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Abstract: Investigating human mobility patterns can help researchers and agencies understand
the driving forces of human movement, with potential benefits for urban planning and traffic
management. Recent advances in location-aware technologies have provided many new data sources
(e.g., mobile phone and social media data) for studying human space-time behavioral regularity.
Although existing studies have utilized these new datasets to characterize human mobility patterns
from various aspects, such as predicting human mobility and monitoring urban dynamics, few studies
have focused on human convergence and divergence patterns within a city. This study aims to
explore human spatial convergence and divergence and their evolutions over time using large-scale
mobile phone location data. Using a dataset from Shenzhen, China, we developed a method to
identify spatiotemporal patterns of human convergence and divergence. Eight distinct patterns
were extracted, and the spatial distributions of these patterns are discussed in the context of urban
functional regions. Thus, this study investigates urban human convergence and divergence patterns
and their relationships with the urban functional environment, which is helpful for urban policy
development, urban planning and traffic management.

Keywords: human convergence and divergence; mobile phone data; spatiotemporal patterns;
human mobility patterns

1. Introduction

Cities comprise flows of information, goods and people. Among these urban flows, human movements
are critical components that drive the pulses of cities. Examining people flows and their spatiotemporal
dynamics has always been an important task for a wide range of disciplines, e.g., GIScience,
transportation, epidemiology, etc. Traditionally, our ability to capture timely and spatially-detailed
human mobility data has been constrained by available resources and data collection techniques [1–3].
However, recent advances in location-aware technologies have produced new data sources,
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e.g., mobile phones, smart cards and social media that detail the movements of people in their
daily lives. Consequently, studies have addressed various research challenges related to urban
vitality [3–5], mobility prediction [6,7] and transportation modelling [8,9]. These studies have enhanced
our understanding of human mobility patterns in urban contexts. In this study, we attempt to improve
the research in this field and focus on analyzing spatiotemporal patterns of human convergence and
divergence in cities.

Convergence to a location suggests that the number of people flowing to a location is larger than
the number of outgoing people. Conversely, divergence from a location suggests that the number of
people leaving the location is larger than the number of incoming people. An understanding of how
people flows converge and diverge in space and time in cities, as well as their relationships with urban
land use can provide insight regarding urban dynamics and potentially benefit urban planning and
public transportation management in cities. Therefore, the main research questions of this study are
as follows:

1. What spatiotemporal patterns of human convergence and divergence exist in the daily
urban context?

2. What types of urban land use are generally associated with these patterns?

To address these two questions, this study uses a large-scale mobile phone dataset collected in
Shenzhen, China, on a weekday to investigate spatiotemporal patterns of human convergence and
divergence. Unlike call detail records (CDRs) that only capture individual footprints during actual
communication [10,11], the mobile phone dataset used in this study tracks individuals regularly over
time (approximately once every hour) at the cell phone tower level, which enables us to investigate
human convergence and divergence patterns with relatively fine and regular spatiotemporal resolution.
These identified patterns reflect the essential characteristics of human travel patterns at different
locations within the city and have implications for transportation planning, emergency response and
epidemic control.

2. Literature Review

The development of information and communication technologies has profound implications
for human sociology and physical mobility and makes it possible to collect large sets of
georeferenced data from location-based devices, such as mobile phones, which creates new
opportunities for understanding human mobility patterns and their relationship with urban functional
environments [12–14].

Human mobility is closely related to urban transport and planning and is an important research
topic in urban studies. For example, an individual’s home and workplace can be identified from
mobile phone data, and origin-destination flow matrices can be constructed to investigate commuting
patterns [15–17]. Real-time traffic speeds and travel times can be measured using a cellular phone-based
system [18]. In addition, real-time urban dynamics can be captured using mobile phone data to
monitor human spatiotemporal distributions and provide insight into the real-time intensity of human
activities in different urban areas [4,19–21]. Human mobility hotspots and dense areas can be detected
by analyzing the trajectories and densities of cell phone users in urban environments [22–25].

