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Abstract: Physical environmental processes, such as the evolution of precipitation or the diffusion
of chemical clouds in the atmosphere, can be approximated by numerical models based on the
underlying physics, e.g., for the purpose of prediction. As the modeling process is often very
complex and resource demanding, such models are sometimes replaced by those that use historic and
current data for calibration. For atmospheric (e.g., precipitation) or oceanographic (e.g., sea surface
temperature) fields, the data-driven methods often concern the horizontal displacement driven by
transport processes (called advection). These methods rely on flow fields estimated from images of the
phenomenon by computer vision techniques, such as optical flow (OF). In this work, an algorithm
is proposed for estimating the motion of spatio-temporal fields with the nodes of a geosensor
network (GSN) deployed in situ when images are not available. The approach adapts a well-known
raster-based OF algorithm to the specifics of GSNs, especially to the spatial irregularity of data. In this
paper, the previously introduced approach has been further developed by introducing an error
model that derives probabilistic error measures based on spatial node configuration. Further,
a more generic motion model is provided, as well as comprehensive simulations that illustrate
the performance of the algorithm in different conditions (fields, motion behaviors, node densities and
deployments) for the two error measures of motion direction and motion speed. Finally, the algorithm is
applied to data sampled from weather radar images, and the algorithm performance is compared to
that of a state-of-the-art OF algorithm applied to the weather radar images directly, as often done
in nowcasting.
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1. Introduction

The physical processes in the atmosphere or in the ocean, such as the evolution of precipitation,
the water flow, the diffusion of chemical clouds in the atmosphere, etc., can be modeled by differential
equations, for example, for the purpose of prediction. These models are usually called physical models.
However, the modeling process is often very complex due to the influence of numerous factors that
can often only be approximated, such as thermodynamic effects, solar radiation or the effects of terrain.
Further, for computer processing, it is necessary to solve the usually complex differential equations
numerically, for example, by using numerical weather prediction models, which requires the use of
high-performance computational resources. Therefore, in certain applications, the physical models are
replaced by data-driven methods that use historic or current data for calibration without the need to
model the underlying physics [1]. An example of such data-driven or empirical models is the artificial
neural network-based model for rainfall-runoff prediction in hydrology [2].

For atmospheric or oceanographic fields, the data-driven methods often concern the horizontal
displacement of the features or fields (called advection). These methods often rely on motion fields
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estimated from the current and recent past data by computer vision techniques, such as optical flow
(OF), and, when prediction is the goal, on the subsequent extrapolation in time using the motion
information. Figure 1 displays a time series of weather radar images separated by 20 min (left to right)
and motion vectors estimated using an image-based OF algorithm (the OpenCV implementation of
the algorithm provided by [3]).

Figure 1. Time series of weather radar images (original size 230× 230 pixels with a pixel resolution of
1 km2) separated by 20 min from left to right. Motion vectors estimated with an optical flow algorithm.

Sometimes, especially for short time scales, the data-driven, motion-based methods not only
reduce computational demands, but also outperform the numerical models. In [4], it could be shown
that the radar-based nowcasting of precipitation outperforms numerical prediction models for time
scales below 6 h. There are numerous approaches that employ estimated motion vectors, not only for
prediction as done in [5]. For example, in [6], it is shown that including motion information estimated
from weather radar in the interpolation of rain gauge measurements improves the interpolation quality.
Another example is the estimation of motion fields from remote sensing, e.g., from oceanographic
satellite images. In [7], an approach to derive the surface ocean circulation from infra-red sea surface
temperature measurements collected remotely by a satellite is introduced. The derived motion field is
then further processed in order to derive representations of the fields without the need for physical
models (an example mentioned is the derivation of the stationary points of the flow field, such as
the center point of a hurricane). All of these approaches are similar in that motion vector fields are
estimated from images of environmental phenomena. However, images are not always available, but
only point measurements collected by in situ sensors. Examples include rain gauge measurements
of precipitation, estimates of precipitation provided by cars ([8] or [9]) or sea surface temperature
measurements collected by weather buoys.

In this work, it is investigated how the motion of spatio-temporal dynamic fields can be estimated
by in situ sensors that are irregularly distributed in space. The sensors are assumed to be attached to
computing and communication facilities and are therefore considered as the communicating nodes
of a geosensor network (GSN). A well-known optical flow algorithm is used as a basis and adjusted
to the specifics of GSNs and spatio-temporal fields, such as the irregularity of samples, the strong
constraints on communication and computation and the assumed motion constancy over sampling
periods. This way, the pixels in images translate to field samples collected by a node, and the pixel
neighborhood translates to the node neighborhood in the GSN. The main differences of the approach
compared to optical flow calculated from arbitrary images can be summarized as follows:

• A priori knowledge of motion properties: For the motion of environmental phenomena, a priori
knowledge of the field motion properties can be assumed. For example, wind speed statistics
exist or information on the advection of rainclouds. This domain knowledge can be used to
specify the required parameters of the proposed algorithm.

• Temporal continuity and spatial uniformity of motion: In arbitrary images, moving objects,
such as cars, can occur that change their direction, stop or accelerate rather quickly, e.g., within
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a couple of frames. Therefore, temporal continuity usually only holds for very short time
periods [10]. For atmospheric or oceanographic fields, it is likely that the motion is rather
consistent over long sampling periods, and therefore, integration of motion information over time
gains importance. In addition, motion in images often exhibits sharp motion discontinuities, e.g.,
at boundaries of the moving objects such as cars with opposing motion that pass by each other.
For atmospheric or oceanographic fields, sharp motion discontinuities can be considered unlikely:
they might only arise at boundaries of the field, e.g., at the boundaries of rain clouds. However,
then, they do not exist in reality (i.e., the atmosphere surrounding the rain cloud also moves), but
affect the motion estimation algorithm that is based on field measurements. For example, while
the atmosphere still moves when there is no rain, the motion can only be estimated when there is
some rain, which is not uniform (the uniformity of the field values is commonly known as the
“blank wall” problem in the optical flow literature).

• Controlled node deployment, sampling rate and irregular data: In image-based optical flow,
the pixels determine the sampling locations, and the motion speed and direction are influenced
by numerous factors, such as spatial resolution and the orientation of the image, sampling rate,
the spatial distance of the camera to the moving object, as well as the speed and direction of the
moving object. When motion is to be estimated with a GSN deployed within (i.e., in situ) and
sensing the field, the node deployment and sampling rate can be controlled to a certain extent, for
example, the node spacing relative to the assumed field motion. However, while image-based
optical flow approaches usually rely on regular grids (i.e., images), a grid-like deployment of the
nodes might not be possible.

• Decentralized estimation: Image-based OF usually relies on a single computer that estimates the
motion field from the images. With a GSN, the decentralized estimation of motion by each node
is possible and potentially desirable for several reasons, which are described in the next section.

