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Abstract: Three-dimensional (3D) point analysis and visualization is one of the most 

effective methods of point cluster detection and segmentation in geospatial datasets. 

However, serious scattering and clotting characteristics interfere with the visual detection of 

3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi 

diagrams to analyze and visualize 3D points instead of the original data item. The proposed 

algorithm computes the cluster of 3D points by applying a set of 3D Voronoi cells to describe 

and quantify 3D points. The decompositions of point cloud of 3D models are guided by the 

3D Voronoi cell parameters. The parameter values are mapped from the Voronoi cells to 3D 

points to show the spatial pattern and relationships; thus, a 3D point cluster pattern can be 

highlighted and easily recognized. To capture different cluster patterns, continuous 

progressive clusters and segmentations are tested. The 3D spatial relationship is shown to 

facilitate cluster detection. Furthermore, the generated segmentations of real 3D data cases 

are exploited to demonstrate the feasibility of our approach in detecting different spatial 

clusters for continuous point cloud segmentation.  
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1. Introduction and Literature Review 

Three-dimensional (3D) point clouds are widely used in various applications, such as real-time 

surveying and 3D modeling, as the raw data was collected and stored in this form. Decomposing 3D 

models into meaningful parts has been an increasingly important topic in the shape analysis community. 

Point clouds are typically divided into two types: strip surfaces, e.g., laser scans, and 3D scatter points, 

e.g., the stars in the sky. For the former, there is only one point in one direction (similar to digital 

elevation models (DEMs)); however, for the latter, there can be more points in one direction at different 

locations, for example, a ray intersecting a 3D sculpture model would generate at least two points. This 

case is more complex for point analysis than that in the former situation. 

Spatial point analysis in a 3D environment is a powerful technique applied to spatial particles (the 3D 

generating point is called a particle in this study) with spatial locations observed within a certain region. 

It has been used across many disciplines to study the spatial distribution of objects, such as those in 

galaxies [1–3], protein molecules [4,5], geographical epidemiology [6], geosciences [7–9], cell biology [10], 

surface clusters [11] and crystallographic structures, bioluminescent plankton [12] and architectures [13]. 

These studies highlight the ability of the Voronoi theory to capture the subdivision and modularity of 

certain configurations and to provide important insights into the function of these networks at a global 

level. Yan and Weibel [14] used the Voronoi method to determine spatial density and number using 

statistical, thematic, topological, and metric information and to select points in map generalization. 

Jeanne Pellerin et al. [9] analyzed 3D structural models using the 3D Voronoi diagram to measure the 

models’ connectivity and geometry. 

The analysis of spatial points has recently been simplified with the development of computer 

recognition programs and visualization methods that can identify spatial points based on their spatial 

and temporal characteristics [15–19]. The resulting dataset, which is a set of points distributed in space, 

is known as a spatial point pattern. There are well-established procedures for the statistical analysis of 

spatial point patterns [13] as well as for visualization [20]. Known as 3D Voronoi analysis technique, 

this procedure not only provides a new perspective on the nature of the macroscopic geographic and 

astronomical fields [1–3,6,7], but also provides information about the microscopic internal organization 

of protein molecules and microorganisms [4,5,8,10,12,21]. 

Clustering is inherently a density-estimation problem that collects and groups instances with 

similarity. Cluster detection is the process of grouping a set of objects into clusters so that objects within 

a cluster have high similarity but are dissimilar to objects in other clusters [22]. In 3D space, distances 

or similarities between points become more uniform, making clustering more difficult. In addition, the 

similarities between 3D points can be misleading because a point can be more similar or closer to another 

point that “actually” belongs to a different cluster. A suitable solution for this problem can be the 

utilization of spatial neighborhood relationships to calculate the similarity of the 3D points. A 3D 

Voronoi diagram/tessellation provides a reasonable description for the spatial topological neighborhood 

relationships and spatial locations. 
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In contrast to mesh decomposition or surface segmentation based on the surface model [11,23–28], 

the approach in this  study decomposes 3D models into meaningful parts of source point clouds. This 

study presents a novel application of the Voronoi theory to represent and quantify the spatial structure 

of 3D points to segment a 3D point cloud. All of the points used to create the Voronoi cell are 

homogeneous and equal, and they cluster according to a certain importance value of each point or 

according to parameters of their respective Voronoi cells. The primary goal of this study is to present 3D 