Guo et al. [26] extracted pick-up and drop-off details from taxi trajectory data and proposed
a hierarchical clustering method to map human flows with similar origins and destinations.
Human mobility source-sink areas can also be identified based on temporal variations in pick-up and
drop-off locations [27]. Mobility networks can also be created from human movements, reflecting the
spatial interactions of different urban areas and communities, or areas with close connections can be
detected and used to evaluate and optimize urban planning [28,29].

There is a strong relationship between human mobility and the functional environment [27,30].
The spatial distribution of different urban functional regions (e.g., residential, industrial or commercial)
determines human activity locations, such as living, working, shopping and leisure. The spatial
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separation of these functional regions and the demands of human activities lead to human flows
in urban space. Functional differences associated with different types of land use appear as
different human mobility patterns. Thus, land use information can be used to estimate travel
demands in different urban areas (i.e., a land use-transport interaction model) [31]. The temporal
population variation reflects the underlying function of the location. Thus, some studies have built
temporal feature vectors for human activities at the grid cell level using human sensing data and
machine learning methods to classify those vectors and infer urban land use information [32–34].
The classification accuracy decreases as the heterogeneity of land use increases, but additional
information (e.g., spatial interaction patterns and points of interest) can be incorporated to identify
different functional regions and improve the accuracy [35,36].

These studies demonstrate the powerful potential of emerging big data in research regarding
human mobility patterns and the relationships between human mobility patterns and the urban
functional environment. This study adds to this knowledge base by investigating the spatiotemporal
patterns of human convergence and divergence in a city environment.

3. Study Area and Dataset

The study area for this research is Shenzhen, which is located in southern China. Shenzhen has
experienced rapid development associated with reform policies over the past 30 years, and the area has
attracted a large number of immigrant workers seeking job opportunities. The total area of Shenzhen
is approximately 1996 square kilometers, and the population is more than 15 million, reflecting the
highest population density among Chinese cities [37].

The mobile phone location dataset used in this study was collected by a mobile phone company
that includes approximately 60% of the entire mobile phone market in Shenzhen. It covers 16 million
mobile phone users over a single workday and records the cell phone tower locations each cell phone
connects to approximatively every hour. Thus, each cell phone has 24 records each day containing
a user ID, recording time and longitude and latitude of the cell phone tower. The user ID was encrypted
for privacy protection before the dataset was released for research purposes. Table 1 shows an example
of an individual user’s mobile phone records for a day. In total, 5940 cell phone towers (CPTs) with
unique Tower ID numbers were extracted from the dataset. Figure 1 shows the spatial kernel density
of the cell phone towers.
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Table 1. Example of an individual’s cell phone records during a day.

User ID Record Time Longitude Latitude

8d5b2b5****** 00:25:36 113.*** 22.***
8d5b2b5****** 01:26:40 113.*** 22.***
8d5b2b5****** 02:20:53 113.*** 22.***
8d5b2b5****** . . . . . . . . .
8d5b2b5****** 23:33:50 113.*** 22.***

The sign *** ignores the minutes of a Longitude or a Latitude and the sign ****** ignores last six numbers of
a User ID due to privacy protection.

The other dataset used in this study comprised urban functional region data, which was generated
from the comprehensive plan of Shenzhen city (2010–2020) [38]. This dataset includes ten functional
region types: administrative (government agencies), commercial, industrial, residential, education,
transport, tourism (scenic places and parks), sports, water and other (including agricultural, shrubs,
bare land, etc.). Figure 2 shows the spatial distribution of urban functional regions.
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Figure 2. Spatial distribution of urban functional regions.

4. Methodology

The method used to identify the spatiotemporal patterns of human convergence and divergence
included three main steps. First, we extracted the net flow from human space-time trajectories
in each time slot to indicate human convergence and divergence. Then, we classified the netflow
into ten classes according to quantile rules and categorized each grid cell to represent the human
convergence and divergence intensity. Finally, a time series matrix was constructed based on the
netflow classes, and the grid cells were grouped into clusters according to their temporal patterns.

