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Abstract: Multi-scale/multi-level geographic object-based image analysis (MS-GEOBIA) 

methods are becoming widely-used in remote sensing because single-scale/single-level (SS-

GEOBIA) methods are often unable to obtain an accurate segmentation and classification of 

all land use/land cover (LULC) types in an image. However, there have been few 

comparisons between SS-GEOBIA and MS-GEOBIA approaches for the purpose of 

mapping a specific LULC type, so it is not well understood which is more appropriate for 

this task. In addition, there are few methods for automating the selection of segmentation 

parameters for MS-GEOBIA, while manual selection (i.e., trial-and-error approach) of 

parameters can be quite challenging and time-consuming. In this study, we examined SS-

GEOBIA and MS-GEOBIA approaches for extracting residential areas in Landsat 8 

imagery, and compared naïve and parameter-optimized segmentation approaches to assess 

whether unsupervised segmentation parameter optimization (USPO) could improve the 

extraction of residential areas. Our main findings were: (i) the MS-GEOBIA approaches 

achieved higher classification accuracies than the SS-GEOBIA approach, and (ii) USPO 
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resulted in more accurate MS-GEOBIA classification results while reducing the number of 

segmentation levels and classification variables considerably. 

Keywords: GEOBIA; object-based image analysis; Landsat 8; Moran’s I; random forest 

 

1. Introduction 

Fine-scale population data is needed for assessing vulnerability to various natural hazards, e.g., for 

estimating the number of people living in a flood-prone area [1]. To obtain this fine-scale data, 

“dasymetric mapping” techniques are often used to downscale population counts and/or other 

demographic data from census units (e.g., block-group, neighborhood, city) to the scale of an ancillary 

data set [2]. A gridded map of residential (i.e., populated) and non-residential (i.e., unpopulated) areas 

is the ancillary data source for the most commonly-used dasymetric mapping method, the grid binary 

method [3], which involves evenly distributing the population (or other demographic statistics) of a 

census unit to residential areas within the census unit. Accurate and up-to-date residential/non-residential 

area maps are therefore important for supporting vulnerability assessments. 

Residential areas can be extracted from remote sensing imagery, but because they tend to be spectrally 

heterogeneous, containing a mix of built-up land (which itself consists of many different surface 

materials) and vegetated land, it is difficult to accurately map them using traditional pixel-based 

classification methods which consider only the spectral properties of individual pixels [4]. Geographic 

object-based image analysis (GEOBIA) methods [5], on the other hand, can incorporate textural and 

contextual information in addition to spectral information for land use/land cover (LULC) classification 

[6], making them well-suited for mapping residential areas [7]. The first step in GEOBIA is image 

segmentation, a process that subdivides an image into relatively homogeneous regions (i.e., image 

segments). LULC classification is then carried out with segments as the base processing units rather than 

single pixels. Multi-scale/multi-level GEOBIA (MS-GEOBIA) approaches, which incorporate multiple 

segmentations of an image at different “scale” levels for LULC classification (i.e., different average 

segment sizes), often outperform single-scale/single-level GEOBIA (SS-GEOBIA) approaches when 

LULC features of interest differ in size and/or texture [8–11], as even a very  

accurate single-level segmentation will likely split some LULC features into multiple segments 

(i.e., oversegment) and/or group them together with other neighboring LULC features in a single segment 

(i.e., undersegment). Many MS-GEOBIA studies involve classifying different LULC types at each 

segmentation level [8,12–15], while few have compared SS-GEOBIA and MS-GEOBIA approaches for 

classifying a single LULC type of interest [16]. Residential areas vary in terms of both size (area of 

residential development) and texture (e.g., building sizes and building densities which vary by development), 

so a MS-GEOBIA approach may be more appropriate than SS-GEOBIA for mapping them. 

Selection of parameters for image segmentation (i.e., parameters that determine the average size 

and/or shape of segments) can be time-consuming and subjective using visual analysis alone [17], 

particularly for MS-GEOBIA, as the number of possible combinations of segmentations to use for 

classification can become very large. For these reasons, automated segmentation parameter optimization 

(SPO) methods can be particularly useful for MS-GEOBIA. Unsupervised SPO (USPO) algorithms are 
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becoming a popular type of SPO method in remote sensing, and they optimize segmentation parameters 

based on the spectral and textural properties of image segments. However, the impact of USPO on MS-

GEOBIA classification has not been evaluated in detail, and most USPO methods can only be used for 

SS-GEOBIA. 

