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Abstract: The Social Vulnerability Index (SoVI) has served the hazards community well 

for more than a decade. Using Utah as a test case, a state with a population exposed to a 

variety of hazards, this study sought to build upon the SoVI approach by augmenting it with 

a non-linear Artificial Neural Network (ANN). A SoVI was created for the state of Utah at 

the census block group level using five-year data (2008–2012) from the American 

Community Survey. The SoVI provided a dataset from which to train a neural network. The 

ANN was then used to classify a subset of the state to determine if it could provide a 

comparable classification of vulnerability. The ANN produced a vulnerability classification 

that was approximately 26% consistent with the SoVI created using the traditional approach. 

The differences in classifications were assessed using radar plots of block group variable 

averages to explore how the variables were handled in each classification. The results of this 

study warrant further investigation of the capabilities of an ANN-enhanced SoVI. 

Keywords: artificial neural networks; social vulnerability; social vulnerability index; 

environmental hazards 
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1. Introduction 

Contemporary research on the human dimensions of environmental hazards typically falls into three 

paradigms: (1) the exploration of social vulnerability that potentially contributes to enhanced disaster 

impact; (2) the exploration of disaster resilience, the capacity for communities and individuals to 

ameliorate and recover from the impact of a disaster; and (3) exploration of social perceptions that can 

enhance or mitigate the impact of a disaster [1–6]. While efforts in all three areas advance our 

understanding of the human component of environmental hazards and disasters, social vulnerability has 

the longest record of research in the environmental hazards discipline of the three paradigms [2]. 

Social vulnerability, as presented by Cutter [2,3], focuses on identification of vulnerability as it is 

constructed through social systems through exploration of demographic data to create a Social 

Vulnerability Index (SoVI). Exploration of this data to determine the factors that contribute to social 

vulnerability for an area, typically a U.S. Census enumeration unit, is conducted using Principal 

Components Analysis (PCA), which allows the data to drive factor selection for vulnerability. The 

loaded demographic variables in the PCA are identified to have specific representations of vulnerability 

based on our existing understanding of the role of social inequality on social vulnerability, and the  

PCA-identified factors are used to calculate the SoVI score for each enumeration unit. The SoVI has 

been demonstrated at a variety of scales, from the census block level to the county level across the  

United States [3,7] and at the county level in Norway [8], though the PCA approach has only been 

demonstrated at the county level [3,8]. 

While the SoVI appears to be the most ubiquitous social vulnerability assessment in the literature of 

the last decade and a half, it is not the only method by which vulnerability assessments can be made. 

Füssel [6] and Adger [9] have identified several approaches to vulnerability over the years, each with 

fundamental differences that have separated the approaches into niche-like areas of research based on 

initial assumptions, initial objectives, and end-point goals. Further, it is clear from Füssel [6] that there 

is a need for acceptance of a variety of valid frameworks for vulnerability assessment and appropriate 

use of the frameworks for given problems. The aim of this paper is not to limit advancement of 

vulnerability assessment to just one example of one approach at the expense of others, or to suggest the 

superiority of one method over another. The SoVI is of interest in this study as a linear assessment tool 

that offers the easiest test for the application of a non-linear method. 

While the current method of SoVI construction has served analysts well for more than a decade,  

there are still areas for potential improvement. The PCA used in SoVI is a linear statistical method that 

can present problems for often-non-linear geographic human data. An approach to address this problem 

may lie in using an Artificial Neural Network (ANN). An ANN is a data-driven method similar to PCA, 

however it is a classification method, when used in a supervised capacity, which may eliminate 

complications from non-linear data [10,11]. 

This study compared the traditional SoVI approach with a modified SoVI approach with an ANN 

classification extension using a case study for the state of Utah. More specifically, the comparison 

between the traditional SoVI method and the ANN-classified SoVI identified how the two differed. 

Through conducting this study we sought to answer the following questions: 

1. How does an ANN SoVI result compare to the result of a traditional SoVI for a given region? 

2. How and where do the results differ and why? 
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3. How can the ANN classification be interpreted relative to the traditional method regarding its 

strengths and weaknesses? 