4.1. Extracting Indicators of Human Convergence and Divergence

Using a concept of time geography [39], we constructed the space-time trajectory of each cell
phone by connecting location records in chronological order. As shown in Figure 3, the cell phone
trajectory can be represented as follows:

Tr = [p1(x1, y1, t1, Id1), · · · , pi(xi, yi, ti, Idi), · · · , pn(xn, yn, tn, Idn)] (1)

where xi, yi and Idi represent the longitude, latitude and TowerID of record point pi, respectively, and ti
represents the time when the point update occurred. For adjacent space-time points with different
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record locations, we can extract a movement from cell phone tower Idi to Idi+1 over time period ti
to ti+1.

[pi(xi, yi, ti, Idi), pi+1(xi+1, yi+1, ti+1, Idi+1)], Idi 6= Idi+1 (2)
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Table 1 shows that the time window of the location records was updated approximately every
hour, e.g., the first point was recorded between 00:00 and 01:00 and the second between 01:00 and 02:00.
A movement can be extracted between 00:00 and 02:00, and the time window from 00:00–02:00 is
considered time slot T1. Thus, we can extract one movement for every two adjacent hours, and the day
can be divided into 23 time slots, with Tj denoting the time window (j − 1):00–(j + 1):00.

One issue is that there may be signal switches between CPTs, which may be incorrectly interpreted
as movements, particularly in areas with high tower densities [40,41]. We adopted Thiessen polygons
to represent the service area of a cell phone tower in the early stage of this study. We found that some
cell phone towers are located very close to each other. Overall, 396 cell towers are very close to nearby
towers, and the distance between towers can be less than 10 m. For example, two cell towers may
be located in the same high-rise building. These close cell phone towers can cause frequent signal
jumps between the towers. We chose to use regular grid cells to aggregate very close cell phone towers,
thereby reducing the influence of signal switches. We divided the city using different grid sizes from
100 m × 100 m–2 km × 2 km with an increment of 100 m and found that the 500 m × 500 m grid cells
of cell phone towers accounted for 90.2% of the major human activity areas, which was much larger
than the percentage in grid cells less than 500 m × 500 m. In addition, we found that the movements
within grid cells increase linearly, and movements between grid cells decrease linearly with grid size.
The 500 m × 500 m grid cells ignored approximately 16% of movements. Although 600 m × 600 m
grid cells cover 98% of major human activity areas, they ignored approximately 20% of movements.
Therefore, we chose grid cells of 500 m× 500 m as the analysis unit. The resolution provided a relatively
fine scale for studying human mobility. Grid cells not containing a CPT were excluded because human
movements could not be calculated between grid cells without cell phone towers. In total, 2801 grid
cells were used as basic analysis units, and each was tagged with a unique Grid ID.

We filtered movements between CPTs to generate movements between grid cells by ignoring
movements for which the origin and destination CPTs were in the same grid cell. Thus, we extracted
a grid cell-based flow matrix (p, q, f pq, Tj), where p and q are the origin and destination Grid IDs,
respectively, f pq represents the number of people moving from p to q, and Tj represents the time slot.
For each grid cell p, the inflow and outflow during a time slot are computed as follows.

in f lowp = ∑
q

fqp, out f lowp = ∑
q

fpq (3)

Additionally, the netflow of the grid cell is computed as follows.
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net f lowp = in f lowp − out f lowp (4)

Netflow was used as an indicator of human convergence and divergence in a grid cell during
time slot Tj. Compared to the call activity of CDRs, which reflects activity intensity, netflow reflects
the difference in inflow and outflow, which indicates the change in the number of people in a cell
during a time slot [42]. A positive netflow indicates that the number of people in the grid cell increased
during the time slot, i.e., convergence, and a negative netflow indicates a decreasing number of people,
i.e., divergence.