Voronoi partitions of stationary 3D points and to derive (in some sense) different clustering representations 

and segmentations under the different importance values of the points in a 3D Voronoi diagram. Using this 

method, it is possible to study the computation of 3D Voronoi parameters in a 3D environment and to 

determine the impact factor each parameter has on the others. In the planar case, the importance is 

calculated by area or distance, whereas the three-dimensional case requires additional analytical 

considerations and advanced numerical methods for the impact factors of 3D points. This study does not 

focus on spatial statistics to cluster spatial points, and related works can be referred to for the existing 

mathematical approaches. In addition, for algorithms related to the construction of the 3D Voronoi 

diagram, several references can be found [13,29–32].  

Prior to further discussion, the following points must be clarified: (1) 3D scatter points constitute the 

point cloud, which have more spatial scatter stereoscopic relationships than point cloud strips (e.g., 

LiDAR point clouds); and (2) we focus on the holistic distribution of the point cloud as well as its clusters 

and segmentations, not on the individual point. The paper is organized as follows. After the introductory 

Section 1, which contains studies related to 3D Voronoi diagram and spatial point patterns in the Voronoi 

diagram, we provide a basic definition of concepts in 3D Voronoi diagram in Section 2, as well as 

describe spatial relationships in the 3D Voronoi diagram and list the importance parameters of 3D 

Voronoi cell. Section 3 presents the main processes of spatial cluster analysis based on 3D Voronoi 

diagram, and various 3D models and random stationary points are tested to show their clusters and 

segmentations; this section also includes a discussion. Finally, conclusions are drawn in Section 4. 

2. Three-Dimensional Voronoi-Based Analysis  

The Voronoi diagram in computational geometry has emerged as a method to characterize the 

structure of spatial points, leading to a better understanding of spatial partition and the interactions that 

exist between their components. The Voronoi diagram is a mathematical structure that represents the 

relationships between members of a given point set and is depicted as a convex polygon or polyhedron, 

called a Voronoi cell, connected by shared edges in 2D and facets in 3D. The Voronoi theory approach 

permits users to test hypotheses that define the characteristics of points’ spatial occupancies and 

influence ranges, regardless of whether the relationships between points are explicitly defined. However, 

different results and patterns that depend on relationships with neighbor should be produced when the 

spatial points are clustered or aggregated together. 

2.1. Definition and Description of 3D Voronoi Diagram 

A three-dimensional Voronoi diagram divides the 3D points into convex polyhedrons such that each 

polyhedron contains exactly one particle (the generating 3D point), and every point in a given Voronoi 

cell is much closer to the generating point than to any other generating points in the space.  
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Let the expression P = {p1, p2, p3…}⊂ 𝑅3represent a locally finite point set with C(P) =  𝑅3, where 

C(P) denotes the convex hull of the family P. Then, the Voronoi diagram V induced by P is defined by 

the nearest–neighbor principle, i.e., the cells {𝑉𝐶𝑒𝑙𝑙𝑖} of VD are given by the following expression:  

𝑉𝐶𝑒𝑙𝑙𝑖 = {𝑝 ∈ 𝑅3: |𝑝 − 𝑝𝑖| ≤ |𝑝 − 𝑝𝑗|} for all i ≠ j (1) 

Notably, 𝑉𝐶𝑒𝑙𝑙𝑖 can be represented as a convex polyhedron that is bound and locally finite in a 3D 

space or in an intersection of half-planes in a 2D space. Because P is locally finite, it is clear that the 

cells have a non–empty interior. Moreover, their union covers 𝑅3, and two different cells can only touch 

at their boundaries. Thus, the family 𝐶(𝑃) = {𝑉𝐶𝑒𝑙𝑙𝑖} constructed in this manner is a diagram. A 2D 

Voronoi diagram and the voxel shape of a single 3D Voronoi cell from a 3D Voronoi diagram along 

with the generating points are displayed in Figure 1. 

   

(a) (b) 

Figure 1. Two-dimensional Voronoi diagram (a) and 3D Voronoi diagram/cell (b). 