A point of concern in this approach is the use of the traditional SoVI result for a given region as a 

valid reference for the ANN SoVI. A common concern that arises in the discussion of the use of indices, 

in a broader sense, is that such indices are independent of their source data, that a given index has no 

direct relationship with what it is representing. The use of indices continues in spite of this challenge, 

however, as stronger alternatives often do not exist. Getting back to the concern of using one index to 

serve as the valid basis for a new index—basing the ANN SoVI on the traditional SoVI—it is important 

to note that the purpose of this study is not to make claims of index validity and appropriateness in a 

broader, theoretical sense. Such deliberation is beyond the scope of this project. As such, this study will 

proceed as though the traditional SoVI is a valid method, supported by more than ten years of use in the 

literature [2,3,7,8]. This is central to the purpose of assessing the viability of the use of an ANN to 

improve upon the traditional methodology. 

2. Background 

The concept of SoVI is a component from Susan Cutter’s Hazards of Place (HoP) model, which seeks 

to integrate physical vulnerability and social vulnerability in an intuitive way [2,3]. The approach fuses 

two concepts in a novel way: vulnerability has to do with both proximity to hazards and political-economic 

factors. Cutter took this fusion a step further, however, and describes the concept of HoP as vulnerability 

that is a place-based characteristic of the vulnerable population where they live [2,7]. Vulnerability 

therefore varies at different scales, and takes into consideration generalization principles: the smaller the 

analysis scale, the more locally relevant the model will be for the population in that place. Place is 

implied to mean a human occupied space, an occupied location [2]. 

Cutter first introduced the HoP model with William Solecki in a 1989 paper on patterns of U.S. 

airborne toxic releases [12]. Cutter continued to work with the HoP concept through the 1990s, where 

the model expanded to include broader physical and social characteristics of hazard vulnerability [2]. 

The vulnerability model came to include hazard potential as a combination of risk and mitigation, which 

itself was broken into the related parts of social fabric, geographic context, biophysical vulnerability 

(akin to the proximity to hazard school of thought), and social vulnerability—similar to the social 

vulnerability aspects of political-economic concepts of social vulnerability) [2] (p. 78). Social fabric in 

this model represents the social and political background of the place and how that impacts social 

vulnerability, while geographic context accommodates more the physical characteristics of the place 

landscape as they operate together with biophysical hazards. The HoP model integrates these 

characteristics which results, when applied to a place, in a holistic assessment of its vulnerability.  

The joining of physical risk with a SoVI as the social vulnerability component has been done in several 

works by Cutter and others in the years following the creation of the HoP model to demonstrate its 

capabilities [2,3,7]. 

Further work involving the SoVI has gone on to explore how robust the SoVI is in terms of sensitivity 

and variance at different scales [3,13]. Schmidtlein et al. [13] determined that scale and minor changes 

in variable selection had little impact on the efficacy of the SoVI, a concern noted in Cutter’s work. 

However, Tate [14] challenged that statistical bias, precision, and uncertainty are intrinsically part of the 
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general hierarchical SoVI, thereby insisting that sensitivity analysis be included in the creation of a 

vulnerability index. Holand and Lujala [8] followed with an approach to adapt the SoVI to a new 

geographic context, in their study’s case translating the United States-centric SoVI to apply to Norway. 

Holand and Lujala [8] altered the variable selection for the SoVI to better reflect the cultural, social,  

and political context of Norway. Taken together, this literature suggests that the SoVI is flexible in its 

construction and viable for results provided care is taken in construction of indices. 

With the adaptive element identified by Holand and Lujala [8] coupled with index sensitivity analysis 

by Schmidtlein et al. and Tate [13,14], new possibilities are opened for advancing the power of the SoVI. 

One such opportunity becomes apparent when considering Stephen and Downing’s [15] assessment of 

vulnerability to famine and food insecurity in Ethiopia in a comparison between three methods. The 

authors compared the commonly used Household Food Economy Approach and RiskMap (HFE) and 

Classification and Regression Tree (CART) methods, and then compared those two to a new approach 

utilizing an ANN. 