2. Contributions of This Work and Differences from Previous Work

The proposed algorithm is based on a gradient-based OF method, but accounts for the mentioned
differences from image-based OF. Similar to motion estimation in images, the estimation could be
performed by a central node collecting all of the data. Here, a decentralized algorithm is the goal
where no central node for data collection and processing exists, but every node holds a current motion
estimate and communicates locally with neighbors. Although a centralized solution integrating all
data always outperforms decentralized solutions in terms of accuracy, the latter has certain benefits
(scalability, latency, energy constraints, privacy, sensor/actuator networks, information overload [11]).
In principle, all of the benefits apply to our work. The most important ones are considered to be
scalability, making the process independent of the number of nodes and allowing the addition and
removal of nodes on-the-fly. Further, communication latency can be reduced by decentralization,
especially if the information is used in a sensor/actuator setting close to the spatial location of where it
is generated. An example of this is the precipitation field motion estimation by VANETs, where the
information on the motion of strong rainfall is important for the cars in the area, for example, to initiate
warning messages on approaching strong rainfall.

This decentralized case is similar to the image-based OF method presented in [12] in that information
is integrated over the neighborhood of a node (resp. pixel in [12]). Therefore, the assumption of local
translational motion within the node neighborhood applies (possible extensions to this assumption are
known and, e.g., described in [10]). The spatial irregularity of data is accounted for by a probabilistic
error model. In order to account for motion coherence over sampling periods, the motion estimation is
then formulated as a recursive regression in the form of a Kalman filter [13]. The algorithm has been
introduced previously in [14] and is now developed further along the following lines:

• Previous work included a rather ad hoc error model for the individual observations. Here, a more
sophisticated, probabilistic error model is introduced, and extensive evaluations illustrate the
usefulness of the model.
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• A more generic formalization of the optical flow algorithm is provided, which accounts for
possible changes in motion over time.

• The algorithm is evaluated along the error measures of differences in motion speed and motion
direction between true and estimated motion. The angular difference is a common error measure
for optical flow approaches [15]. Motion speed is considered to be the other most important
property of motion.

• More comprehensive simulations illustrate the performance of the algorithm in different
conditions. Further, the algorithm is applied to simulated GSN sampling data from weather radar
images collected during a precipitation event, and the motion estimation performance of the
GSN is compared to that of a state-of-the-art image-based optical flow algorithm applied to the
weather radar directly, which is a common approach from nowcasting [5]. In this way, the most
complete information from the radar images can be compared to the sparse information from
the nodes.

The paper is organized as follows: In Section 3, the necessary background knowledge on
gradient-based optical flow methods is provided, as well as a compilation of related work. Section 4
provides a description of the methodology for motion estimation with a GSN. In Section 5, the
algorithm is evaluated using simulated fields, as well as fields estimated from weather radar. Section 6
provides a concluding discussion on the results and potential limitations of the algorithm, summarizes
the main findings and provides an outlook for future extensions.

3. Background and Related Work

3.1. Related Work

There exists a significant amount of work on the estimation of the properties of dynamic
spatio-temporal fields with GSN. Problems include the estimation of field boundaries [16], the
identification of a critical point, such as peaks and pits [17], or even spatial interpolation in the
network [18]. The book of Duckham [11] provides a thorough overview of this topic, as well as a
description of the advantages of decentralized computation in the network, which also apply to the
work presented in this paper. Another research line related to our work is the tracking (following)
of advected spatio-temporal features by mobile nodes [19,20]. While in these works, mobile nodes
are assumed that can either move by themselves or move with the field (e.g., buoys moved by ocean
currents), our work assumes a network of stationary nodes (or cars whose movement is predetermined
by the road network) and aims to estimate the motion from the time series of sensor measurements
collected by the nodes. Further, there is a significant amount of work on object tracking with GSNs,
i.e., generating information on the trajectory of a mobile object without necessarily following it,
such as [21]. However, to the best of our knowledge, the problem of estimating field- (not object-)
motion with a GSN has not been tackled so far.

3.2. Network and Field Model

A GSN is modeled as a graph G = (V, E) where V is the set of nodes distributed on the plane and
E is the set of communication links between nodes. The allowed bidirectional communication links are
solely determined by a maximum Euclidean communication distance r (unit distance) in the plane, and
hence, G is a unit disk graph (UDG, [11]). A node ni ∈ V knows its position si = (xi, yi) on the plane,
e.g., by using the Global Positioning System (GPS). Further, the nodes are able to sense a real-valued
scalar spatio-temporal field Z(u) : R2 ×R→ R where u = [x, y, t]T is a location in the space-time cube
(and []T indicates the matrix transposition). A particular sensor measurement of node ni at time step t
is denoted with z(ui,t) where ui,t = [xi, yi, t]T . Partial derivatives of the field along spatial axes X and Y
and temporal axis T at a particular spatio-temporal location u are written as Z′X(u), Z′Y(u) and Z′T(u).
Their estimates provided by a node ni at time t are denoted with ẑ′X(ui,t), ẑ′Y(ui,t) and ẑ′T(ui,t). The
column vector of estimated partial derivatives is then written as ẑ′(ui,t) = [ẑ′X(ui,t), ẑ′Y(ui,t), ẑ′T(ui,t)]

T .
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3.3. Optical Flow: Basics

Optical flow methods, such as [12] or [22], are usually employed for estimating pixel displacement
(motion) in between two images. The assumption underlying most optical flow approaches is that
the intensity (pixel/field values) remains constant in between the sampling periods and a change in
values for a particular location solely comes from field motion. Formally, this means that there exists
a vector in the space-time cube h = [∆x, ∆y, ∆t]T such that Equation (1) holds.

Z(u) = Z(u + h) (1)

Optical flow methods can be classified into two categories: those that use partial derivatives in
space and time for estimation and those that use matching of image parts (also known as block
matching) [10]. Applying the block matching methodologies for irregular data would require
interpolation of the irregular data to regular grids, which would introduce additional assumptions
about the field structure. Instead, a gradient-based approach is chosen where the partial derivatives are
estimated from irregular data using least-squares adjustment. Those gradient-based methods are based
on the assumption that a first-order Taylor series expansion of the values is adequate, as displayed
in Equation (2).

Z(u + h) ∼= Z(u) + Z′X(u)∆x + Z′Y(u)∆y + Z′T(u)∆t (2)

where Z′X, Z′Y and Z′T are the partial derivatives in the space-time cube. Equation (2) is called the
linearity assumption of optical flow, as higher order terms are ignored. Combining (1) and (2) and
dividing by ∆t then results in the gradient constraint (GC) Equation (3).

Z′X(u)∆x/∆t + Z′Y(u)∆y/∆t + Z′T(u) ∼= 0 (3)

Instantiating Equation (3) requires estimates of the partial derivatives. Usually, they are estimated
with numerical differentiation using neighboring (in space and time) pixel values. Estimating optical
flow vX = ∆x/∆t and vY = ∆y/∆t then requires at least two gradient constraints to be integrated. The
linearity assumption of Equation (2) implies that the length of the displacement h has an influence on
motion estimation accuracy: the shorter the displacement, the more valid the expansion of Equation (2)
and, thus, the more accurate are the motion estimates. There is also an interplay between the degree of
linearity of the field and the motion estimation accuracy: for a linear field, Equation (2) holds exactly
(∼= can be replaced by =).

