affine rotation 

(rotating each point by a fixed angle from a pivot point), but the pattern will appear different. 

Nevertheless, there are plenty of random perturbation and point aggregation techniques in the literature 

that can be used. Furthermore, rotation, scaling, translation and flipping are not preferred by scientists 

or organizations. According to the findings by Kounadi and Leitner [1] and the anonymization method 

employed by the Police.uk website [8], point aggregation and random perturbation are mostly in use. 

Furthermore, the calculation of the LDi should necessarily adopt the parameters that were used in this 

study (Results Section). More explicitly, to evaluate the spatial error of the masked data, one should 

calculate the local divergence index using the nearest-neighbor hierarchical spatial clustering with the 

parameters that we used here. Altering the parameters of the method would alter the interpretation of the 

perceived similarity in an unpredicted way. For example, by increasing the number of points from five 

to 10 per cluster, the local divergence index would increase, as well, because this means somehow 

requesting more conservative clusters. Consulting the results of our model (Figure 5) in this case may 

result in estimating the perceived similarity as “different”, though if the original parameters were used, 

the perceived similarity could have been estimated as “similar”. Furthermore, this approach is best 

applicable for areas of a similar size to the ones of this study (from 414.67 km2 to 13.65 km2). This is an 

approximate representation of regions that range from a city to a neighborhood level. Although it is 

common to visualize a distribution of crime incidents at these scales, smaller or larger scales may be 

used, as well. For example, the interactive map of the Police.uk website reaches a resolution at the street 

level. Therefore, further research is needed to accurately evaluate spatial errors at these resolutions. 

Finally, the graphs of Figure 5 pinpoint the critical values of the LDi results for the evaluation of the 

error. The graph of experts shows that people who work with spatial data tend to see pairs of spatial 

point patterns as slightly more similar compared to the general public. This indicates that the threshold 

value of spatial error could be adjusted according to the intended audience. For example, for masked 

visualizations in scientific publications or conferences, a maximum LDi value of 63 can be an acceptable 

error. On the other hand, when masked visualizations are in public view, the lowest critical value (51) 

of the non-experts graph should be considered as the maximum acceptable error. 
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