In this study, we investigated whether an MS-GEOBIA approach and USPO could lead to more 

accurate mapping of residential areas in Landsat 8 imagery. To our knowledge, this is (1) the first study 

to compare the performance of SS-GEOBIA and MS-GEOBIA for mapping residential areas, and (2) 

the first study to evaluate the impact of USPO on MS-GEOBIA classification accuracy by comparing 

naïve and parameter-optimized classification results. In support of (2), we proposed a USPO method 

specifically for MS-GEOBIA. 

2. Parameter Optimization for SS-GEOBIA and MS-GEOBIA 

For both SS-GEOBIA and MS-GEOBIA, segmentation parameters need to be set prior to image 

segmentation, and the selection of these parameters can have a significant impact on image classification 

accuracy [18]. SPO methods can generally be divided into supervised SPO (SSPO) and USPO methods. 

SPO methods require ground-truth polygons of sample objects to be digitized, which can be time-

consuming and somewhat subjective in terms of sample object selection (e.g., for  

MS-GEOBIA, selecting which sample objects to use for optimizing each segmentation level) and 

boundary delineation. USPO methods, on the other hand, are based solely on image statistics and do not 

require ground-truth polygons, so their main advantages are their higher levels of objectivity and 

automation [17]. Here, we focus only on the USPO methods. 

Most USPO methods in remote sensing have the goal of identifying a segmentation which maximizes 

within-segment homogeneity and between-segment heterogeneity [19–23]. Both of these properties are 

desirable, as high within-segment homogeneity indicates that undersegmentation is not prevalent, while 

high between-segment heterogeneity indicates that oversegmentation is not prevalent (i.e., segments are 

spectrally discrete from their neighbors). The previous unsupervised methods that considered both of 

these properties were designed for SS-GEOBIA (to identify one optimal segmentation) and cannot be 

applied to MS-GEOBIA in their current forms. 

To help solve this problem, we propose some modifications to an existing multi-band USPO method 

[20] to permit MS-GEOBIA implementation. The existing method measures within-segment 

homogeneity by the area-weighted variance (WV) of all the segments in a segmentation level [19] 

and between-segment heterogeneity using Global Moran’s I (MI) [24], a spatial autocorrelation metric 

which calculates the spectral similarity between segments and their neighbors and then aggregates 

the results. Lower WV values indicate segmentation levels with higher within-segment homogeneity 

(i.e., less undersegmentation), while lower MI values indicate segmentation levels with lower spectral 

similarity between neighboring segments (i.e., less oversegmentation). Here, the WV and MI values are 

both normalized to a 0–1 range by:  

𝑊𝑉𝑛𝑜𝑟𝑚 =  
𝑋𝑚𝑎𝑥 − 𝑋

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

𝑀𝐼𝑛𝑜𝑟𝑚 =
𝑋𝑚𝑎𝑥 − 𝑋

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (2) 
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where 𝑊𝑉𝑛𝑜𝑟𝑚 is the normalized WV value, 𝑀𝐼𝑛𝑜𝑟𝑚 is the normalized MI value, 𝑋 is the WV (or MI) 

value of the current segmentation, and 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛 are the maximum and minimum WV (or MI) 

values of all the generated segmentations. Higher 𝑊𝑉𝑛𝑜𝑟𝑚  and 𝑀𝐼𝑛𝑜𝑟𝑚  values indicate higher 

undersegmentation and oversegmentation “goodness”, respectively. 𝑊𝑉𝑛𝑜𝑟𝑚  and 𝑀𝐼𝑛𝑜𝑟𝑚  values are 

calculated for each spectral band and then averaged. 

Various methods can be used to combine undersegmentation and oversegmentation goodness 

measures to calculate the “overall goodness” (OG) of each segmentation level, and several examples are 

given in Zhang et al. [17]. Here, we suggest combining them using the F-measure (F) [25] because a 

recent study on SSPO by Zhang et al. [26] found that F had greater sensitivity to excessive 

undersegmentation/oversegmentation than other commonly-used combination methods including 

addition and Euclidean distance. F is often used for assessing the accuracy of a specific class, and it 

takes into account false positives (using a “precision” metric) as well as false negatives (using a “recall” 

metric) to compute a single class-specific accuracy value. In [26], it was instead used to combine 

precision- and recall-based metrics representing oversegmentation and undersegmentation goodness, 

respectively, to compute an OG value for each segmentation. Based on this logic, in our study, OG 

calculated by F (OGf), can be given by: 