4. Methodology

The proposed decentralized algorithm for motion estimation consists of two parts:

1. Gradient constraint estimation: Estimates of a gradient constraint at a node ni at time t, ẑ′X(ui,t),
ẑ′Y(ui,t) and ẑ′T(ui,t), are calculated from sensor measurements of neighboring nodes. The error
of a GC is derived from the spatial configuration of the node neighborhood. Details are given
in Section 4.1.

2. Motion estimation: A set of estimates of gradient constraints is integrated at each time step t by
each node ni over its direct 1-hop neighborhood to solve for the motion components. Further
details are provided in Section 4.2.

In Appendix A, the algorithm protocol is provided. More details on the involved equations, e.g.,
the normal equations for solving a least squares problem, are provided in the previous publication on
the topic [14].

4.1. Gradient Constraint Estimation

The methodology for gradient-based, decentralized motion estimation with a stationary GSN is
described in detail in [14]. In short, the irregular sampling of the data requires the indirect estimation
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of Z′X(u), Z′Y(u) and Z′T(u) by numerical estimates of directional derivatives calculated from sensor
samples that are irregularly distributed in space and time (Equation (4)).

ẑ′dij,tr
(ui,t) =

z(uj,r)− z(ui,t)

|dij,rt|
(4)

where dij,tr is the spatio-temporal distance vector between the spatio-temporal node locations ui,t and
uj,r (the locations of node i at time t and node j at time r), and z(ui,t) and z(uj,r) are field samples at
these locations, collected by the nodes. The functional relationship between the estimate of such a
directional derivative and the partial derivatives along the space-time cube coordinate axes is displayed
in Equation (5) (for easing the readability, the spatio-temporal location index ui,t is omitted in the
following equation).

ẑ′d = ẑ′X ûX,d + ẑ′Y ûY,d + ẑ′T ûT,d (5)

where ûX,d, ûY,d and ûT,d are the unit vector components in the particular spatio-temporal direction d,
ẑ′d is a particular estimate of a directional derivative calculated with Equation (4) and ẑ′X , ẑ′Y and ẑ′T are
estimates of the partial derivatives required for optical flow. A set of such linear equations available at
a specific spatio-temporal node position ui,t then forms a linear system of the form of Equation (6).

A(ui,t)ẑ′(ui,t) = b̂(ui,t) (6)

where A(ui,t) is the matrix containing the unit vectors as rows, ẑ′(ui,t) = [ẑ′X(ui,t), ẑ′Y(ui,t), ẑ′T(ui,t)]
T

is the column vector of partial derivatives to be estimated, i.e., ẑ′(ui,t) is an estimate of the gradient
constraint of Equation (3). b̂(ui,t) is the column vector of estimates of directional derivatives.
The system then allows solving for ẑ′(ui,t), e.g., by ordinary least squares adjustment (OLS) or weighted
least squares adjustment (WLS) with a certain weight matrix W for the observations (more details on
the approach, e.g., the normal equations for solving the least squares problem, are provided in [14]).

4.1.1. Stationarity of Nodes

As the distance vector dij,tr is a vector in space and time, the calculation of the length |dij,tr|
requires the a priori specification of a spatio-temporal anisotropy factor, such as a decision on the unit
of measures. If this knowledge is available a priori, the nodes are allowed to move and sample the
field asynchronously, i.e., at different time steps. In this work, it is assumed that the anisotropy factor
is not known, and the assumptions of node stationarity and time synchronicity are essential (see [14]
for a more thorough elaboration on this topic). In this case, space can be treated as separated from time:
the linear system only includes spatial derivatives, while the temporal change can be estimated by
each node individually from the difference of the current and previous field sample measured by that
node: ẑ′T(ui,t) = z(ui,t)− z(ui,t−1). With this fixed spatial configuration, the matrix A(ui,t) in the linear
system of Equation (6) is time-independent and constant for each node ni (it is denoted with Ai in the
following) and the normal equations for solving the system can be pre-computed at the initialization
phase of the algorithm (Appendix A). It is clear that this assumption does not hold for non-stationary,
moving nodes, e.g., cars. Nonetheless, in Section 5, the algorithm is applied in a non-stationary setting
with simulated cars, with only slight modifications detailed in Appendix A.

4.1.2. Error in Derivative Calculation

As, due to node stationarity, the change along the time axis can be directly estimated by each
node by backward differencing, no error for the estimated temporal derivative ẑ′T(ui,t) is assumed.
For estimating the error (and therefore, the weights in the WLS adjustment) associated with the
estimate of a particular directional derivative in space, the heuristic displayed in Equation (7) is used:

εij =
dij

r
(7)
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where r is the maximum possible communication range in between the nodes and dij is spatial distance
between the two nodes ni and nj. The weight matrix Wi in the WLS adjustment then contains the
inverse of εij as the weight on the diagonal and zeros elsewhere, as no dependency between the
observations is assumed. Due to stationarity of nodes, Wi is constant for each node and can be
precomputed. From the definition of directional derivatives provided in [14], it is clear that the closer
two measurements are, the better the numerical differentiation of Equation (4) approximates the true
directional derivative. This particular weight accounts for this by down-weighting measurements
with increasing spatial distance from the estimating node. Dividing distance by communication
range ensures that the down-weighting is significant and independent of the unit of measure of
spatial distance. The usefulness of this weighting compared to a uniform weighting is shown in the
evaluation provided in Section 5.4.3. The error associated with the derived partial derivatives can
then be estimated from individual directional derivative errors using the law of propagation of error
(see, e.g., [23,24] or any geodetic textbook):

CGCi = (AT
i Wi Ai)

−1 (8)

where CGCi is the 2 × 2 so-called cofactor matrix of the 2 × 1 vector of estimated spatial partial
derivatives ẑ′(ui,t) = [ẑ′X(ui,t), ẑ′Y(ui,t)]

T . Since the nodes are assumed to be stationary, matrix Ai
and weight matrix Wi are constant and hence CGCi is constant for a particular node ni and can be
pre-computed as well (Appendix A). Since field properties have been ignored in Equation (8), CGCi is
not a proper covariance matrix, and the diagonal entries of CGCi are not absolute, but only relative
representations of the errors of the estimated partial derivatives ẑ′X(ui,t) and ẑ′Y(ui,t) estimated by that
node ([24]). Therefore, in order to derive a valid covariance matrix for each ẑ′(ui,t) provided by node
ni, the entries of CGCi have to be transformed to the proper level of error for the specific field under
consideration and for the specific time step t. A common approach in least squares adjustment is to
derive a so-called variance-factor from the least squares adjustment and to multiply it with CGCi to
derive the empirical covariance matrix for the estimated partial derivatives ẑ′(ui,t) at node ni at time t:

Σẑ′(ui,t) = σ̂2(ui,t)CGCi (9)

The required variance factor σ̂2(ui,t) can be calculated with:

σ̂2(ui,t) =
v(ui,t)