An ANN is a machine-learning computation method capable of performing data exploration (in an 

unsupervised mode) and data classification (in a supervised mode), among other applications [16,17]. 

The method has a basic structure of three node layers: one layer of inputs with one node per variable 

input; one hidden layer of nodes that perform the analysis in the model, commonly one plus the number 

of input nodes; and one output layer, with the number of nodes equal to the number of class outputs 

desired [10,11,16]. The input nodes pass their values to each of the hidden nodes, which then perform 

the relationship analysis of the inputs, and then pass the classification out to the output nodes [10,11,16]. 

A common modification to this basic structure in modern studies using ANNs is the inclusion of  

back-propagation, whereby the result of the analysis in the hidden nodes is passed back to the network 

links between the input and hidden layers to apply an auto-adjusting weight to the network links to 

enhance the performance of the ANN [10,16]. The structure of the ANN and its relationship algorithm 

has been determined to implicitly capture non-linear relationships in data applied to an ANN [10,11,16]. 

The method does have a significant drawback with respect to social applications; training an ANN can 

require a significant amount of sample data, which, when considering a single-case model as SoVI has 

frequently been applied, could be problematic due to the reduction in dataset size for classification from 

training [17]. This problem could be alleviated with the use of a trained ANN for other case studies using 

the same input parameters, whereby data would only need to be reserved for model validation rather 

than for training. The convention put forth by Shahin et al. [17] recommends an optimal training set to 

be 70% of the data with 30% used for testing. 

The direct application of ANNs in social problems has little presence in the literature. However, the 

use of ANNs in physical systems modeling is quite extensive. Examples in geography include, but are 

not limited to: rainfall estimation [18], landslide susceptibility [19], water quality [20], and solar energy 

potential [21]. These applications have utilized the classification potential for an ANN in developing 

predictive models for evaluating physical phenomena using input variables identified as key to 

understanding those phenomena. The SoVI is the product of attempting to parameterize social vulnerability 

with quantitative social data, which makes the SoVI not dissimilar to the physical phenomena in form. 

This similarity between SoVI and other analyses of physical phenomena, taken with the demonstration 

by Stephen and Downing [15] of an ANN in a vulnerability application, suggests that an ANN may be 

useful for assessing vulnerability. 
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Stephen and Downing [15] found that the ANN could produce comparable results to the commonly 

used HFE and CART methods, but more importantly performed some diagnostics on the functionality of 

the ANN in a vulnerability context. They found that their ANN was not sensitive to spatial scale and further 

determined that their ANN could accommodate data sets with different scales, which could suggest a 

possible way to address the Modifiable Areal Unit Problem in SoVI construction [15,22,23]. The ANN 

was also identified as having captured non-linear relationships in their data, even when the data were 

autocorrelated [15], consistent with statements about ANN performance by Fischer and Abrahart [16]. As 

noted by Stephen and Downing [15] and Fischer and Abrahart [16], topology between observations can 

also be maintained in some applications of the ANN. Ultimately, Stephen and Downing [15] opened up 

a new pathway for social vulnerability and the SoVI through integration of an ANN. 

3. Experimental Section 

To explore the modification of the SoVI method, we constructed an experiment to first assess 

vulnerability for Utah using the traditional method. From that point an ANN was constructed to expand 

the SoVI with a non-linear method to enhance the results. The following sections describe in greater detail 

the procedure used to explore this application of ANN to expanding SoVI. We chose the SoVI method to 

test an ANN as existing literature on SoVI [3,4,6,8,13–15] appears to provide a clear avenue for exploration. 

3.1. Study Area 

Utah is a state located in the Rocky Mountain West with a population in 2010 of 2,763,885  

(Figure 1) [24]. The state has 29 counties, 18 of which have a population of 25,000 or fewer. Utah’s 

capital is Salt Lake City, located in Salt Lake County, which is also the largest city in the state with a 

municipal population of 186,440 as of the 2010 decennial census [24]. The population distribution is 

non-uniform throughout the state, as a large portion of the population of the state is centered in the 

Ogden-Salt Lake-Provo corridor of the Wasatch Front, with the remainder of the state mostly rural. 