Many parameters can describe an individual 3D Voronoi cell. This study uses the following 

parameters, as depicted in Table 1: the particle’s coordinate, identifier, facet #, surface area, volume of 

the 3D Voronoi cell, 1-order neighbors of a certain cell and global depth of a certain cell in the Voronoi 

diagram. The former five parameters (i.e., particle’s coordinate, identifier, facet # and surface area, and 

volume of the 3D Voronoi cell) describe the individual characteristics of the Voronoi cell, and the latter 

two parameters (i.e., 1-order neighbors and depth), which are explained in Section 2.2, depict the spatial 

relationships of a given Voronoi cell in Voronoi diagram. These parameters of a Voronoi cell consider 

both the cell itself and its context in Voronoi diagram. Additionally, before the 3D Voronoi diagram is 

constructed, we should determine the outer box of the domain and consider the edge effects of the 

Voronoi cell near the box’s boundary. 

Each stationary random Diagram C(P) in 𝑅3 induces stationary random lower-dimensional manifold 

processes. The 3D Voronoi cell is related to the point process of facets. Every particle’s birth or death 

results in a change in the local structure for a 3D Voronoi diagram. This local change and update can 

facilitate the local clustering and segmentation of points within a Voronoi diagram to reduce the 

computations. Figure 2 shows the birth and death processes of one particle, represented by a 3D sphere in 

a certain radius (Figure 2a), along with the corresponding 3D Voronoi diagram (Figure 2b). 
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Table 1. Description of the 3D Voronoi cell parameters. 

Parameter Description Note 

Particle The generating point 3D coordinate 

ID Identifier of the Voronoi cell Integral number 

Facet # 
The number of facets of the given 

Voronoi cell 

Degree that indicates the number of spatial 

neighbors 

Surface area 
Surface area of the given  

Voronoi cell 
Related to tension and density 

Volume Volume of the given Voronoi cell Related to tension and density 

1-order neighbors Direct neighbors of the given cell The cells share facets with the given cell 

Depth 
Depth of N-order neighbors of the 

given cell 

Globe depth of multiple order neighbors in 

3D Voronoi diagram or within a cluster 

 

 

(a) 

 

(b) 

Figure 2. Spatial birth-and-death processes: (a) 3D points; (b) the corresponding 3D 

Voronoi cells. 

2.2. Spatial Neighborhood Relationships of 3D Voronoi Cells 

A three-dimensional Voronoi diagram is an efficient method for describing spatial distributions using 

the spatial neighbor relationships among spatial points [16,33]. The topological neighbors of 3D Voronoi 

cells provide candidates that interact with the given cell and exert vital influence on the spatial pattern 

during the clustering process. The multiple order (N-order) neighbor property is an important feature of 

a Voronoi diagram. All of the neighbor cells that share facets are recorded through the construction 
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process of the Voronoi diagram. With topological representation of the Voronoi cell, the direct neighbor 

cells of each Voronoi cell can be conveniently extracted. Voronoi cells that directly share facets with the 

cell of given particles are denoted by 1-order neighbors, and 2-order neighbors refer to the cell/particles 

that are 1-order neighbors of the prior 1-order sets of particles (the previous neighbor cells are exclude 

in the new neighbors), and so on. The depth of spatial order indicates how deep the order of one certain 

cell could be in the overall Voronoi diagram. Thus, the gradual cumulative near neighbors of a certain 

particle can be extracted according to the n-order neighbor relationships. 

Within a set of 100 particles (Figure 3a), the boundary face in a red Voronoi cell represents the spatial 

partition of a certain selected particle (Figure 3b) with ID 33 at the corner of the cube. This Voronoi cell 

has 10 facets, indicating that it has ten 1-order neighbor cells in the Voronoi diagram, as shown in  

Figure 3a and Table 2, including three boundary faces without neighbors. This Voronoi cell has a total 

depth of 4-order in this diagram, and more cumulative 4-order neighbors with identifiers are displayed in 

Table 2 and shown in Figure 3a, which for illustration purposes, uses different colors, from red to blue, to 

dye the particles and Voronoi cells and to show the 4-order neighborhood relationships in the  

three-dimensional spatial point patterns. A slicing profile crossing the selected cell illustrates the gradual 

neighbor in different colors in Figure 3c.  

   

(a) (b) (c) 

Figure 3. 4-order neighbors in the 3D Voronoi diagram of 100 particles (a) with the 

highlighted one at the corner (b) and a slicing profile crossing the highlighted one to show 

the gradual neighbor relationships in 2D (c).  