4.2. Classification of Human Convergence and Divergence Using Quantile Rules

This study examined human convergence and divergence, and their varying intensities over
a day. We aggregated netflow values from all time slots and then grouped them into different classes,
where ni, j represents the netflow of grid cell i during time slot Tj. The netflow set N = {ni, j} of the
whole study region included 2801 × 23 values, with the distribution shown in Figure 4a. Most netflow
values (95.4%) were between −1000 and 1000, which indicates that few locations have extremely large
netflows. Additionally, the city can be considered a relatively homogeneous system.
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Netflow was then sorted in ascending order and grouped into ten classes by quantiles, producing
the quantile vector Q = [q1, q2, . . . , q9], where q1, q2, . . . , q9 represent the netflow values of nine break
points in quantiles 10%, 20%, . . . , and 90%, respectively (Figure 4b). In this paper, we generated the
quantile vector of break points Q = [−317, −128, −53, −18, −1, 15, 51, 122, 314]. We use Q to classify
each ni, j of N into different groups and assign it a level label to represent the intensity of convergence
or divergence as shown in Table 2. The greater the strength of convergence or dispersion is, the larger
the absolute level value is assigned. In Classes 5 and 6, convergence and divergence are relatively
small, and we consider both at the same level of 0. After classification, we generate the corresponding
set L = {li, j}, which indicates the intensity of human mobility of grid cell i in time slot Tj.

Table 2. Classification and labeling rules for ni, j, where q1, q2, . . . , q9 represent the netflow values of
nine break points in quantiles 10%, 20%, . . . , and 90%, respectively.

Class Classification Level (l) Status Class Classification Level (l) Status

1 ni,j < q1 −4 Divergence 6 q5 ≤ ni,j < q6 0 No
2 q1 ≤ ni,j < q2 −3 Divergence 7 q6 ≤ ni,j < q7 1 Convergence
3 q2 ≤ ni,j < q3 −2 Divergence 8 q7 ≤ ni,j < q8 2 Convergence
4 q3 ≤ ni,j < q4 −1 Divergence 9 q8 ≤ ni,j < q9 3 Convergence
5 q4 ≤ ni,j < q5 0 No 10 ni,j ≥ q9 4 Convergence
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4.3. Cluster Analysis of the Temporal Patterns of Human Convergence and Divergence

We transformed L into a time series matrix, V, to extract the spatiotemporal patterns of human
convergence and divergence:

V =


V1

V2
...
Vm

 = [L1, L2 · · · , L23] =


l1,1, l1,2, · · · , l1,23

l2,1, l2,2, · · · , l2,23

· · ·
lm,1, lm,2, · · · , lm,23

 (5)

where Vi represents the i-th row of the matrix, which indicates the variation in grid cell i over the
day. There are 2801 rows in the matrix. Lj represents the j-th column of the matrix, which indicates
the level in 2801 grid cells at time slot Tj, so there are 23 time slots. Table 3 provides examples of the
matrix. The temporal characteristics of V incorporate the human mobility spatiotemporal dynamics
of different areas of the city. For example, residential and commercial regions or workplaces located
downtown or on the outskirts of the city may have different temporal patterns.

S =

√√√√ 23

∑
t=1

(Vt
i −Vt

j )
2 (6)

In the cluster analysis, our main goal is to extract these grid cells with similar levels of variation
in human mobility, so we focus on clustering the rows in the matrix. As shown in Equation (6),
the similarity between any two rows is calculated based on the Euclidean distance. An X-means
clustering algorithm was adopted to cluster the time series matrix according to temporal characteristics.
This algorithm is an improved method based on k-means and can automatically determine the number
of clusters using Bayesian information criteria to overcome the drawbacks of k-means in choosing
the number of clusters. It also accelerates the computation by using a kd-tree method to address the
massive number of records [43]. Additionally, it is an unsupervised clustering method that is suitable
for multidimensional variable datasets. The well-known data mining tool WEKA was employed to
execute the X-means algorithm [44]. Based on the algorithm, eight clusters were extracted from V
using X-means clustering, and they were denoted as C1, C2, . . . , C8. A cluster analysis identified
grid cells with similar human convergence and divergence variation patterns, and we discuss the
characteristics of each cluster in Section 5.2.

Table 3. Examples of the matrix.