 

Figure 1. The state of Utah in the Western United States with county population by land  

area shown. 
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3.2. Population Data 

To conduct our study, we took a subset of the United States Census Bureau’s American Community 

Survey (ACS) data for the state of Utah for a five year period to account for as many social factors as 

possible from the traditional SoVI method [3]. The ACS surveys a small sample of the population each 

year to supplement and expand on the decennial census and to provide other statistics products useful 

for planners in a variety of contexts [25]. We selected the five year data for this study to reduce the 

effects of error, which is reduced through the combination of the samples from each of the years, thereby 

increasing the sample size. The period of our dataset is from 2008 to 2012. 

The ACS data is aggregated at a variety of levels for different needs. We selected the smallest 

aggregation level that the ACS is published in for this study, the census block group level—the second 

smallest aggregation unit the Census Bureau uses in published data. This was done to capitalize on two 

key benefits: a relatively fine spatial scale to assess vulnerability and the largest possible number of 

aggregation units for the study area. The relative quality of the ACS is less important study than the 

ready availability of a large number of demographic variables no longer collected in the U.S. Census 

Long Form, particularly as the internal consistency of the data is the only validity concern for this study. 

The five-year ACS data for Utah at the census block group level is composed of 1690 census block 

groups and contains a total of 2739 variables with respective margins of error. The subset of the variables 

used in this study totaled 60 variables from the ACS and 1 variable from the census block group geometry 

(Table 1). Some of the variables were combined where appropriate to produce more broadly descriptive 

variables, such as with public education attainment. The variables chosen for this study approximate a 

basic index covering the broadest themes of social vulnerability as presented by Cutter et al. [3]. These 

data provide a basic skeleton by which to test the ability of an ANN to perform as a classification method, 

rather than as a complete and accurate vulnerability assessment. 

Table 1. Subset of the United States Census Bureau’s American Community Survey (ACS) 

variables used in the study with descriptions and whether the variable was derived from a 

larger group of variables from the ACS data. 

Variable Name and Number Derived Variable Description 

MEDIAN_AGE (1) No Median age 

PER_CAPITA_INCOME (2) No Per capita income 

MED_VAL_OWN_OCC_HOUSING (3) No Median value of owner occupied housing 

MED_RENT_RENT_OCC_HOUSING (4) No Median rent of renter occupied housing 

NON_WHITE (5) Yes Proportion of population that is non-white 

PC_POP_UNDER_5 (6) Yes Proportion of population under the age of 5 

PC_POP_OVER_65 (7) Yes Proportion of the population over the age of 65 

PC_CIVIL_LABOR_UNEMPLOYED (8) Yes Proportion of the civil labor force that is unemployed 

AVG_PEOPLE_HOUSE (9) No Average number of housing occupants 

PC_HOUSE_EARN_MORE_75K (10) Yes Proportion of population earning more than $75,000 per year 

PC_POVERTY (11) Yes Proportion of population living below the poverty level 

PC_RENT_OCC_HOUSING (12) Yes Proportion of housing occupied by renters 

PC_MOBILE_HOME (13) Yes Proportion of occupied housing as mobile homes 

PC_POP_OVER_25_NO_DIPLOMA (14) Yes Proportion of population over 25 with no high school diploma
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Table 1. Cont. 

Variable Name and Number Derived Variable Description 

NUM_HOUSING_SQ_MI (15) Yes Housing density by square mile 

PC_POP_IN_LABOR_FORCE (16) Yes Proportion of population in labor force 

PC_EMP_EXTRACTIVE (17) Yes 
Proportion of labor force employed in extractive  

industry occupations 

PC_EMP_TRANSCOMMUTIL (18) Yes 
Proportion of labor force employed in transportation, 

communications, and utilities occupations 

PC_EMP_SERVICE (19) Yes Proportion of labor force employed in service occupations 

PC_FEMALE (20) Yes Proportion of population that is female 

PC_FEM_ONLY_HOUSE (21) Yes 
Proportion of households headed by a female with no  

spouse present 

PC_HOUSE_SS_INCOME (22) Yes Proportion of households receiving social security income 

These data were joined to the census block groups polygons in a Geographic Information System 

(GIS) and the final variables were calculated within the database. The joined data were exported from 

the GIS to the statistical software package R to perform further analysis. 