Table 2. N-order neighbors of a certain particle in a 3D Voronoi Diagram. 

n-order Particle ID 
Number of 

Neighbors 

1 94,88,46,23,16,45,72,4,50,61 10 

2 7,92,84,68,82,80,30,8,93,57,18,81,90,9,12,19,59,13,98,79,75,3,99,41,

2,44,65,97,55,91,62,32,87 

34 

3 70,67,52,64,11,53,36,0,96,73,21,27,5,40,95,39,25,35,34,17,14,56,49,

51,28,38,31,10,6,24,78,76,85,63,1,89,69,29,77,20 

40 

4 26,37,42,58,74,22,60,71,83,43,66,15,48,86,54,47 10 
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Gradual cumulative neighbors resulting from one certain particle can be used as a model of complete 

candidate particles that can be compared with the importance value during the clustering process.  

The definition of a point neighbor is used in our method with the following advantages: (1) it is  

scale-independent and can be adapted to the scale and spatial density so that we can address the point 

cloud regardless of the point number and point range; (2) in contrast to other parameters with specific 

values, a spatial neighbor only indicates the spatial order of the neighborhood, and the neighbor 

relationships are symmetric with each other, which can support the holistic spatial distribution analysis 

of the point cloud; (3) a 3D scatter point cluster based on a 3D Voronoi diagram can also segment the 

point cloud with the same effects as surface convex decomposition (e.g., [23]). 

2.3. Measurements in the Voronoi Method 

Importance Value 

To implement point clustering and point cloud segmentation, each particle should have an importance 

value to indicate its power in the context of the 3D Voronoi diagram. The clustering method in this study 

is based on a hierarchical cluster of the similarity (for related contents, refer to the cited literature), but 

the importance is not merely delimited by a normal Euclidean distance. As stated in Section 2.2, a 3D 

Voronoi diagram can provide the spatial partition of particles, and many parameters can be used to 

describe the 3D Voronoi cell. The principle of clustering depends on the definition of spatial 

relationships and the importance on each particle. In addition to the Euclidean distance, simple 

definitions of importance can be employed by the volume and the surface area or its reciprocals of a 3D 

Voronoi cell, which contains the source point. Additionally, in this study, the multiple importance values 

are defined based on the above parameters. The importance of a Voronoi cell can be the combination of 

these parameters, for example, the 3D density of a Voronoi diagram can be described by Equation (2). 

These parameters can reflect the density importance of each point. The importance value can be 

calculated using a relative reference, as in Equations (2) and (3). From Equation (3), it can be indicated 

that the relative importance values are directed and not symmetric with each other. 

𝑟𝑖 = 𝑑𝑘(𝑖) ∑ 𝑑(𝑖)
𝑛

𝑖=1

⁄
 

(2) 

where 𝑑𝑘 refers to the parameters (by the volume and the surface area or its reciprocals of a 3D 

Voronoi cell). 

𝑤𝑟(𝑖, 𝑗) = 𝑟(𝑖)/(𝑟(𝑖) + 𝑟(𝑗))  (3) 

Classical cluster theory reveals that the 3D spatial distributions of homogeneous particles/cells, 

assuming coalescence or cell growth, follow the clustering process. The conventional cluster is based on 

a point-to-point distance to group the nearest particles/cells. Using the parameters of the 3D Voronoi 

cell, each particle can be assigned a certain importance according to its volume, surface area or their 

reciprocal and their combination (Equations (2) and (3)). In actual applications, a certain density or 

tension can be imposed on the 3D Voronoi cell to control these parameters [18]. 
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Spatial Neighborhood Relationship 

More importantly, spatial neighborhood relationships of 3D Voronoi cells support the point cluster during 

computation. A higher number of neighbors and the closer the points are, the more likely the points are 

clustered and segmented together. The spatial neighborhood relationship is stated in Section 2.2.  

The 1-order cell aggregation of the particle i can be formulated by the following equation: 

𝐶1(𝑝
𝑖
) = ⋃ 𝐶𝑗 ∪ 𝐶(𝑝

𝑖
)

𝑗:𝑗∈𝑛𝑒𝑖𝑏𝑟(𝑖)

 (4) 

Therefore, 𝐶𝑗is the spatial neighbor of the Voronoi cell of particle i.  