GridID 1 2 3 4 5 6 7 . . . . . . 17 18 19 20 21 22 23

211 2 1 1 0 1 2 4 . . . . . . −3 −4 −2 −3 −1 −1 1
1056 −1 0 0 0 1 −3 −3 . . . . . . 2 3 3 2 1 1 1

...
...

2135 1 1 0 0 1 2 2 . . . . . . −2 −3 2 −3 −2 −1 1

5. Results and Discussion

5.1. Convergence and Divergence in each Time Slot

Figure 5 shows human convergence and divergence for selected time slots. Areas where people
converged and diverged in different time slots are clearly distinguishable. Changes in human mobility
intensity can also be observed. The level of most grid cells is close to zero at midnight (T3), aside from
a few areas in the urban centers. As dawn arrives, human mobility increases due to the morning
commuting peak (T8) and then declines as people start their work (T10). The mobility intensity in
some locations increases at noon (T12) due to activities related to lunch, especially in the northern
regions of the city. Then, it decreases again during the afternoon work hour (T15) to a level below
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that of the morning work hour (T10). The evening commute (T18) displays an opposite trend as T8,
with most grid cells exhibiting a high convergence during T8 as people flow into locations that exhibit
divergence at T8, and this state can last until the evening hour (T21). These patterns represent a typical
urban workday dynamic that is related to human activity patterns, and it demonstrates the potential
of mobile phone data for studying human mobility. These data can be used to understand aggregate
mobility patterns on more detailed spatial and temporal scales.
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Figure 5. Human convergence and dispersion in selected time slots. (a) Spatial distribution of human
convergence and divergence during time slot T3; (b) Spatial distribution of human convergence
and divergence during time slot T8; (c) Spatial distribution of human convergence and divergence
during time slot T10; (d) Spatial distribution of human convergence and divergence during time slot
T12; (e) Spatial distribution of human convergence and divergence during time slot T15; (f) Spatial
distribution of human convergence and divergence during time slot T18; (g) Spatial distribution of
human convergence and divergence during time slot T21.

5.2. Temporal Patterns of Human Convergence and Divergence

Figure 6 illustrates the temporal patterns of the average values of each cluster. Distinct temporal
characteristics can be observed between the clusters.

Grid cells in C1 illustrate the high intensity of human convergence during most time slots, while C8
cells display divergence during most of the day, except during the morning commute (T6–T8) when
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the cells display high-intensity convergence. Grid cells in C2 show convergence from T6–T18 followed
by high-intensity divergence from T19 until midnight (T23).

C3 and C4 have similar mobility patterns, with divergence mainly occurring from T6–T10 and
convergence after T17. The major difference between these clusters is that the mobility intensity in
C4 is significantly higher than that in C3. C3 also exhibits a clear convergence-divergence pattern
from T11–T14.

Cluster C5 shows a distinct convergence pattern during the morning and evening commutes,
which last approximately two time slots, and divergence in the remaining time slots of the day.

C7 shows an opposite human mobility pattern to that of C3, with convergence mainly occurring
from T7–T9 and divergence after T17.

Compared to other clusters, there is no apparent temporal pattern in the grid cells of C6, and the
mobility intensity is generally low.

The spatial distributions and mobility intensities of these human convergence and divergence
patterns are associated with the spatial distribution of different land use types (e.g., residential,
industrial, commercial, etc.) and the socioeconomic features of the geographical contexts [4,45,46].
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Figure 6. Clustering patterns of human convergence and divergence.

5.3. Spatial Distribution of Derived Clusters

We further analyzed the spatial distribution of the identified clusters by combining functional
regions to gain better understanding of human convergence and divergence in the urban context.
To simplify the maps, hollow cells were used to represent grid cells. In addition, we calculated the
average percentages of different land uses in each cluster. We first calculated the proportion of each
land use in each grid cell. Then, for grid cells belonging to a certain cluster, we calculated the average
proportion of each land use. Table 4 lists the average percentages of the different land use types in
each cluster.

Table 4. The distribution of land use in each cluster. Com, commercial land; Ind, industrial
land; Res, residential land; Tra, transport land; Adm, administrative land; Edu, education land;
Tou, tourism land; Spo, sport land; Wat, water land; Oth, other land (%).