3.3. Traditional SoVI Construction 

The ACS variables attached to the census block groups for Utah were exported from the GIS into a 

shapefile format and read into R using the “maptools” package. The database table containing the 

variables for the state was translated into a data frame in R. Once the data were in the correct internal 

format in R, PCA was run on the data using the “prcomp” function. The data were scaled in the function 

to center all of the variables and to ensure the variance was not skewed by differences in variable 

magnitude. The resultant PCA analysis produced a total of 22 principal components of which 13 were 

selected as social factors with 87.8% of the variance explained (Table 2). 

Table 2. Traditional Social Vulnerability Index (SoVI) factors with cardinality, factor name 

and proportion of variance explained (rounded), and dominant social variables with factor 

loading cardinality. 

Factor 1 (−) Factor 2 (+) Factor 3 (+) Factor 4 (+) Factor 5 (+) Factor 6 (abs) Factor 7 (−) 

Wealth (22) Elderly (13.9) Extractive (8.9) Female (6.9) Disadvantaged (5.5) Employment (4.9) Housing (4.4) 

per capita (−) med age (+) renters (+) female (+) non-white (+) unemployed (−) median rent (−)

earn >75K (−) over 65 (+) house sqmi (−) 
fem only home 

(+) 
under 5 (+) avg house size (−)  

 SSI receive (+) extract emp (+)  female (+) extract emp (+)  

     service emp (+)  

Factor 8 (−) Factor 9 (+) Factor 10 (+) Factor 11 (−) Factor 12 (+) Factor 13 (+)  

Housing (4.1) 
Race and 

Employment (4)
Disadvantaged (3.6)

Employment 

(3.5) 
Disadvantaged (3.1)

Extractive 

Employment (3) 
 

median rent (−) non-white (+) mobile homes (+) service emp (−) under 5 (−) mobile homes (+)  

 unemployed (−) extract emp (+)  unemployed (−) extract emp (−)  

  fem only home (+)  fem only home (+)   
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From this selection of social factors, a function was created to additively combine the factors—using 

the variable loadings—into the final SoVI score. The function used to add the loadings is shown below: −1ܨ + 2ܨ + 3ܨ + 4ܨ + 5ܨ + |6ܨ| − 7ܨ − 8ܨ + 9ܨ + 10ܨ − 11ܨ + 12ܨ + (1) 13ܨ

The data were exported back to GIS to visualize social vulnerability for the state. The SoVI scores 

were symbolized using quantiles with five breaks. The breaks represent categorical vulnerability (Table 3). 

Table 3. Vulnerability categories and their respective quantile break upper bound value. 

Upper Bound of Category Category 

−1.59 Very Low 

0.62 Low 

2.44 Moderate 

4.60 High 

22.77 Very High 

A new field was added to the database table to include the SoVI categories. The data were exported 

with the categories included into shapefile format to be read into R once more. 

3.4. ANN SoVI Construction 

The data were loaded into R using the “maptools” package once again. The database table was loaded 

into a data frame in R and unnecessary fields were stripped from the table (i.e., the SoVI score table, 

GIS-generated fields, etc.). The data were then partitioned into two sets, one training set and one 

prediction set. The training set was 70% of the data, totaling 1183 census block groups, with the 

remaining 507 census block groups used for ANN classification. This training and testing set division 

was used following the convention established by Shahin et al. [17]. 

The ANN was created using the “nnet” package. The network had 22 input nodes, equal to the number 

of input variables. The hidden layer had a number of nodes equal to the input nodes plus one, or 23.  

The output layer had five nodes, equal to the number of social vulnerability categories (Figure 2). 

The final ANN was run five times for categorical classification to find a common convergence  

value to determine that the model was running consistently and producing consistent results. A static 

seed value was also set in the process to ensure consistency in output. All of the classification runs 

converged at the same value, even when the model was run on other machines. The ANN was run 

multiple times with slight variations to the structure, however the structure presented here performed the 

best of the test cases. 