When this neighborhood relationship is considered, the similarity between the 3D points can be 

confirmed by the neighborhood relationships. Clustering only occurs on the neighbor cells and passes 

on to them. Apparently, the operation of particle aggregations is sequentially associative; thus, we can 

perform this operation gradually according to the neighborhood relationships to determine the different 

spatial patterns of the particles. Thus, the resultant Voronoi cell clusters include all of the close 3D points 

and their neighbors. 

Particle Statistics 

The number of points that are aggregated together as a cluster are calculated to indicate the 

segmentation of the point cloud. 

Depth of the Cluster 

The maximal order of the neighborhood in a cluster is the depth of the cluster, which indicates how 

deep the points are clustered together through topologic neighbor relationships. 

3. Point Cluster Analysis Using the 3D Voronoi Diagram and Applications in Point  

Cloud Segmentation 

The quantitative features of 3D Voronoi cells that aid in the measurement of both the local structure 

of the individual cell and the global topology the 3D Voronoi diagram are extracted, as described in 

Sections 2.1 and 2.2. Moreover, the trends of these features can be controlled by manipulating the point 

clusters through the cell density according to their parameters. As described previously, the 3D Voronoi 

cell responsible for the particle recorded in each importance value is identified based on the spatial 

properties of the parameters, and the interactions are confirmed by the correlation among the individual 

particles. These characteristics can be utilized to implement and analyze the point cloud clusters and 

segmentations of 3D models, which are discussed in this section. This section describes the clustering 

process with the aid of different importance values based on the 3D models and stationary scatter point 

sets. During the clustering process, the particles remain stationary and are divided into different classes 

and then clustered together. 
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3.1. Method Procedures 

To illustrate the feasibility of our method, different 3D point clouds are tested to cluster and segment 

the 3D Voronoi diagram by cluster. Clustering procedures include the following steps:  

(1) Construct the 3D Voronoi diagram of a 3D point cloud; 

(2) Compute the parameters of each 3D Voronoi cell and its neighbor cells; and 

(3) Cluster 3D points with a given number of clusters by hierarchical cluster and Voronoi 

parameters (Section 3.2). 

The distance between 3D points is calculated within point 𝑝0and its 1-order neighbor set; thus, the 

minimum distance is as shown in Equation (5): 

𝐷0 = 𝑑(𝐶1(𝑝0), 𝑝0) = min
1<𝑗<𝑚

(𝑝𝑗 , 𝑝0) (5) 

Using the hierarchical cluster, the distance between the p cluster class and the q cluster class is 

calculated with the following formula, and the further recursion formula for the k cluster class compared 

with the (p + q) cluster class is given in Equations (6) and (7): 

𝐷𝑝𝑞
2 =

1

𝑛𝑝𝑛𝑞

∑ ∑ 𝑑𝑖𝑗
2

𝑖∈𝐺𝑞𝑖∈𝐺𝑝

 (6) 

𝐷𝑝𝑞
2 =

𝑛𝑝

𝑛𝑝 + 𝑛𝑞

𝐷𝑘𝑝
2 +

𝑛𝑞

𝑛𝑝 + 𝑛𝑞

𝐷𝑘𝑝
2

 (7) 

Through these formulas, the cluster proceedings are performed, and the results are listed in the 

following applications and tests. 

3.2. Random Point Cluster Analysis Based on 3D Voronoi Diagrams  

In this section, the Euclidean distance, importance value and spatial neighborhood relationship 

between the particles are calculated with case studies such that the farthest particles can be included in 

the neighborhoods, and the difference from random scattering diminishes.  

To test the cluster differences and the universality of the results regarding this approach using the 

different parameters, we establish a 3D Voronoi cell to show the structure and spatial pattern of the 

random spatial 3D points, and clustering methods are based on the interactions among the particles 

corresponding to their neighbor relationships. Spatial clusters and their distributions of particles with the 

same cluster number are different according to different parameters, as indicated in Section 2.1 and 

Section 2.3. Suppose that 1000 particles should be classified into 100 clusters in the test; represented by 

the colors of the particles’ spheres, the result in Figure 4a shows that the scattering of the spatial 

distributions is only according to the density related to the volume of the 3D Voronoi cells, while  

Figure 4b displays the grouping and assembly of spatial distributions under the consideration of 

neighborhoods of 3D Voronoi cells for the same cluster number. 
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(a) (b) 

Figure 4. Different clusters and their distributions of particles for the same cluster number: 

(a) scattering without neighbor relationships; (b) clustering with neighbor relationships. 