TWiv(ui,t)

f
(10)

where v(ui,t) is the column vector of deviations of the least squares adjustment for node ni at time t (i.e.,
it contains the result of ẑ′X ûX,d + ẑ′Y ûY,d − ẑ′d as row entries for each directional derivative/neighboring
node at time t). f = m− p is the degrees-of-freedom with m being the number of neighbors of a node
and p the number of parameters (p = 2 for the stationary case). Calculating the variance factor is a
common approach in least squares adjustment, e.g., for GPS positioning [23], in order to quantify the
error of the derived parameters/coefficients; in this case, the error of the least squares result ẑ′(ui,t).
However, calculating a stable σ̂2(ui,t) at each time step t usually requires sufficient degrees-of-freedom
in the order of p to 2p [24]. Thus, for a sufficiently large f , a node is required to have 4 to 6 (resp. 6
to 9) neighbors. Therefore, an a priori variance factor is used in the following, equal to all nodes and
denoted with σ̂2, which is, however, derived from observed values for σ̂2(ui,t). A particular advantage
of using a pre-calculated variance factor is that in a stationary setting, the variance factor σ̂2(ui,t)

for a node ni is constant and therefore, the covariance matrix of the partial derivative calculated by
the node Σẑ′(ui,t) is constant as well (written as Σẑ′ ,i in the following) and can be pre-computed (see
Appendix A or [14] for more details).
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4.1.3. Gradient Constraint Error Estimation

The motion estimation methodology described in Section 4.2 requires an estimate of the error
associated with a particular estimate of a GC, ẑ′(ui,t), in the form of a scalar error variance. In order to
derive such a measure for a GC, the probabilistic approach of [25] is used, who derives a probability
distribution for the motion components from the gradient constraint. The gradient constraint of
Equation (3) is an idealization for several reasons [25]: the true spatial and temporal derivatives are not
available, but their estimates are. Further, the gradient constraint is a constraint on the (optical) flow
and not on the true motion of the field. For example, when using gradient constraints for estimating
the motion of a precipitation field, the motion can be determined only at locations where there is some
precipitation. In those regions where there is no rainfall, the motion estimate will be zero, as the spatial
and temporal derivatives are zero, although there might still be motion in the atmosphere. Since
the optical flow gradient constraints are usually integrated in space, a spatial neighborhood that
includes rainfall and no rainfall will exhibits different “optical motions” and, therefore, provides an
averaged motion estimate (see also Section 1.2 of [25], where this is called the “blank-wall” problem).
Therefore, [26] introduced a probabilistic model for the gradient constraint (further details can be
found in the doctoral thesis [25]) including three possible sources of error, each characterized by
Gaussian random noise variables. Here, the model of [25]) is used, but it is assumed that the estimation
of the partial derivatives in space is the dominant source of error and that there is no error in the
estimated temporal derivative. Further, the error relating to the difference in between the “optical flow”
and the true motion is considered by neglecting GCs in the estimation process, when at least one of the
following conditions applies:

• Zero-field values: When the field values used for derivative calculation are zero and, hence, all
derivatives are zero, the GC is not estimated at all. Usually, measurements of spatio-temporal
fields are zero-inflated, meaning that the majority of samples are zero. In such a case, no motion
can be estimated, and node energy can be saved.

• Node neighborhood extending field boundary: When only one of the sensor samples for
estimating the GC is zero, the GC is not estimated at all, as the node neighborhood extends
over the field boundaries. While the GC could still be estimated using the remaining sensor
samples, this is not done, as the least squares matrices for estimating the partial derivatives are
pre-computed (see [14] for the details).

• Non-zero, but equal field values: When the field is completely flat, corresponding to the
“blank wall” problem described previously, the GC is not estimated at all. This case can be
recognized, when all of the neighboring sensor samples of a timestep t are larger than zero, but
equal. Then, the derivatives are zero, and the GC does not contribute to the motion estimation.

For deriving a gradient constraint error measure when none of the above cases applies,
the approach of [25] is used: it is assumed that the true spatial derivatives are related to the estimated
spatial derivatives via some random noise variables nzX and nzY (again, the spatio-temporal location
parameter ui,t is skipped for easing readability).

ẑ′X = Z′X + nz′X

ẑ′Y = Z′Y + nz′Y

where ẑ′X and ẑ′Y are the estimated partial derivatives in X and Y direction, Z′X and Z′Y are the true
derivatives and nz′X

and nz′Y
are the noise variables. Since no error for the estimate of the temporal

derivative is assumed, a GC (Equation (3)) can be reformulated as follows:
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0 = Z′XvX + Z′YvY + ZT

= (ẑ′X − nz′X
)vX + (ẑ′Y − nz′Y

)vY + ẑ′T

= ẑ′XvX − nz′X
vX + ẑ′YvY − nz′Y

vY + ẑ′T

From this, the probabilistic relationship between the estimates of the partial derivatives and the
true motion that is to be estimated can be derived [25]:

⇒ ẑ′XvX + ẑ′YvY + ẑ′T = nz′X
vX + nz′Y

vY (11)

Under the assumption of zero-mean independent Gaussian noises, the right-hand term of
Equation (11) is a zero-mean random variable with variance:

σ2
GC = σ2

z′X
v2

X + σ2
z′Y

v2
Y (12)

where σ2
z′X

and σ2
z′Y

are the variances of nz′X
and nz′Y

, resp., and vX and vY are the field motions.
The statistical independence of nz′X

and nz′Y
cannot be expected to hold in reality, but as no information

on the dependence (i.e., covariance) can be made, this is a necessary simplification. The relationship of
Equation (12) makes sense, as a gradient constraint can be understood as a regression equation without
intercept, the coefficients vX and vY, the independent variables −Z′X and −Z′Y and the dependent
variable Z′T (this is also the Kalman filter formalization described in the next section). The tuples
(ẑ′X, ẑ′Y, ẑ′T) are used for calibrating the coefficients. Then, it is clear that the smaller the regression
coefficients vX and vY, the smaller the influence of σ2

z′X
and σ2

z′Y
, disappearing completely for a flat

regression plane, i.e., vX = vY = 0. The terms σ2
z′X

and σ2
z′Y

in Equation (12) can be derived from the
covariance matrix of the vector of partial derivatives (the diagonal entries of ΣẐ′ of Equation (9)). The
terms vX and vY are unknown and have to be predefined and are therefore a parameter of the algorithm.
In this case, the assumed error of a gradient constraint provided by a node ni is constant and solely
determined by spatial configuration. Therefore, it can be precomputed at the initialization phase of the
algorithm (Appendix A) and is denoted with σ2

GCi
in the following. In case of negative nz′X

and nz′Y
,

the estimated spatial derivatives are underestimates of the true spatial derivatives. Then, the motion
estimates will overestimate the true motion speed. This can be explained by means of a simple example:
with a fixed temporal absolute derivative and low absolute spatial derivatives, the field must move a
larger distance in space in order to render the GC equation valid, i.e., the absolute values of vX and vY
must be larger. Conversely, larger absolute spatial derivatives result in smaller speed.