3.5. Comparison of Traditional and ANN SoVIs 

The comparison of the PCA-driven SoVI against the ANN-extended SoVI was conducted using 

change detection and radar plot comparisons of how each method handled the input social variables. For 

this study we focused primarily on the similarity between the PCA and ANN results, and we compared 

the performance of the methods based on the relative similarity of the results. 
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Figure 2. Structure of the neural network used to classify SoVI for Utah. The network 

contains 22 input nodes, 23 hidden nodes, and five output nodes. 

The change detection employed identified a ‘from–to’ relationship between the traditional SoVI and 

the ANN-extended SoVI. A change detection matrix was created showing which blocks changed 

between methods and how the blocks were reclassified in the ANN-extended SoVI. The change detection 

matrix helped in determining the nature of classification between the two methods and visualized the 

differences between the methods. 

The construction of radar plots allowed us to visualize the relative importance of each variable in 

each vulnerability class for both the traditional SoVI and the ANN-extended SoVI. Comparison of 

variable handling, the importance of each variable in each vulnerability class, allowed us to assess how 

both methods classified vulnerability and to determine if significant deviations in variable handling  

were present. 

4. Results and Discussion 

4.1. Traditional SoVI Discussion 

The PCA scores from the traditional SoVI were categorized into classes of vulnerability based on 

quantiles (Figure 3). The represented social vulnerability for the state of Utah reveals a largely random 

pattern of vulnerability. Some clustering, identified using Local Moran’s I statistic, adjacent to cities in 

the state, but not exclusive to the cities, was found randomly around the state (Figure 4). This pattern is 

to be expected given the strong rural-urban population concentration for the state of Utah as seen in 

Figure 1. High and very high vulnerability block groups are generally found in the south and eastern 

parts of the state, while low and very low vulnerability block groups are scattered throughout the state, 

however those classes are more common in the central and northwestern parts of Utah. 

It is interesting to note that the traditional method produced a few instances of potential 

misclassification. The method classified census block groups with zero population as having high 

vulnerability. These block groups were used to test if the ANN would reclassify the block groups more 
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appropriately, with the PCA results passed to the ANN in different trials, corrected (the misclassified 

block groups were reclassified) and uncorrected (the misclassified block groups were unchanged). 

Figure 3 displays the uncorrected traditional SoVI result to compare with the ANN SoVI result with the 

uncorrected block groups shown below. 

 

Figure 3. The SoVI constructed for the state of Utah using the traditional approach. 

 

Figure 4. Clustering of vulnerability categories for Utah based on the traditional SoVI using 

the Local Moran’s I statistic. The pattern demonstrates some areas of clustering near 

populated cities. 
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The SoVI result from the traditional approach is largely consistent with understanding of vulnerability 

in Utah based on qualitative assessment by the authors. Further, the pattern is similar to a smaller scale 

study using different datasets for Salt Lake County in Utah [26]. The authors accept the traditional SoVI 

used in this study, with the limitations noted in the previous paragraph, as a valid result. 

4.2. ANN SoVI Discussion 

The ANN was trained using 70% of the data (demonstrated Stephen and Downing [15] and supported 

Fischer and Abrahart [16]), totaling 1183 census block groups. The remaining 507 block groups were 

used to test the classification capability of the trained ANN (Figure 5). The classification by the ANN 

produced a roughly evenly distributed classification. Each of the classes was of a size within one standard 

deviation of the mean number of block groups in each vulnerability class; however, the very low class 

had 129 block groups. It may appear that the very low class is slightly biased. Comparison between the 

traditional SoVI and the ANN-extended SoVI revealed some of the nature of the ANN classification, as 

discussed in the following section. It is also worth noting that the ANN classification produced 

consistently the same results with a specified seed value in R over multiple model runs, indicating 

stability in the classification. 

 

Figure 5. The SoVI for the state of Utah constructed using the Artificial Neural Network  

(ANN)-extended method. 