𝑂𝐺𝑓 = (1 + 𝑎2)
𝑀𝐼𝑛𝑜𝑟𝑚  ×  𝑊𝑉𝑛𝑜𝑟𝑚

𝑎2  ×  𝑀𝐼𝑛𝑜𝑟𝑚 + 𝑊𝑉𝑛𝑜𝑟𝑚
 (3) 

where a is a weight which controls the relative weights of 𝑊𝑉𝑛𝑜𝑟𝑚 and 𝑀𝐼𝑛𝑜𝑟𝑚. For example, a = 1 

indicates equal weighting for 𝑊𝑉𝑛𝑜𝑟𝑚 and 𝑀𝐼𝑛𝑜𝑟𝑚, while a = 0.5 indicates half weighting for 𝑊𝑉𝑛𝑜𝑟𝑚, 

and a = 2 indicates double weighting for 𝑊𝑉𝑛𝑜𝑟𝑚. 𝑂𝐺𝑓 values range from 0 to 1, with higher values 

indicating higher segmentation quality. 

Previous USPO studies have used an equal weighting approach for combining undersegmentation 

and oversegmentation goodness metrics to identify a single optimal segmentation [19–21,23,27,28], but 

we propose that these USPO methods can be also be applied for MS-GEOBIA by adjusting the weights 

assigned to the undersegmentation and oversegmentation goodness metrics (e.g., by modifying the value 

of a in Equation (3)). For example, values of a > 1 in Equation (3) may be appropriate for selecting the 

parameters for finer segmentation levels (to ensure that smaller objects of interest or objects spectrally-

similar to their surroundings are not undersegmented at these levels), while values of a < 1 may be more 

appropriate for selecting parameters for coarser segmentation levels (to ensure that larger/more 

heterogeneous objects of interest are not oversegmented at these levels). As a simple example, for a two-

level GEOBIA approach, undersegmentation goodness (𝑊𝑉𝑛𝑜𝑟𝑚) could be given double weighting (a = 

2) at segmentation level 1 and half weighting (a = 0.5) at scale level 2. 

3. Methods 

3.1. Study Area and Data 

The Silang-Santa Rosa watershed of the Philippines was selected as the study site because it has been 

undergoing rapid urbanization in recent years, and the local government units needed a fine-scale map 

of residential areas to conduct flood vulnerability analysis. Landsat 8 imagery of the area, acquired 7 

February 2014, was obtained from [29]. The residential areas in the study area consist mainly of detached 
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single-family houses, with building sizes, lot sizes, and building/rooftop materials varying considerably 

in different developments. The other main LULC types in the watershed include agriculture, agroforestry 

(coconut plantations), broadleaf forest, idle grassland, light industry, and large commercial facilities 

(e.g., shopping malls). Figure 1 gives an overview of the study area. 

 

Figure 1. Overview of study area and Landsat 8 satellite imagery (natural color composite). 

3.2. Image Pansharpening 

Since the residential areas did not have a unique spectral signature, and high resolution texture 

information can be useful for mapping them [7], we improved the spatial resolution of the original 

Landsat 8 multispectral image bands (bands 2–7) from 30 m to 15 m by pansharpening them using the 

15 m panchromatic band (band 8) and the Bayesian Data Fusion algorithm (BDF) [30] included in the 

open-source software Monteverdi, version 2.0.6. BDF pansharpened images can achieve high spatial 

quality, which is useful for both image segmentation [31] and texture information extraction [7]. 

3.3. Image Segmentation Parameter Optimization 

The pansharpened image was segmented in eCognition Developer 8.7 using the multiresolution 

segmentation algorithm, a region-merging technique with three parameters; a “scale parameter” (SP) 

which controls the maximum heterogeneity of image segments, a “color/shape” parameter which controls 

the relative influence of spectral information and shape information, and a “smoothness/compactness” 
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parameter which controls the shape of image segments [14,32]. Here, as in many other GEOBIA studies 

[8,9,18,33,34], we varied the SP and left the other parameters at their default values. Segmentation was 

performed for SPs between 20 and 200 using a SP step size of 20. As shown in Figure 2, residential areas 

were clearly oversegmented at a SP of 20 and undersegmented at a SP of 200, so no SPs <20 or >200 

were tested. 

 

Figure 2. (a) Subset of the study area image. (b) segmentation with excessive 

oversegmentation (gray lines) and excessive undersegmentation (black lines) of residential 

areas. The yellow boxes show some examples of residential areas with different spectral 

properties. The red box (industrial area) and blue boxes (bare soil areas) show land use/land 

cover types with high spectral similarity to residential areas. 