4.2. Temporal Coherence: Kalman Filter for Motion Estimation

The problem of estimating motion from a set of GCs can be considered as a multivariate,
intercept-free linear regression model with the motion components in both directions as the model
parameters/coefficients, the spatial partial derivatives as the regressors (i.e., independent variables)
and the partial derivative in time as the response (i.e., dependent) variable (Equation (13)):

Z′T = −Z′XvX − Z′YvY (13)

However, the model differs from classical multivariate regression problems in that the response
variable is assumed to be error-free, while the regressors are subject to error (see Section 4.1.3).
Therefore, estimation methods accounting for these errors in the data would be required
(i.e., errors-in-variables regression models, such as total least squares). However, we leave the
investigation of such estimation methods to future work and use standard ordinary least squares (OLS)
for solving the model. For calibration with GCs collected over space and time, a decision is required on
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which GCs are integrated to estimate motion at a particular node ni and time step t. Here, it is assumed
that within the one-hop node neighborhood, the motion is uniform. Therefore, a node integrates the
GCs provided by its direct neighbors. For integrating GCs in time, a recursive least-squares estimation
method is used in the form of a Kalman filter [13] (see also [27] for an application of Kalman filtering
to regression problems). The Kalman filter has several advantages over least-squares methods for time
series data, as it does not require the storage of large amounts of past data, reduces the computational
costs when updating the regression coefficients and comes in a predict-and-update formalization that
fits well to the problem. The Kalman filter requires an initial decision on the state variables. The most
simple form for the problem at hand is a Kalman state with only the two motion components, which
has been used in [14]. In this case, motion is considered constant, and motion change is solely modeled
by setting the prediction error variance Q larger than zero. Including motion change variables (i.e., first
derivatives of motion with respect to time) into the Kalman state is slightly more realistic by assuming
motion change constancy. The Kalman state vi(k) including motion derivatives at a node i and time
step k is:

vi(k) =


vX
vY
v̇X
v̇Y

 (14)

where vX and vY are the motion vector components in the directions X and Y, resp. v̇X and v̇Y are the
motion derivatives, i.e., acceleration. The prediction matrix F is:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (15)

where ∆t = k − (k − 1), i.e., the difference in between filter steps. In order to use the Kalman
measurement equation for updating the motion state with a new gradient constraint instance,
the gradient constraint of Equation (3) is recast into the linear regression form of Equation (13)
(see [27] or [28] for the theory on Kalman filtering for linear regression problems with time series data).
Then, the temporal derivative Z′i,T(k) is considered a linear function of the motion components and
the partial derivatives in space. The Kalman filter measurement matrix is time and node dependent
and contains the current partial derivatives (Equation (16)).

Hi(k) =
[
−Z′i,X(k) −Z′i,Y(k) 0 0

]
(16)

This way, the motion state of a single node ni is updated with new GCs. Since the measurement
Z′i,T(k) is scalar, the measurement error variance R is scalar, and therefore, solving the Kalman update
equations does not require matrix inversion [27], which is advantageous for the amount of processing
required. The specification of an a priori state is required, which can only be set to the zero vector.
The a priori uncertainty, the initial P, should contain large values on the diagonal, indicating the low
confidence in the initial state. The uncertainty associated with prediction Q depends on the temporal
sampling rate, i.e., the time difference between Kalman filter steps, as well as the assumed motion
and motion change constancy of the spatio-temporal field. Therefore, domain knowledge could be
employed for setting the required variances. For example, when sampling an atmospheric field,
such as precipitation at a sampling rate of 1 min, the difference in motion in between adjacent 1-min
time steps can be expected to be in a very low km/h range. The scalar measurement noise variance
R is a direct function of GC accuracy. Further, it depends on the spatial distance between the node
estimating the motion and the node estimating the GC. The assumption is: the closer the two nodes
are, the more similar is the motion. In addition, as described in work on image-based optical flow,
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such as [12], the GC accuracy depends on field properties at the site where it is constructed. However,
in this work, the main source of error is considered to be the partial derivative error, and therefore,
the measurement noise variance R is calculated using Equation (12) with a pre-computed variance
factor. The presented Kalman filter model is considered generic enough for capturing the field motion
behaviors that occur, and it encompasses the constant motion model of [14] by setting the initial motion
change variables and the initial motion change error variance to zero.

5. Empirical Evaluation

In this section, the algorithm performance is evaluated empirically for a simulated field
(Section 5.4) and a precipitation field derived from weather radar (Section 5.5).

5.1. Study Area, Sensor Network and Deployment Strategy

A 10 km × 10 km area in the center of Hanover city is chosen as the study area for evaluating the
proposed motion estimation algorithm (Figure 2).

Figure 2. The 10 km × 10 km study area for the motion estimation algorithms. OSM, Open Street Map.

This particular study area has been chosen due to the availability of weather radar data.
The weather radar covers a much larger area, but current GSN technology usually restricts
communication distances to ranges of tens to hundreds of meters, in order to reduce energy demand.
Therefore, in order to account for the low communication ranges, a small urban sub-area of the
radar-covered area is chosen. When cars are used as GSN, it can be expected that the accuracy
decreases for areas with lower road density, e.g., rural areas.

A GSN with a UDG communication model is simulated, and different deployment strategies
are tested (Figure 3). First, nodes are distributed in the study area in a completely random way
(Figure 3a), usually resulting in a disconnected graph where only a subset of nodes is able to estimate
motion. Second, a regular grid-based deployment is tested (Figure 3b). Then, as two more realistic
cases, a diffusion-based deployment is simulated based on a source node in the center of the study
area, for example a base station or node collecting the results (termed sink [11]), where the density is
controlled by two parameters, the maximum and minimum distance to neighboring nodes (Figure 3c).
In addition, cars are generated on a road network derived from Open Street Map (OSM). The cars
move according to a random walk model on the road network with a certain speed, which varies
throughout the experiments.

Throughout the experiments, two different node densities and communication ranges are
simulated: (1) a low-density, large-distance communication deployment with n = 25 nodes and
a communication range of r = 2000 m; and (2) a high-density, short-distance communication
deployment with n = 400 and r = 500 m.
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(a) (b) (c) (d)

Figure 3. Deployment strategies. (a) Completely random deployment; (b) grid deployment;
(c) diffusion deployment around a central node; (d) vehicular ad hoc network (VANET).

5.2. Error Measures

Following [15], the error of the motion estimation algorithms is quantified using the angular
difference between true motion V and estimated motion V̂:

εangle ≡ arccos

(
V̂(ui,t)∥∥V̂(ui,t)

∥∥ · V(ui,t)

‖V(ui,t)‖

)
∈ [0, 180] (17)

where ‖‖ is the vector norm, · is the dot-product, V(ui,t) = (vX, vY)
T is the true motion at the

spatio-temporal node location ui,t and V̂(ui,t) = (v̂X, v̂Y)
T is the estimated motion, i.e., the Kalman

filter state of node i at time t (excluding the acceleration variables). In addition, the difference in
motion speed (called “speed offset” in the following) is calculated:

εspeed ≡
∥∥V̂(ui,t)

∥∥− ‖V(ui,t)‖ (18)

In the case of a simulated field, the true field motion is known, as it is a parameter of the simulation.
For weather radar fields, the motion estimated by the algorithm of [3] is used as true motion, which is
estimated from the weather radar images.