Clusters Com Ind Res Tra Adm Edu Tou Spo Wat Oth

C1 0.3 31.3 30.3 15.2 0.2 0.3 8.0 1.3 0.5 12.6
C2 11.6 36.3 29.4 12.5 1.1 0.7 3.3 2.0 0.3 2.8
C3 0.6 32.0 50.4 6.6 0.0 0.7 3.0 0.4 0.0 6.3
C4 1.6 12.5 67.6 8.8 0.1 0.2 6.4 0.2 0.1 2.5
C5 3.4 31.1 40.1 12.5 0.3 1.0 4.4 0.8 0.1 6.3
C6 1.7 28.8 27.9 8.5 0.4 1.5 9.5 2.7 0.4 18.6
C7 2.4 58.4 11.8 9.8 0.6 1.7 3.5 1.6 0.0 10.2
C8 1.7 41.7 16.5 18.4 1.7 1.1 7.6 1.8 0.1 9.4
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Figure 7 shows the spatial distribution of C1 and C8. It is counterintuitive that some areas continue
to converge (C1) or diverge (C8) during most time slots (Figure 6). Most grid cells in these clusters are
along the main roads of Shenzhen, and the average percentage of transportation land use in each grid
cell in the two clusters is 15.2% and 18.4%, which are higher than the values in other clusters (Table 4).
C1 cells tend to be on the boundary between industrial and residential regions, with industrial and
residential land use accounting for 31.3% and 30.3%, respectively, of all land use in the cells (Table 4).
C8 cells are mainly distributed along roads in industrial and downtown regions, and industrial and
residential land use accounts for 41.7% and 16.5%, respectively, of land use in the cells. Thus, a large
number of people flow into these regions during the morning commute (T7 and T8). The regions
include some important intra-urban traffic junctions, as well as several inter-urban transportation hubs
connected to nearby cities, e.g., several high-speed intersections, two railway stations and Futian Port
(which connects to Hong Kong). Therefore, it is likely that the human mobility patterns in C1 and
C8 are related to urban transportation. A possible explanation for the continuous convergence and
divergence is that our dataset does not include interactions with nearby cities and neglects outflow
from the city and inflow from other cities through these grid cells; thus, there is continuous positive
or negative netflow during the day. This indicates that these areas may be main hubs that are closely
connected to regions outside the city. This observation provides a reference for urban planners to
locate and optimize urban bus public transit, so that people can be easily transferred from these places.
Therefore, it is likely that C1 and C8 are often located along main urban roads.
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Figure 7. Spatial distributions of identified functional clusters C1 and C8.

Figure 8 shows the spatial distributions of grid cells in clusters C2 and C5. C2 grid cells are
located in main commercial and industrial regions in the city, i.e., concentrated job locations that
attract many people during the morning commute. The average commercial land use in this cluster is
11.6%, which is the maximum among all clusters (Table 4). The commercial regions also include
many shopping malls, restaurants, financial institutions and recreational venues (bars, karaoke,
entertainment, etc.). Therefore, these locations also attract numerous people for shopping, meals,
entertainment and other activities during the daytime, with high-intensity divergence after T19.
Grid cells in C5 are mainly located near small business districts and workplaces inside residential
regions, and the commercial, industrial and residential land uses are 3.4%, 31.1% and 40.1% in
this cluster, respectively (Table 4). Land use in residential regions is mixed and includes shopping
malls, restaurants and recreational venues. Therefore, human mobility in these locations does not
exhibit a consistent pattern, and the human mobility intensity is low. For example, these locations
attract people for work during morning times, while people living in residential regions diverge
to workplaces simultaneously. Thus, convergence and divergence both occur during the morning
commute time (T6–T9). The convergence and divergence pattern in C2 is likely to occur in main urban
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commercial regions, whereas it tends to occur near business districts and workplaces within residential
regions in C5.
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Figure 9 shows the spatial distributions of clusters C3 and C4. Grid cells in both clusters are mainly
located in urban residential regions. The cells in C3 are mainly located in the northern part of the city,
while the cells in C4 are located in the southern part of the city. As shown in Table 4, residential land
is dominant in C3 and C4, accounting for 50.4% and 67.6% of land use in the clusters, respectively.
As discussed in Section 5.2, there are also some human mobility differences between the clusters.
For example, divergence lasts longer in C4 than in C3 during the morning (Figure 6). The cluster
differences may be caused by differences between economic development and human mobility space
in the northern and southern parts of the region. The southern region is the core of the urban business
district in Shenzhen, and the economy in the southern region is more developed than that of the
northern region. The southern population density is also higher than that in the northern region.
The more developed economy and high population density may be the underlying reasons for the
cluster pattern differences. However, many immigrant workers live in the northern part of Shenzhen,
and they tend to live near their workplaces to save commuting time [47]. This short commute distance
also makes it convenient for them to return home at noon for lunch or to take short breaks for activities,
which may also contribute to the convergence-divergence pattern differences between T11 and T14