USPO was done for one-, two-, three-, and four-level segmentations to allow for a detailed 

comparison between the SS-GEOBIA and MS-GEOBIA approaches. OGf was calculated using the 

following weights for a:  

 a = 1 for SS-GEOBIA; 

 a = 2 and a = 0.50 for segmentation levels 1–2, respectively, for two-level GEOBIA; 

 a = 3, a = 1, and a = 0.33 for segmentation levels 1–3 for three-level GEOBIA; and 

 a = 4, a = 2, a = 0.50, and a = 0.25 for segmentation levels 1–4 for four-level GEOBIA. 

These weights were selected to ensure that the selected segmentation levels differed from one another 

in terms of the within-/between-segment heterogeneity of image segments, and they are not intended to 

be scene-dependent (i.e., not optimized based on the specific image used). To minimize computation 

time for USPO, it was performed for a subset (524 × 307 pixels) of the study area, and the optimal 

parameters were then applied for segmenting the entire study area image (1550 × 1500 pixels). The 

subset contained the LULC types of interest in the larger study area (i.e., residential and various non-

residential LULC types). 

3.4. Image Classification 

We digitized and labeled 70 “region of interest” (ROI) polygons of “residential” and  

“non-residential” (e.g., other impervious, agricultural, forested, and grassy land) LULC features using 
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50 cm resolution Astrium Pléiades imagery from 08 January 2014 (available in Google Earth).  

Image segments that intersected these ROI polygons were used as training segments for classification. 

The mean top-of-atmosphere reflectance (bands 2–7) and standard deviation (bands 2–7) values of image 

segments were used as spectral and textural classification variables, respectively. Two-hundred-twenty 

random points, generated using a stratified random sampling approach [35], were used for accuracy 

assessment, and points falling within training ROI polygons were re-generated to ensure independent 

training and validation data sets. The high resolution Pléiades imagery was also used to identify the 

reference LULC at each validation point. To assess classification accuracy, producer’s accuracy (PA) [35], 

user’s accuracy (UA) [35], and the F value for the “residential” class (Fclass) were calculated. Fclass is 

calculated similarly to 𝑂𝐺𝑓 in Equation (3), with PA and UA replacing 𝑊𝑉𝑛𝑜𝑟𝑚 and 𝑀𝐼𝑛𝑜𝑟𝑚, and using 

an a value of 1.0 (equal weighting of PA and UA, which is typical). F is often used for accuracy 

assessment when the focus is on a specific class because it is insensitive to differences in the number of 

validation samples per class (unlike overall accuracy, which is affected more by the majority class) [36]. 

All image classifications were done using the Random Forest algorithm (RF), an ensemble 

classification algorithm that performs multiple decision tree classifications using random subsets of the 

classification variables and training data, and does final class assignment by unweighted voting [37]. RF 

has two classification parameters; the number of variables to use for generating each decision tree (#v) 

and the number of decision trees to include in the ensemble (#t). Based on Breiman [37], #v was set to 

int(log2M + 1), where M is total number of classification variables, and #t was set to 500 based on the 

findings in Lawrence et al. [38]. In this study, all classifications were performed in the  

open-source data mining software package Weka 3.7.9 [39]. 

For the MS-GEOBIA classifications, spatial joins were performed to assign the spectral and textural 

attributes of segments in the coarser segmentation levels to the segments they contained in the finest 

segmentation level (possible since the segments at finer levels are nested within the segments at coarser 

levels), and these “multilevel spatial-context” attributes [40] were then included as additional 

classification variables for the finest-scale segments. For example, for the three-level classification, the 

reflectance and standard deviation values of the level 2–3 segments are assigned to the level 1 segments 

as additional classification variables. To assess the performance of USPO for classification purposes, 

several naïve classifications (i.e., without USPO) were also performed for comparison.  

For SS-GEOBIA, all of the non-optimal single-level segmentations were classified, and for  

MS-GEOBIA, a classification was performed using the classification variables from all of the 

segmentation levels (i.e., with multilevel spatial-context attributes from the SP40-SP200 segmentation 

levels assigned to the SP20 segments). 