Additional cases are tested to examine the spatial pattern of random points’ clustering with different 

importance values based on the 3D Voronoi diagram. Sample stationary points include 1000 particles, 

and four different importance values are used in cluster processes within 10 cluster classes. Figure 5 

gives the point patterns of different spatial distributions according to the different importance values, 

and the differences of the numbers of the Voronoi cells of each class in the cluster pattern are listed in 

Figure 6.  

  

(a) (b) 

  

(c) (d) 

Figure 5. Different patterns according to different importance values: (a) surface area. (b) 

neighborhood and distance; (c) neighborhood + distance + volume; (d) neighborhood + 

distance + surface area. 
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The tested particles were classified into 10 classes based only on the surface area of the corresponding 

Voronoi cells, as shown in Figure 5a, and it can be found that the particles of each cluster class disperse 

and do not aggregate in the cube. Compared with this scatter characteristic of clustering without 

neighborhood relationships, as shown in Figure 5a, the results of the other three cluster analyses illustrate 

the characteristics of spatial group distributions under the neighbor relationships separately with the 

addition of normal distance (Figure 5b), distance and volume of the Voronoi cell (Figure 5c), and 

distance and surface of the Voronoi cell (Figure 5d). To highlight the visual effects of the spatial 

distribution of the particles, only the particles with different colors, which indicate their different classes, 

are depicted in Figure 5a–d, and the corresponding Voronoi cells are hidden to facilitate visualization. 

 

Figure 6. Statistics of the number of particles in 10 classes with different importance values. 

In Figure 6, three curves indicate the similar number of particles in each cluster class among the three 

clustering processes in which all are based on neighborhood relationships along with other parameters, 

which is different from the process based on the individual parameter of the surface area of the particles, 

depicted in blue. It can be indicated that among the clusters with neighborhood relationships (i.e., 

Neighborhood + Distance cluster, Neighborhood + Distance + Volume cluster and Neighborhood + 

Distance + Surface area cluster), the difference in particle number in the same cluster class is small 

because of the Voronoi neighborhood results in the balance of spatial point distributions between the 

different cluster classes; this difference is large between the cluster with “surface area” and the other 

three clusters because without spatial neighborhood relationships, the centrality of the spatial point 

distribution within one cluster class is very weak, and randomness increases. Tens of tests on random 

point sets show similar consequences in which the spatial neighbor relationships play a vital role in 3D 

point clustering.  

Figures 6 and 7 show the clustering results with different thresholds for the distance. “Close” and 

“neighbor” are not mutually equal. The tests show that the neighborhood relationship has a direct effect 

on the cluster results, especially the distribution of clustering points. The spatial neighborhood 

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r 

o
f 

P
o

in
ts

Class

SurfaceArea

Nbrhd+Dis+Vol

Nbrhd+Dit+SurfA

Nbrhd+Dis



ISPRS Int. J. Geo-Inf. 2015, 4 1491 

 

 

relationship leads to continuous clusters that are reliable for segmenting the parts of the 3D body in 

Section 3.3.  

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 7. Simulation of continuous clustering progression in different cluster numbers based 

on Euclidean distance and neighbor relationship: (a) 1000; (b) 500; (c) 250; (d) 125; (e) 60; 

(f) 30; (g) 10; and (h) 5. 
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The clusters selected for analysis have some interactive importance value of influence between them. 

Each particle interacts with its spatial neighbor particles to attempt to polymerize them when the cluster 

process among the particles begins. Because every 3D Voronoi cell is surrounded by its nearest (1-order) 

neighbor cells iteratively, the interactions among the particles appear as a continuous changing process. 

During this process, all of the particles are independent of and homogenous with each other; their 

parameters, importance values and neighborhood per iteration are updated, and the number of clusters 

is checked to implement the cluster. 

Interactive visualization of 3D spatial points based on the 3D Voronoi diagram can simulate and 

explain the processes of some phenomena [34], including blood [19], galaxies [1,3,35], and porous 

materials [36], among others. We can also present the spatial and temporal analysis of the evolution of 

spatial 3D particles with the stationary mode. The progression of the process is dependent on the 

parameters or importance values of the spatial particles and represents direct, cell-based changes that 

can be simulated through time and space. Here, we simulate the progress of the cluster. The cluster 

manner shown in Figure 7 visualizes the continuous hierarchical clusters of spatial particles, based on 

the Euclidean distance and neighbor relationship, according to the different cluster class numbers and 

the corresponding spatial distribution patterns.  