(Figure 6). Thus, the cells in C3 and C4 are likely located in urban residential regions, with C3 mainly
located in the northern part of the city and C4 generally located in the southern part.
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Figure 10 shows the spatial distribution of C7. The grid cells in this cluster are mainly scattered
across urban industrial regions. As shown in Table 4, the percentage of industrial land in this cluster
is 58.4%, which is the dominant land use; thus, a large number of people converge in these areas
to engage in work during the morning commute and then diverge from these areas to return home
or travel to other locations when they finish their daily work. Thus, the human convergence and
divergence pattern in C7 contrasts that in C3, although human mobility in both clusters show typical
daily travel patterns related to work. Therefore, the human mobility pattern in C7 is likely associated
with urban industrial regions.
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Figure 10. Spatial distribution of identified functional cluster C7.

Based on the spatial distribution, grid cells in C6 are not confined to a specific functional
area, but scattered across different regions of Shenzhen (Figure 11), including urban administrative,
education, sports and tourism regions. People have the freedom to choose the timing at which they
arrive and leave these regions; thus, no consistent temporal patterns are formed in the regions. We can
see that the difference between residential land (27.9%) and industrial land (28.8%) is small (Table 4).
Many grid cells in this cluster are also located on the border of residential and industrial regions, so it
is possible that a mixture of patterns occurs in these grid cells, e.g., during the morning commute,
a grid cell containing industrial and residential land use would attract people to work, but people
living in the grid cell may leave for work, resulting in an overall low netflow intensity. Some grid cells
are also located in suburban areas with very low population densities, which may be another reason
for the low intensity of human mobility.
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The clusters identified in this study provide insight into the human dynamics at different locations
in the city and potential land use characteristics associated with these different human mobility patterns.
For example, C1 and C8 are likely located along main urban roads, whereas C2 tends to be located
in urban commercial regions. In residential-dominant regions, a geographical difference in human
mobility can be identified between the northern and the southern parts of Shenzhen. Although the
study area and dataset are different, our findings are similar to those of a study that explored the
interdependence between land use and traffic patterns using GPS-enabled taxi data in Shanghai [27].
In addition, these human mobility patterns are closely related to socioeconomic development and
human activity areas [47]. These findings provide preliminary knowledge about human convergence
and divergence patterns in urban areas based on different land use information.

This knowledge can help urban planners and policy makers to improve the efficiency of urban
operations. Additionally, it can be used as input in Markov or training models to predict real-time
urban traffic flows [31,48,49]. For example, when a new residential area is planned, human mobility
patterns can be predicted based on its economic characteristics, thereby providing initial knowledge
regarding the temporal travel demands of local residents. In addition, the findings can be used as
a reference to estimate human convergence and divergence patterns using urban land use data in other
cities without human tracking data. Conversely, urban land use information can be inferred based on
these human mobility patterns [32,33]. In addition, based on the temporal convergence and divergence
patterns of human mobility in different urban regions, managers can optimize urban public bicycle
dock locations or real-time bicycle schedules in convergent and divergent areas to maintain a balance
between supply and demand [50]. Similarly, taxi companies can allocate taxis in locations with high
human convergence and divergence activities at specific times of a day [51]. Therefore, these findings
can be used to improve urban public transport efficiency, which helps promote intelligent urban
mobility [52,53].