4. Results and Discussion 

4.1. Impact of Parameter Optimization on Classification Accuracy 

Table 1 shows the segmentations selected by USPO for SS-GEOBIA and MS-GEOBIA, and  

Table 2 shows the classification results for all segmentations. As can be seen in Table 2, USPO was 

effective for MS-GEOBIA, as the parameter-optimized MS-GEOBIA segmentations had Fclass values 

equal to (two-level classification) or greater than (three- and four- level classifications) that of the  
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all-inclusive MS-GEOBIA classification, while also having fewer segmentation levels and classification 

variables. As an example of the multiple segmentation levels selected by USPO, Figure 3 shows the 

optimal segmentations selected for the three-level GEOBIA approach. In terms of residential area 

segmentation, the SP120 segmentation performed relatively well for segmenting large/spectrally-

heterogeneous residential areas, but some smaller/more spectrally-homogeneous residential areas were 

undersegmented. The SP80 segmentation reduced undersegmentation of most residential areas but 

caused excessive oversegmentation of the larger/more heterogeneous residential areas. Finally, the SP40 

segmentation caused oversegmentation of most residential areas, but was effective at detecting small 

vegetated patches (e.g., parks) located in residential areas. 

Table 1. Optimal scale parameters (SP) for the single-scale/single-level geographic  

object-based image analysis (SS-GEOBIA) (one-level) and multi-scale/multi-level  

(MS)-GEOBIA (two-, three-, and four-level) approaches. 

Number of 

Segmentation Levels 
SP (Level 1) SP (Level 2) SP (Level 3) SP (Level 4) 

1 80 - - - 

2 60 100 - - 

3 40 80 120 - 

4 40 60 100 120 

Table 2. Overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and  

F-measure (Fclass) of the SS-GEOBIA and MS-GEOBIA approaches. Bold values show the 

most accurate results for each metric. The multiple SPs used for the MS-GEOBIA 

approaches are separated by the “+” sign. 

 SP(s) PA “Residential” UA “Residential” Fclass “Residential” 

SS-GEOBIA 

20 0.873 0.686 0.768 

40 0.800 0.721 0.759 

60 0.909 0.735 0.813 

80 0.891 0.721 0.797 

100 0.927 0.680 0.785 

120 0.909 0.685 0.781 

140 0.891 0.754 0.817 

160 0.945 0.693 0.800 

180 0.909 0.658 0.763 

200 0.927 0.586 0.718 

MS-GEOBIA 

60 + 100 0.945 0.722 0.819 

40 + 80 + 120 0.945 0.765 0.846 

40 + 60 + 100 + 120 0.964 0.746 0.841 

All-inclusive 0.945 0.722 0.819 

USPO was also moderately effective for SS-GEOBIA, as the SP80 segmentation selected by USPO 

(Fclass = 0.797) outperformed more than half of the naïve segmentations. For comparison, the highest 

Fclass value was 0.817. The main limitation of the SS-GEOBIA parameter optimization approach for 

residential area mapping may have been its equal weighting of the undersegmentation and oversegmentation 
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goodness metrics, as the residential areas were relatively larger and more spectrally-heterogeneous than 

the other LULC types in the study area. For this reason, in future studies, a higher weight could 

potentially be assigned to the oversegmentation goodness metric if the goal is only to extract the 

residential areas. The better performance of parameter-optimization for MS-GEOBIA was likely due to 

the higher weights assigned to the oversegmentation goodness metric in the coarser segmentation levels, 

which ensured that the residential areas were not oversegmented in at least one of the multiple 

segmentation levels used for classification. That being said, it is possible that other combinations of 

segmentation levels could lead to even higher MS-GEOBIA classification accuracies, as the number of 

possible combinations is very large (120 possible combinations for three-level GEOBIA in our study). 

It is unlikely and probably unrealistic to expect that a USPO approach will be able to always identify the 

best segmentation(s) to use for LULC classification, so USPO should be seen more as a way to produce 

generally satisfactory segmentation and classification results for SS-GEOBIA/MS-GEOBIA while 

requiring less time/less expert knowledge than manual trail-and-error selection of segmentation 

parameters. For reference, the OGf values of all segmentation levels and using all values of a are reported 

in Table 3. 

 

Figure 3. (a) Subset of the study area image. Optimal segmentations for the three-level 

GEOBIA approach: (b) SP120 segmentation; (c) SP80 segmentation; (d) SP40 segmentation. 
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Table 3. OGf values of each segmentation level. Bold values show the segmentation level 

with the highest goodness for each a value (i.e., the values reported in Table 1). 