By comparing the clustering based on one parameter (e.g., surface area in Figure 5a), the 

neighborhood and their combination (see Figures 4b and 5), as well as the progressive cluster of 3D 

particles with regard to spatial neighborhood relationships (Figure 7), the effects of the spatial cluster 

based on the Voronoi diagram can be directly visualized. Using the multiple order (N-order) 

neighborhood approach based on the 3D Voronoi diagram, the intensity of the spatial 3D point clustering 

could strengthen with regard to the spatial neighbors. Because the cluster reflects the local spatial 

configuration of the particles in 3D space, it is relatively insensitive to variations in density and the 

dimensionality of the space, which promotes the clustering stability. 

We utilize the spatial neighborhood relationship to define the cluster, to reveal that the significant 

features of a spatial pattern do exist in the process of clustering and to show that these features represent 

the connectivity and modularity of the spatial distribution. These characteristics are utilized to segment 

3D point clouds with the tests described in Section 3.2. 

3.3. Applications in Point Cloud Segmentation of 3D Models 

The clustering and segmentation of a 3D point cloud aim to divide the 3D points into several coherent 

and consecutive subsets, and after the segmentation, the subsets of the 3D points have a certain similarity, 

function, or spatial distribution, which is the foundation of the segmentations of a 3D point cloud. 

Test 3D point cloud data are from the Stanford 3D Scanning Repository (http://graphics.stanford.edu/ 

data/3Dscanrep). These data include point clouds for 3D models of a Horse, Cow, Armadillo, Deer, 

Camel, Horse, Elephant and Hand.  

Their point clouds describe the 3D surfaces of their body shapes, and the configurations of the 3D 

points show a certain regular distribution. It is difficult to cluster 3D points and to segment them based 

on the normal distance parameter. We construct 3D Voronoi diagrams for them and calculate the 

parameters of each Voronoi cell. The spatial neighborhood relationship, distance, and density are used 

to cluster the 3D homogeneous points and form the segmentation of the 3D body components/parts of 
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the 3D models. To clearly visualize the 3D points, the points in the point cloud, for example, the 3D 

horse with 2483 particles in Figure 8a, are enlarged into a ball to the show distinct 3D body shape, and 

the 3D Voronoi cells about the 3D particles of the horse are illustrated in Figure 8b.  

Clusters and segmentations of the horse with cluster numbers of 2, 3, 4, 5, 6 and 8 are shown in  

Figure 9, and Table 3 lists the body components and point number in each cluster class. It is easy to 

identify the horse’s body components with different cluster numbers. For example, for three clusters, the 

horse is segmented into head, front legs and half rear body, and further, for 8 clusters, front feet, rear 

feet, horseback and withers are clearly recognized.  

  

(a) (b) 

Figure 8. 3D point cloud of the Horse (a) and its 3D Voronoi diagram (b). 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 9. Illustrations of clustering and segmentation of the Horse point cloud with different 

cluster numbers: (a) 2; (b) 3; (c) 4; (d) 5; (e) 6 and (f) 8. 

The results in Table 3 indicate that the maximal holistic depth of the horse point clouds is 12, and the 

depths of the clusters are nearly as close. It can be concluded that from the segmentations and depth of 
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the Voronoi neighborhood in 5 clusters and 8 clusters, each cluster has strong centrality and convergency 

to cluster the neighbors together. In addition, the spatial point distributions of each component of the Horse 

include a different number of points but a similar depth of the spatial neighborhood. 

Table 3. Horse clustering and segmentation. 

Number of Clusters Number of 3D Points Max. Depth of Cluster Body Components 

1 2483 12 Body 

2 
1234 12 Half front body 

1249 11 Half rear body 

3 

683 10 Head and neck 

566 10 Front leg 

1234 12 Half rear body 

4 

683 10 Head and neck 

566 10 Front leg 

226 8 Rear feet 

1008 9 Half rear body 

5 

279 8 Withers 

566 9 Front leg 

226 8 Rear feet 

1008 9 Half rear body 

404 8 Head 

6 

279 8 Withers 

566 9 Front leg 

226 8 Rear feet 

676 9 Crupper 

332 9 Horseback  

404 8 Head 

8 

279 8 Withers 

169 8 Front feet 

226 8 Rear feet 

397 9 Front leg 

676 9 Crupper 

160 8 Horseback 

172 8 Belly 

404 8 Head 

To demonstrate the approach’s feasibility, additional point clouds of the 3D models (i.e., Cow, 