5.3. Setting the Filter Parameters

The Kalman filter requires two parameters: the prediction noise and the measurement noise.
As in any Kalman filtering problem, if the measurement noise is large compared to the prediction
noise, the filter will only slowly follow the measurements and “trust” the predictions more.
Here, the individual measurements (gradient constraints) are considered to be rather inaccurate.
Therefore, the Kalman measurement noise is significantly larger than the prediction noise, especially
as multiple filter updates per time step occur and the motion is assumed to be rather constant over
sampling periods. Therefore, and since only constant motion is simulated in the following evaluations,
the prediction noise Q is set to the zero matrix in the following evaluations, i.e. Q = 04,4. If not
indicated otherwise, the scalar measurement noise of the Kalman filter is calculated with Equation (12).
The required variance factor is estimated by pre-running the filter and observing the value calculated by
Equation (10) for each node. The average variance factor is then used in the simulations. The motion
speed parameter required in Equation (12) is set to the maximum possible motion, a parameter that is
assumed to be derived from domain knowledge, e.g., knowledge on the maximum possible speed of
wind or ocean currents. The initial state of the filter is set to the zero vector; the initial state covariance
P is set to large values indicating the uncertainty in the initial state.

5.4. Results: Simulated Field

Simulating realistic atmospheric or oceanographic fields is a complex task. Therefore, the approach
taken here is to simulate a rather simplistic spatio-temporal moving field in order to illustrate the
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basic properties of the proposed algorithm, such as the behavior under different motion speeds.
The simulated field is a Gaussian mixture model simulated on a square eight times the size of the
original study area (Equation (19)).

Z(x, y) =
nG

∑
i=1

e
−

(x−µi,x)
2+(y−µi,y)

2

2σ2
i (19)

where nG is the number of Gaussians, µi,x is the x-coordinate, µi,y is the y-coordinate of the center of
Gaussian i, which are drawn randomly from the coordinate space of the study area. σ2

i is the variance,
which is drawn randomly from the interval [0, σ2

max] for each Gaussian. In reality, the fields can be
expected to exhibit large parts of zero field values, e.g., periods of no rainfall in between rain clouds.
In order to reflect this in the simulations, a minimum possible field value is assumed, and the field is
set to zero, if the simulated values fall below this threshold. Due to the linearity assumption of optical
flow of Equation (2) and the methodology for derivative estimation, the motion estimation works
well when the field is approximately linear at the sites where the gradient constraints are constructed,
and the reachable accuracy depends largely on the degree of field linearity. Therefore, two different
fields are simulated that differ in their degree of linearity: the more linear one is simulated using a low
number of Gaussians with a large maximum variance σ2

max. A more diverse, non-homogenous field is
simulated using a high number of Gaussians with a small maximum variance σ2

max. Examples of the
resulting fields are displayed in Figure 4a,b.

Different motion behaviors of the field can be simulated by moving the center coordinates of the
Gaussians (µi,x and µi,y) through the study area. In order to be able to simulate an unlimited number
of time steps, a Gaussian that leaves the area to the west re-appears to the right, etc. The motion
behaviors can be distinguished along the properties of motion behavior in time (coherence) and motion
behavior in space (uniformity). As the approach assumes local translational motion within the node
neighborhood, the motion estimation accuracy certainly depends on the degree of spatial uniformity of
motion. Here, it is assumed that the motion is rather homogeneous throughout the node neighborhood,
for example rain field motion within a neighborhood of 2000 m, and no evaluation concerning spatial
non-uniformity is provided. The motion estimation accuracy certainly also depends on the temporal
coherence of motion. Again, although the models allow for changing motion, it is assumed that
the motion is rather constant over the period of interest. For investigating the performance of the
algorithm, 100 time steps of a constantly- and uniformly-moving field are simulated, and the errors
are aggregated for each time step. The visualization displayed in Figure 4 shows a single snapshot of
the simulations.

nG = 40, σ2
max = 5000 nG = 200, σ2

max = 500 Estimated Motion True Motion
(a) (b) (c) (d)

Figure 4. Homogenous field (a); and more heterogeneous, non-linear field (b). Randomly-distributed
set of nodes with simulated spatio-temporal field and estimated (c) and true (d) field motion per time
step. Red indicates high, blue zero field values.
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5.4.1. Influence of Field Linearity, Field Speed and Node Density

In the first experiment, the influence of the field, the motion speed and the node density is
investigated. In Figure 5, the motion estimation error is displayed as a function of time for two different
spatio-temporal fields and the two different motion speeds: fast motion (vx = −1000 m/min and
vy = 1000 m/min) and slow motion (vx = −100 m/min and vy = 100 m/min), as well as the two
node network densities in a random node deployment and different UDG communication ranges r.

εangle εspeed

D
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r
=

50
0

m
) (a) (b)
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ar

se
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=
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,r
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00

m
) (c) (d)

Figure 5. Comparison of the angular error and speed offset for different motion speeds and the
two field types. (a) Mean angular error per time step for n = 400 and r = 500 m; (b) mean speed
offset per time step for n = 400 and r = 500 m; (c) mean angular error per time step for n = 25 and
r = 2000 m; (d) mean speed offset per time step for n = 25 and r = 2000 m.

Over time, the motion estimation error for angle and speed decreases. The more homogeneous
(and therefore, linear) the field, the lower the angular error. Further, the motion speed is important:
the larger the speed, the less valid the linearity assumption of Equation (2). Both influences,
field linearity and motion speed, are strongly related: the more homogeneous and linear the field,
the less influential is the motion speed on the estimation accuracy. With a strong non-linearity in
field values and large motion, the errors concerning angle and speed get large. The underestimation
of speed for large motions is due to the increased invalidity of the Taylor expansion of Equation (2)
for large motion vectors. Then, the estimated spatial derivatives seem to overestimate the change in
field values for the length of the displacement (see also the last paragraph of Section 4.1.3 for a more
detailed elaboration on this topic). Further, the more sparse the deployment, the larger the errors.
Therefore, a dense deployment with nodes sampling the field at a high sampling rate is advantageous
for motion estimation.
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5.4.2. Influence of Deployment Strategy

For evaluating the influence of node deployment on motion estimation results, a homogeneous
field is simulated moving slowly over the study area and a dense node deployment. The performance
of different deployment strategies introduced previously is tested (Figure 6).

(a) (b)

Figure 6. Comparison of the angular error and speed offset for different geosensor network (GSN)
deployments. (a) Mean angular error per time step; (b) mean speed offset per time step.

The results show that the approach is rather agnostic of the deployment of stationary nodes.
Although, as expected, a grid-based deployment is slightly advantageous, the difference is not
considered significant, at least for high numbers of nodes. Motion estimation with a VANET results in
significantly larger errors, potentially due to the increased invalidity of the estimate of the temporal
derivative. Surprisingly, stationary cars provide large errors, as well, although they are similar to
a random deployment of stationary nodes. This can be explained by the spatial configuration and
the sampling on the road network: due to the communication range of r = 500 m, cars usually
communicate only when driving on the same road. Therefore, the samples for derivative estimation
are often aligned linearly along the road, which is disadvantageous for motion estimation. This is
a problem that is very likely to occur in reality, as well.