 
One-Level 

GEOBIA 
Two-Level GEOBIA Three-Level GEOBIA Four-Level GEOBIA 

SP OGf (a = 1) 
OGf  

(a = 2) 

OGf  

(a = 0.50) 

OGf  

(a = 3) 

OGf  

(a = 

1) 

OGf  

(a = 0.33) 
OGf (a = 4) OGf (a = 2) OGf (a = 0.50) 

OGf (a = 

0.25) 

20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

40 0.318 0.465 0.242 0.550 0.318 0.224 0.595 0.465 0.242 0.218 

60 0.467 0.515 0.427 0.534 0.467 0.416 0.542 0.515 0.427 0.411 

80 0.483 0.451 0.520 0.442 0.483 0.534 0.438 0.451 0.520 0.540 

100 0.451 0.385 0.545 0.367 0.451 0.586 0.360 0.385 0.545 0.605 

120 0.382 0.300 0.526 0.280 0.382 0.603 0.273 0.300 0.526 0.641 

140 0.305 0.226 0.470 0.208 0.305 0.574 0.201 0.226 0.470 0.631 

160 0.229 0.161 0.397 0.146 0.229 0.526 0.141 0.161 0.397 0.607 

180 0.127 0.084 0.258 0.076 0.127 0.392 0.073 0.084 0.258 0.498 

200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4.2. Comparison of SS-GEOBIA and MS-GEOBIA Classification Approaches 

Comparing the SS-GEOBIA and MS-GEOBIA approaches, the MS-GEOBIA classifications 

outperformed all of the SS-GEOBIA classifications in terms of Fclass, demonstrating that  

multi-scale/multi-level information could improve the extraction of residential areas. Some of the finer 

segmentation levels (e.g., SP40) had relatively low classification accuracies when used alone for  

SS-GEOBIA classification, but contributed useful information for the MS-GEOBIA classifications. 

These findings indicate that a MS-GEOBIA classification approach can be beneficial even for mapping 

a single LULC type. 

 

Figure 4. Study area image and the three-level MS-GEOBIA classification result. 
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The parameter-optimized three-level classification achieved the highest Fclass value in this study, and 

other studies have also suggested a three-level hierarchical approach for landscape analysis [41,42], so 

based on these suggestions and the results of this study, a three-level approach seems a reasonable choice 

for many applications. The three-level approach is also faster than an all-inclusive approach, as it 

requires less computation time for segmentation and spatial joining (since there are fewer segmentation 

levels) as well as for classification (since there are fewer classification variables).  

Our proposed methodology and a weights for three-level GEOBIA could thus also be useful for 

GEOBIA studies in other types of environments. The three-level GEOBIA classification result for the 

entire watershed is shown in Figure 4. 

5. Conclusions 

In this study, we evaluated the performance of single-scale/single-level (SS) and multi-scale/multi-level 

(MS) geographic object-based image analysis (GEOBIA) approaches for mapping a single land use/land 

cover (LULC) type; residential areas. Because manual trial-and-error selection of segmentation 

parameters for GEOBIA is a challenging and often time-consuming task, we also evaluated the effects 

of unsupervised segmentation parameter optimization (USPO) on classification accuracy, and as part of 

this effort we proposed a new USPO method for MS-GEOBIA which combines undersegmentation and 

oversegmentation “goodness” metrics using the F-measure and an adjustable weighting parameter (set 

based on the number of segmentation levels included for MS-GEOBIA). 

We found that the MS-GEOBIA classification approaches (both “naïve” and parameter-optimized 

approaches) could more accurately extract residential areas than the SS-GEOBIA approach. We also 

found that USPO could lead to higher classification accuracy for MS-GEOBIA than a naïve (all 

segmentation levels inclusive) classification approach, as our parameter-optimized three-level and four-

level classifications were more accurate than a naïve 10-level classification for mapping the “residential” 

LULC type (while the accuracy of the two-level classification matched that of the  

10-level classification). The three-level classification achieved the highest classification accuracy in our 

study, and a three-level approach has also been recommended by other researchers for landscape analysis 

[41,42], so our proposed USPO approach could be particularly useful for selection of segmentation levels 

to include for three-level GEOBIA. 

In future research, it could be useful to assess the performance of other USPO approaches for  

MS-GEOBIA, which are currently limited to considering either only undersegmentation goodness [42] 

or only oversegmentation goodness [43], for residential area mapping. It is also necessary to test the 

performance of our proposed MS-GEOBIA segmentation parameter optimization method for  

multi-class LULC classification in other urban and non-urban environments. 
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