4.3. Traditional SoVI and ANN SoVI Comparison 

Comparing the two results necessitated the extraction of the PCA loadings and the ANN network 

weights. These data are not directly comparable, so two comparison methods were devised to assess both 

methods: change detection between the results of both methods and radar plot assessment of the variable 
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handling in each method. To aid in the comparison, we used the cardinality and internally relative 

magnitudes of the PCA loadings and the ANN network weights. 

The first part of the comparison was conducted through the analysis of a change detection plot 

between the traditional SoVI and the ANN SoVI with an accompanying change matrix (Figure 6). The 

first thing of note is the agreement between the two methods. The ANN-extended SoVI produced a 

classification that was consistent with the traditional SoVI over 26% of the classified block groups. 

While this may seem low, it is important to note that the two methods should produce different results; 

it is therefore encouraging to find some (but not total) agreement between the methods. Where the 

methods differ there are opportunities for further investigation into how the ANN differed from the PCA. 

 

Figure 6. Comparison of the traditional SoVI classes and the ANN-extended SoVI classes 

for the state of Utah. The legend includes a change matrix showing how the traditional SoVI 

classified the census block groups against how the ANN-extended SoVI classified the same 

census block groups for the classification subset. The symbolized classes indicate census 

blocks that remained unchanged between methods as well as a generalized representation of 

which census block changed to each vulnerability class. An inset map of Salt Lake County 

is included to show the most densely populated portion of the study area. 

Referring back to the previous section and the possible concern of classification bias in the very low 

vulnerability class, we can see from the change matrix that the two methods had the second highest 

agreement in the very low class. Further, the bulk of the reclassification came from block groups classed 

as moderate and low vulnerability in the traditional SoVI. Based on this information it appears that there 

may be a bias to the very low vulnerability class. Many of the block groups changed from their traditional 

SoVI classification through the ANN classification, and it is noteworthy to point out that this occurred 
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from each class to each other class. This may be evidence that the ANN was able to capture non-linear 

relationships in the data and express that in its classification. 

Using the misclassified block groups from the traditional approach as an extra diagnostic, we found 

that the ANN classified the (potentially) misclassified block groups into the same category as the 

traditional approach. This result is encouraging as the ANN may have been forced to adjust to accommodate 

the abnormal block groups. This additional point of consistency between the two classification methods 

suggests that the ANN is capturing some of the relationships that the PCA also found. The training set 

included examples of the high category that were not invalid, as well, and was consistent in some of 

those classifications with the traditional SoVI, but it also classified some of the high block groups into 

other vulnerability classes. This may indicate that the ANN found a non-linear relationship between the 

social variables that caused it to class those block groups differently. 

It could further be suggested, from a visual appraisal of Figure 6, that the rural areas of Utah dominate 

the training set for the ANN. A closer look at Salt Lake County—the center of the most densely populated 

region in Utah—reveals that the block groups within this densely populated region are well represented 

in the training data as well as in the classification set. 

The second part of the comparison was conducted by qualitatively assessing the social variables of 

the block groups and the classification results from both methods. By constructing radar plots with each 

variable—the variables were standardized and averaged for each vulnerability class—represented on  

its own X-axis, we were able to determine the tendency of variable importance in the classifications 

(Figure 7). The radar plots reveal relative internal consistency for how both the traditional approach and 

the ANN classified the block groups. From Figure 7 (axis numbers correspond to variables in Table 1) 

we can see that the tendency for very high and moderate lined up well between both the traditional 

classification and the ANN classification (Figure 7a,c). Clear variation in variable handling between 

both methods can be seen in the very low vulnerability class (Figure 7c). This difference between the 

two classification methods may be a case where the ANN is handling the variable relationships in a  

non-linear way. 

 

Figure 7. A comparison of the averages of the social variables within the very high (a); 

moderate (b); and very low (c) vulnerability classes between the traditional SoVI and the 

ANN-extended SoVI. 
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Through analysis of the differences between the traditional SoVI and the ANN-extended SoVI 

classifications, we were able to determine that the results from both methods were reasonable and that 

the two methods could be readily compared. The comparison revealed situations where the non-linear 

nature of the ANN’s classification may have been beneficial, resulting in the difference seen in Figure 6. 