5.4.3. Influence of Kalman Measurement Noise

For investigating the Kalman measurement noise parameter, a GSN of n = 25 nodes with
a UDG communication distance of r = 2000 m is simulated. The nodes are distributed according to
a diffusion-based deployment with a minimum allowed node distance of 1000 m and a maximum
node distance equal to the UDG communication range r = 2000 m. The field motion behavior is
randomly chosen from the small interval vX ∈ [−500m/t, 500m/t] and vY ∈ [−500m/t, 500m/t].
Different fixed Kalman measurement noises are tested, with an equal weighting of the directional
derivatives (i.e., εij = 1 in Equation (7) for all pairs of nodes). Further, the Kalman measurement noise
estimated with the methodology described in Section 4.1.3 is tested. In order to quantify the terms of
Equation (12), maximum possible field motions vX = 1000 and vY = 1000 are assumed. As described
previously, the required variance factor is estimated by pre-running the simulations and calculating an
average variance factor using Equation (10). The results presented in Figure 7 are averages of ten runs
of simulations with a different spatio-temporal field, different motion and different network each time.
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εangle εspeed

(a) (b)

(c) (d)

Figure 7. Comparison of the angular and speed offset for different Kalman filer measurement noise
parameters. (a) Mean angular error; (b) mean speed offset; (c) standard deviation angular error;
(d) standard deviation speed offset.

The derivation of gradient constraint errors from spatial configuration seems to be beneficial
for motion estimation. Further, the provided formula for deriving the gradient constraint error
(Equation (12)) gives a straight-forward way of calculating the required Kalman measurement noise
parameter. Without it, the specification of the measurement noise has to rely on rather arbitrary
considerations. It can be seen that the estimation accuracy is rather agnostic of a fixed Kalman
measurement noise, except for very large noises. The weighting of the directional derivatives seems to
provide a slight advantage over a uniform weighting. The speed is overestimated on average because
of a general underestimation of the derivatives (see also Section 4.1.3 for a more detailed elaboration
on this topic).

5.5. Results: Radar Field

In a second experiment, the algorithm is evaluated on a precipitation field derived from the
Hanover weather radar. Six hours of a period of rather strong rainfall (19 July 2012, 4 a.m. to 10 a.m.) is
chosen. The raw radar data (i.e., reflectivities) were preprocessed by using the methodology described
in [29], resulting in precipitation values in the unit mm/h on a regular grid with a resolution of
1 km2× 1 km2 (10 × 10 pixels in the study area) at a sampling rate of 5 min. The radar data are
upsampled to 1 min snapshots by using an optical flow algorithm (OpenCV implementation of the
algorithm provided by [3]). Further, the resulting grids are smoothed by a 3× 3 arithmetic mean
filter. As ground truth motion, the flow field derived from the image-based optical flow algorithm is
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used, which is executed on the whole radar image. An average motion vector per time step is then
derived by averaging the vectors over all 10 × 10 pixels of the study area at each 1-min time step.
A characterization of the event and the derived motion information is displayed in Figure 8.

(a) (b) (c)

Figure 8. Characterization of the radar event. (a) Time series of radar estimated rainfall averaged over
the study area; (b) time series of mean motion direction calculated by image-based optical flow; (c) time
series of the mean motion speed calculated by optical flow. Time steps of no data values result from the
inability of the optical flow (OF) algorithm to detect field motion when there is no rainfall.

Figure 8a shows that a number of rain clouds passes the study area within the six hours,
with two very strong rainfall periods. The field moves with a rather constant motion from west
to (slightly north) east (a sudden change of direction in the middle of the period occurs, which is
potentially due to radar clutter). The motion speed is at around 1000 m per minute, but decreases for
periods of low rainfall, which is an artifact of the optical flow algorithm. In Figure 9, time series of
1-min radar snapshots and motion vectors estimated with the proposed algorithm are displayed.

Figure 9. Time series of radar images separated by 1 min from the upper left to the lower right for
the first rain cloud in the event (Time Steps 14 to 23). Simulated sensor network of n = 25 nodes,
a communication range of r = 2000 m and estimated motion vectors.
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Before the first cloud reaches the study area, no motion estimation is possible. Over time,
the motion vectors of the nodes approach the cloud motion direction of east-north-east. For evaluating
the performance of the algorithm, the two network densities are simulated in the diffusion-based
deployment. The Kalman filter measurement noise is calculated using the proposed methodology.
The Kalman prediction noise Q is set to small values slightly larger than zero, in order to allow the
filter to adjust to newly-incoming data and not to converge to a stable solution that does not change
even if the motion changes.

Figure 10a shows the time series of mean angular error (image-based OF vs. proposed approach)
for the two different network densities. Surprisingly, the sparse deployment provides better results.
The main reason for this is most likely the radar field: the maximum node spacing of 500 m is half
the size of the radar pixel, introducing an error not present in reality. The sparse deployment shows
good results; the angular error is below 30 in most cases. The average motion direction displayed in
Figure 8b corresponds well with the results of the image-based optical flow algorithm of Figure 8b.
The motion speed for the sparse network in Figure 8c can be considered more accurate than the
assumed “ground truth” motion speed of Figure 8c. This setting can be considered similar to the
heterogeneous field with the fast motion simulation setting of Figure 5. With the dense deployment of
nodes and the small communication range, there is a strong underestimation of motion speed for both
the simulated and radar field. Therefore, either increasing the sampling rate for the dense network or
decreasing the node spacing is recommended.

(a) (b) (c)

Figure 10. Results of the motion estimation algorithm for the two different node densities. (a) Time
series mean angular error; (b) time series of estimated motion direction averaged over all nodes;
(c) time series of estimated motion speed averaged over all nodes.

6. Discussion and Conclusions

The present paper introduced an algorithm for the estimation of the motion of spatio-temporal
moving fields by the nodes of a GSN. A well-known optical flow algorithm was used as the basis
and has been adjusted to the specifics of GSN, e.g., the irregular distribution of nodes and the
strong resource constraints (an analysis of the computational and communicational complexity of
the algorithm is provided in [14]). The proposed algorithm has been formalized in a decentralized
fashion, and node pseudo-code has been provided in the form of a decentralized algorithm protocol
(Appendix A). Due to its two-part nature (Section 4), it can also be adjusted such that all information
is routed to a central node responsible for the motion estimation. The performance of the algorithm
has been evaluated using simulated fields, as well as precipitation fields derived from weather
radar. For the two error measures of motion angle and motion speed, the extensive simulations have
shown that the decentralized field motion estimation by the irregularly-distributed nodes of a GSN is
indeed possible. Certainly, the algorithm performance is limited when: (a) the field does not exhibit
sufficient intensity structure or intensity changes (i.e., the “blank wall” problem described previously);
(b) exhibits too much intensity change or too fast motion to be approximated linearly over the length
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of the displacement by Equation (2); (c) changes its structure rapidly in between consecutive sampling
periods, i.e., deviates too much from the basic intensity conservation constraint of OF of Equation (1);
or (d) the sensor measurements are corrupted by too much noise.