Armadillo, Deer, Camel, Horse, Elephant and Hand) are tested. Table 4 presents the segmentation results 

generated by our approach for different 3D models. It can be concluded that the approach effectively 

clusters the 3D point clouds and successfully decomposes concrete body components. Our experiments 

on various 3D models demonstrate that our algorithm possesses the desirable properties of stability, 

reliability, and robustness. 
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Table 4. Segmentation results with different cluster class numbers. 

3D Model 

(# Point) 

Cluster Number (Parts of 3D Models) 

2 3 4 5 6 

Fish 

2366      

Armadillo 

2742 

     

Deer 

3033 

     

Camel 

2443 

     

Elephant 

2775 

     

Hand 

1055 

     

3.4. Discussion 

The parameters exert different influences on the point clusters based on the 3D Voronoi diagram. The 

segmentation results from different models show that the segmentations using our approach are reliable 

for 3D point clouds. It is also apparent that the segmentations depend on the clustering of 3D point 

distributions, which is determined by three parameters: distance, importance value and spatial 

neighborhood relationship. The spatial neighborhood relationship is responsible for selecting the 

candidate clustering points. The distance is determined by the span of the points, along with certain 

importance values, and is responsible for the cluster.  

The method does not depend on the point itself or on plane features but on the 3D distribution and 

the spatial 3D neighborhood relationships to group other 3D points, which improves the segmentation 

of the point cloud and overcomes the disadvantage of clustering based on normal distance in which it is 

difficult to select the closest point to a group. The proposed method is also applicable for segmenting 
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other 3D models with 3D scattering points. The limitation of our method is that for 2D or 2.5D point 

clouds (e.g., terrain), our method may overlook the computation and cause inaccurate results due to the 

full 3D computation. Another limitation of our method is the over-segmentation of some components 

because of their self-touch or neighbor relationships between different components, which may produce 

inconsistent results. For example, the hand in Table 4 with 4 clusters can be consistent with joint of the 

figures; which in 5 and 6 clusters, but the segmentations are not consistent with each figure or joint of 

the figure. A possible solution is to further constrain surface clustering during segmentation; there is no 

surface in our method, and only 3D points are considered. The performance of the algorithm depends on 

the number of the 3D points and the different parameters, that is, different parameter has different 

computations and different complexity.  

There are several advantages of our 3D Voronoi cell approach for analyzing point patterns. First, the 

3D Voronoi diagram is not restricted to 2D planar points, which can provide a precise mathematical 

representation and simulate their 3D spatial structure, and it is insensitive to the scale and range of point 

clouds. Furthermore, 3D Voronoi cells enable us to benefit from different parameters and their variations 

and provide a flexible method to describe the importance values of each particle in the cluster process, 

which extends and facilitates its applications, such as for proteins and galaxies. Third, each 3D Voronoi 

cell has several facets, indicating many spatial neighbor cells and N-order neighbors; thus, spatial 

clusters can be implemented according to spatial neighborhood relationships to approach the actual 

situations. The proposed method reaches the segmentations of the point clouds of 3D models, which is 

completely different from most of the mesh decompositions or surface decompositions of 3D models. 

The results can be further used as surface decompositions with additional surface modeling. 

4. Conclusion 

3D point pattern analysis and its clustering focus on the spatial analysis of points corresponding to 

Voronoi cells in our case, whereas to define the “spatial structure”, one must model cell-cell  

(point-to-point) relationships. The 3D Voronoi diagram provides an efficient method to determine the 

potential spatial distribution and neighborhood relationships, constituting an approach to evaluate the 

similarity of point sets and to enhance point clusters and point cloud segmentation. 3D Voronoi cells 

allow for the existence of facets between adjacent cells such that only the spatial neighbor particles can 

be clustered into one class during the clustering model. These analyses integrate the normal parameters 

(distance, surface area and volume) with spatial neighbor relationships to enhance the inherent 

relationships among individual Voronoi cells. The experiments showed that the proposed method is 

robust regarding the shape and distribution of 3D points, which provide the foundation of surface 

structure, point cloud compression and feature detection and extraction.  
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