The stability of the ANN classification as the network reached convergence helps to strengthen these 

findings, in addition to the inter-method consistency checked using invalid block groups. 

Due to the exploratory nature of this study—to determine if the ANN can enhance the traditional 

SoVI method—the margin of error term for the ACS variables was not used with the study data.  

While we did not feel this was necessary for this study, other researchers employing the methodology 

described in this paper are encouraged to ensure that the margin of error is included to provide the most 

accurate results. 

5. Conclusions 

This study compared the traditional SoVI method of vulnerability classification with a modified  

form utilizing an ANN. Both the traditional approach and the ANN approach produced reasonable 

vulnerability classifications for the state of Utah with respect to the basic parameterization used for this 

study. The methods were in agreement for 26% of the common block groups. This partial agreement 

shows that both methods are capable of identifying some of the same relationships between the input 

variables; the difference in how relationships were handled demonstrates that the ANN captured  

non-linear relationships that the PCA could not. Further, agreement between the methods for the  

invalid block groups, classed as high vulnerability in both approaches, demonstrates cross-method 

consistency—the ANN was forced to classify the invalid block groups the same as the traditional 

approach, likely due to the out-of-ordinary nature of variable values for those block groups. 

The ANN-extended SoVI demonstrated some bias in classification in the high and very low 

vulnerability classes, with noticeable differences in how the traditional classification and the ANN 

classification handled variables for those classes. The radar plots of the social variables for each 

vulnerability class reveal that the ANN handled the variables for the other three classes similarly to the 

traditional approach. This internal data-handling consistency between the methods strengthens the 

finding that the ANN captured non-linearity between the variables, consistent with statements in the 

literature [10,11,16], as can be seen below (Figure 8). Consistency between model runs of the ANN 

further strengthen the classification result, as there was no variation in the results between runs and the 

convergence was identical in each test run. 

Using the methodology outlined in this paper, we can summarize our findings with respect to our 

study questions. Firstly, the traditional SoVI and the ANN-extended SoVI both produced reasonable 

results for the state of Utah—the classifications of vulnerability from both methods were reasonable for 

the population when compared to existing work in the region [26,27]. Secondly, the results between the 

methods were different, but partially consistent. The ANN classified 26% of the classification subset 

consistently with the traditional SoVI, indicating that both methods were able to capture similar 

relationships between input variables. However, the ANN classified the remaining subset differently, in 

some cases to one vulnerability class away from the original (e.g., from very high to high). Analysis of 

the variable tendencies in the vulnerability classes for both methods (using the radar plots) shows that 
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both methods handled the variables in largely the same way, with some notable differences. The divergence 

between the two methods indicates that the ANN was able to capture non-linear relationships in the 

variables which were not captured with linear PCA. Finally, because the ANN did capture non-linearity 

in the variables for its classification, the ANN should be a viable pathway to enhancing the way SoVI is 

constructed in the future, and could be useful in other quantitative vulnerability assessment methodologies. 

The consistency between the methods shows that the ANN was able to capture the linear relationships 

identified with PCA, which means that the strengths of the PCA method can be preserved when using 

an ANN. Invalid data, however, presents problems for both methods, despite the strength of consistency 

found using invalid data; analysts will need to be vigilant to ensure quality data is used when using the 

ANN, as is the case with the traditional approach. 

 

Figure 8. Evidence of non-linear relationships between the input variables. Ten examples 

were selected: two of each class from the traditional SoVI that changed to the two most 

distant classes in the ANN-extended SoVI (e.g., one high to low, one high to very low, one 

moderate to very high, etc.). 

The methods to explore the use of ANN to enhance the SoVI method outlined in this study 

demonstrate that this approach can produce a viable alternative to the well-established approach to 

creating a SoVI for a region. Indeed, the ANN retains the strengths of the existing method with few of 

its weaknesses, in addition to its own strengths, particularly the handling of non-linear data-relationships. 

Further exploration of this method will demonstrate how capable the ANN can be for SoVI analysis, as 

well as how it may best be implemented for creating a SoVI. Future exploration of implementing an 

ANN in other vulnerability assessment methodologies has the potential to progress the field of vulnerability 

assessment as a whole. 
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