The main findings of the evaluations of the algorithm can be summarized as follows:

• Field properties and deployment density: The simulations have shown that the degree of field
linearity in conjunction with the motion speed is an important factor and that the reachable
accuracy decreases with increasing non-linearity and motion speed (Figure 5). This is a fact
that is known from work on image-based optical flow, but has direct implications in a GSN
setting where the deployment and sampling rate of the nodes can be controlled to a certain extent.
Since small motion in space is advantageous due to the Taylor expansion of Equation (2), it is
important that the field is sampled at a high sampling rate. In addition, it is also important that
the nodes are deployed rather densely and close to each other (which is also beneficial concerning
power consumption) since the accuracy of estimating partial derivatives decreases with increasing
node distance.

• Deployment and stationarity of nodes: When the number of nodes and communication distance
are held fixed, the deployment strategy of stationary nodes does not have a large influence on the
motion estimation results (Figure 6). However, with decreasing node density, the performance of
a random deployment will certainly decrease, since there will be disconnected nodes. Further,
the algorithm has been developed for stationary nodes. Nonetheless, it can also be applied in
a non-stationary setting, e.g., for cars. However, then the motion estimation accuracy decreases
(Figure 6) due to the increased error in the temporal derivative estimate and the linear alignment
of the cars along roads.

Future work includes the analysis of the motion state error of the Kalman filter, which is
an important measure in practice. In addition, error-in-variables models could be investigated for
replacing the Kalman filter for motion estimation, e.g., a total least squares method accounting for errors
in the estimates of spatial derivatives directly. Further, simulations for longer time periods, such as
days or weeks, are necessary in order to evaluate the behavior of the algorithm under changing motion
conditions. The simulations of VANETs have shown that in order to achieve satisfying and reliable
results in a non-stationary setting, more work is required on the algorithm. For example, integrating
the estimation of the temporal derivative into the least squares adjustment for estimating the partial
derivatives or including an error term for the temporal derivative estimate. Finally, the ultimate goal is
to replace the simulated network with a real deployment of a GSN and real measurements of a moving
atmospheric or oceanographic field.

Appendix A. Algorithm Protocol

This section introduces the algorithm protocol using the structure and formalisms of [11].
A description of the equations involved, e.g., the normal equations for the least squares derivation
of the partial from directional derivatives, can be found in [14]. As the base case, stationary nodes
are assumed that sample the field at synchronized time periods. Further, the nodes are assumed to
communicate in a synchronous way [30], such that after the initialization phase (state INIT), there are
rounds of communication where each node sends a message first, followed by a processing step and
another message exchange (Protocol 1).



ISPRS Int. J. Geo-Inf. 2016, 5, 175 20 of 22

Protocol 1: Field motion estimation with a node ni

Restrictions: Graph G = (V, E) with nodes ni ∈ V with constant positions and communication
links E.
Function nbr : V → V returning set of neighbors of a node
Function nbr>1 : V → V returning set of neighbors with > 1 neighbors themselves

Init.: All nodes in state INIT
Data: Each node implements the Kalman filter

Each node stores the normal equations Mi
Each node stores the errors associated with the gradient constraints σ2

GCj
of all

neighboring nodes nj ∈ nbr>1(ni) and itself σ2
GCi

in a dictionary Dσ mapping
node IDs to GC error variances

Parameters: Communication range r, Kalman prediction noise parameter Q, variance factor σ̂2,
field motion parameters vX and vY for Equation (12)

INIT
broadcast (xi, yi)

if |nbr(ni)| < 2
become PROCESSING

Receiving neighboring node position (xj, yj)

if |nbr(ni)| > 1
compute dij and unit vector ûij
add ûij as new row to Ai
add r/|dij| as new diagonal entry to Wi
if |rows(Ai)| = |nbr>1(ni)|

compute normal equations Mi = (AT
i Wi Ai)

−1 AT
i Wi

compute σ2
GCi

(Equation (12))
add (i, σ2

GCi
) to Dσ

broadcast σ2
GCi

to nbr>1(ni)

Receiving σ2
GCj

of neighboring node nj

add (j, σ2
GCj

) to Dσ

if |Dσ| = |nbr>1(ni)|+ 1
become PROCESSING

PROCESSING at time step t
(1)Whenever new sample z(ui,t) is available

if z(ui,t) > 0
broadcast (t, z(ui,t))

if |nbr(ni)| > 1
compute Kalman prediction step
compute current temporal derivative ẑ′T(ui,t) = z(ui,t)− z(ui,t−1)

(2) Receiving sample (t, z(uj,t)) (with z(uj,t) > 0) from neighbor nj
if |nbr(ni)| > 1 and own measurement z(ui,t) > 0

compute estimate of directional derivative ẑ′dij
(ui,t) = (z(uj,t)− z(ui,t))/|dij| (Equation (4))

add ẑ′dij
(ui,t) as new entry to b̂(ui,t)

if |rows(b̂(ui,t))| = |nbr>1(ni)|
compute ẑ′(ui,t) = Mi × b̂(ui,t)

compute Kalman update with ẑ′(ui,t) and stored σ2
GCi

broadcast (t, ẑ′(ui,t)) to nbr>1(ni)

(3) Receiving gradient constraint (t, ẑ′(uj,t)) from neighbor nj
if |nbr(ni)| > 1

compute Kalman update with ẑ′(uj,t) and stored σ2
GCj
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In the INIT step, a node ni distributes its position to all neighbors. If it has zero or only a single
neighbor, it is not able to estimate partial derivatives and, hence, proceeds to state PROCESSING.
Otherwise, it waits for receiving the positions of all neighbors. If it has done so, the matrix Mi can be
computed and the error associated with the node can be stored and broadcast. When the node receives
the GC error σ2

GCj
of neighboring node nj, it is stored. When all neighbors provided their GC error

measures, the node is ready for motion estimation, i.e., proceeds to state PROCESSING. There, at each
new sampling step (1) of a node, a Kalman prediction on the motion is performed and the temporal
derivative is calculated. Further, the sensor measurement is transmitted to the neighbors. When a
new sample from a neighboring node arrives (2), the current directional derivative is estimated and
added to the derivative vector b̂. If b̂ is filled with all data from participating neighbors, the gradient
constraint is computed, which is then used for the Kalman update and transmitted to all neighbors
participating in motion estimation. When a gradient constraint from a neighboring node arrives (3),
the Kalman update equations are executed, as well. The complexity of the proposed algorithm along
with the complexity measures of communication complexity/node count, load balance ([11]), as well
as computational complexity in terms of floating point operations ([31]) are provided in [14].

For non-stationary nodes, such as cars, an initial broadcast of the node position is not sufficient,
and hence, the pre-computation of the matrices for derivative calculation at the INIT state is not
possible. Instead, the protocol is adjusted so that the position broadcast and the computations are
performed at each time step.
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