6. Conclusions

The emergence of new location-aware data sources (e.g., mobile phone data) has provided
opportunities and challenges associated with understanding human activities in the urban context
(e.g., real-time monitoring of urban dynamics, human mobility patterns, etc.). This article explores
the spatiotemporal patterns of human convergence and divergence using a big mobile phone location
dataset from Shenzhen, China. From the location sequences of individual cell phone trajectories,
we derived two measures (inflow and outflow) at the grid cell level (500 m × 500 m) to represent
the numbers of incoming and outgoing trips at different locations in the city at different times of the
day. Using the difference between inflow and outflow, we generated a time series for each grid cell,
which reflects the direction and intensity of people flows and describes the temporal patterns of human
convergence and divergence. Then, a clustering algorithm was employed to categorize distinct human
convergence and divergence types within the city. We then investigated the spatial distributions of grid
cells in different categories and examined how the identified patterns were associated with particular
urban functional region types. This yielded additional insight into the relationships between people
flows and the functional environment.

Eight distinct spatiotemporal clusters were identified, and the spatial distributions of these
patterns were discussed based on the urban functional areas. Grid cells in clusters C1 and C8 were likely
located along main urban roads in transportation-dominant regions (e.g., intra- and inter-urban traffic
hubs); C2 and C5 were generally located in commercial-dominant urban regions; C3 and C4 were mainly
located in residential-dominant regions; C7 was typically located in industrial-dominant regions;
and C6 was scattered in different functional regions throughout the city. There was also a geographical
(north–south) difference in human convergence and divergence in urban residential regions, and this
difference mimicked the pattern of urban socioeconomic development. Distinct human convergent
and divergent activities occurred at noon in northern residential and industrial regions, which may
be due to low human mobility in those areas. These findings enhance our knowledge of human
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mobility in different urban functional regions and provide a reference for policy makers to improve
policy effectiveness.

There are some limitations of this study. First, one main limitation of this work is the potential
impact of MAUP (modifiable area unit problem). Signal switches are a source of inherent bias in
mobile phone data, and they may affect studies of human mobility patterns. The sample interval of
the mobile phone data used in this study is approximately one hour, so we cannot accurately identify
signal switches between cell phone towers. Most current studies employed Voronoi tessellations to
represent the service areas of cell phone towers. However, there are many extremely close cell phone
towers (separated by less than 10 m) in the study area (e.g., there are several cell phone towers in
one office building in the urban center), so Voronoi tessellation does not prevent signal switching
between these close cell phone towers. This study adopted 500 m × 500 m grid cells to divide the city
and aggregate close cell phone towers to reduce the influence of signal switches between these cell
phone towers. However, it is difficult to address the problem completely because the exact service
area of a cell phone tower is uncertain. In addition, we excluded grid cells that did not contain cell
phone towers because it is not feasible to calculate human movements between grid cells without
cell phone towers. This may exclude some human activity areas. Although these movements were
ignored, the analysis results provide useful information for understanding aggregate human mobility
patterns in an urban functional context. Future studies can further analyze spatial interpolation
differences between Voronoi tessellations and grid cells. Another limitation is that the dataset only
covers one workday; thus, we were unable to investigate differences in weekly and seasonal patterns
of human mobility. This study proposes a method for extracting daily spatiotemporal patterns of
human convergence and divergence. The proposed method can be employed to extract human mobility
patterns from long-term data, which is helpful for comparing human mobility on different days.

In future research, we will employ the identified patterns to optimize urban transportation and
planning. For example, the urban public transport system could be optimized (i.e., the locations of bus
stops or timetables of bus lines) based on the identified human mobility patterns. We will also further
examine the relationship between human flow matrices and land use to provide better understanding
of spatial interactions among different land use types. We believe that these analyses will deepen our
knowledge of human activities in the urban context and provide many benefits to the development of
urban systems.
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