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Abstract: In recent years, cellular floating vehicle data (CFVD) has been a popular traffic information
estimation technique to analyze cellular network data and to provide real-time traffic information
with higher coverage and lower cost. Therefore, this study proposes vehicle positioning and speed
estimation methods to capture CFVD and to track mobile stations (MS) for intelligent transportation
systems (ITS). Three features of CFVD, which include the IDs, sequence, and cell dwell time of
connected cells from the signals of MS communication, are extracted and analyzed. The feature of
sequence can be used to judge urban road direction, and the feature of cell dwell time can be applied
to discriminate proximal urban roads. The experiment results show the accuracy of the proposed
vehicle positioning method, which is 100% better than other popular machine learning methods
(e.g., naive Bayes classification, decision tree, support vector machine, and back-propagation neural
network). Furthermore, the accuracy of the proposed method with all features (i.e., the IDs, sequence,
and cell dwell time of connected cells) is 83.81% for speed estimation. Therefore, the proposed
methods based on CFVD are suitable for detecting the status of urban road traffic.

Keywords: intelligent transportation system; cellular networks; vehicle positioning; speed estimation;
machine learning

1. Introduction

In the last few years, a technical explosion has revolutionized and supported transportation
management and control for intelligent transportation systems (ITS). ITS can estimate and obtain
traffic information (e.g., traffic flow, traffic density, and vehicle speed) to road users and managers for
the improvement of service levels of the road network. The traffic information can be collected and
estimated by three approaches, which include: (1) vehicle detection (VD) [1–3]; (2) global positioning
system (GPS)-equipped probe car reporting [4–7]; and (3) cellular floating vehicle data (CFVD) [8].
However, vehicle data (VD) has high establishment and maintenance costs. GPS-equipped probe car
reporting has a low accuracy rate when the penetration rate of GPS-equipped probe cars is too low.
The CFVD can be obtained from mobile phones, which have high penetration in many countries [9],
and some studies pointed that CFVD could be used to estimate traffic status with high accuracy [10–27].
Collecting traffic information using CFVD is economic and low cost.

For traffic information estimation based on CFVD, some studies proposed methods to analyze
the signals of received signal strength indications (RSSIs), handoffs (HOs), call arrivals (CAs), normal
location updates (NLUs), periodical location updates (PLUs), routing area updates (RAUs), and
tracking area updates (TAUs). These studies illustrated that higher accuracies of traffic information
estimation were performed by using CFVD for highways [10–27]. However, these studies assumed
that vehicles can be tracked to the correct route, but the determination of the correct route driven by
the user of a mobile station (MS) is difficult and has not been investigated, especially for urban roads.
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Therefore, this study proposes a vehicle positioning method to capture CFVD and to track MSs
for ITS. Three features of CFVD, which include the IDs, sequence, and cell dwell time of connected
cells from the signals of MS communications, are extracted and analyzed. The feature of sequence can
be used to judge urban road direction, and the feature of cell dwell time can be applied to discriminate
proximal urban roads. Furthermore, this study proposes a vehicle speed estimation method to analyze
these three features of CFVD (e.g., IDs, sequence, and cell dwell time of connected cells) for obtaining
the real-time estimated vehicle speed.

The rest of this study is organized as follows: the literature reviews of cellular network architecture,
CFVD, and traffic information estimation are presented in Section 2; Section 3 proposes a vehicle
positioning method based on CFVD to analyze the signals of a mobile phone in a car which is driven
on urban roads; a speed estimation method is proposed to measure the speed of the mobile phone
in a car according to CFVD in Section 4; the experimental results and discussions are illustrated in
Section 5; and Section 6 gives conclusions and discusses future work.

2. Research Background and Related Work

In this section, three subsections, which include cellular networks, CFVD, and traffic information
estimation, are discussed for the estimation of traffic information based on CFVD.

2.1. Cellular Networks

This subsection describes the signals and interfaces of cellular networks, which include Global
System for Mobile Communications (GSM), General Packet Radio Service (GPRS), Universal Mobile
Telecommunications System (UMTS), and Long-Term Evolution (LTE). For circuit-switching networks,
MSs can perform the signals of HOs, CAs, NLUs, and PLUs through the A-interface in GSM and
through the IuCS-interface in UMTS. For packet-switching networks, MSs can obtain the signals of
RAUs through the Gb-interface in GPRS and through the IuPS-interface in UMTS, and the signals
of TAUs can be transmitted between MSs and the core network through the S1-MME-interface
in LTE [10–27]. Therefore, a network monitor system can be implemented to capture the cellular
network signals via the A-interface, the IuCS-interface, the Gb-interface, the IuPS-interface, and the
S1-MME-interface for CFVD.

2.2. CFVD

In recent years, CFVD has been analyzed to estimate traffic flow, traffic density, and vehicle speed
in some studies. For instance, the signals of HOs from GSM and UMTS could be used to analyze the cell
dwell time in cells and to estimate vehicle speed and travel time [8,11,12,16,25,26,28]. Figure 1 shows
a case study of CFVD for highway and urban roads. One highway (i.e., Highway 1) and four urban
roads (i.e., Urban Road 1, Urban Road 2, Urban Road 3, and Urban Road 4) are covered by three cells
(i.e., Cell 1, Cell 2, and Cell 3). When a MS performs a call and moves from Cell 1 to Cell 2, a HO signal
is generated and recorded. Moreover, the MS keeps moving from Cell 2 to Cell 3, another HO signal is
also generated and recorded. These two HO signals can be analyzed to obtain the cell dwell time of
Cell 2. Then the vehicle speed and travel time of Highway 1 can be estimated in accordance with the
cell dwell time [8,11,12,16,25,26,28].

Although the previous studies provided high accuracies of traffic information estimation, they
focused on highways and assumed that vehicles can be tracked to the correct route. In practical
environments, a cell usually covers only one highway, and a cell may cover several urban roads.
For instance, Cell 1 covers Highway 1, Urban Road 1, and Urban Road 2. Therefore, the determination
of the correct route driven by the MS user is difficult, especially for urban roads.

Some studies proposed a route classification method based on vehicular mobility patterns [12,29,30].
The route classification method recorded the list of cells which covered a same road. For example,
the list of cells for Urban Road 1 in Figure 1 is {Cell 1, Cell 2, and Cell 3}. The method could estimate
the similarity of the cell list of a route and the list of connected cells of a MS for determining the route
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which is driven by the MS user [12,29,30]. However, the previous method could not determine the
road direction, and the proximal urban roads might lead to lower accuracy of route classification.

ISPRS Int. J. Geo-Inf. 2016, 5, 181 3 of 13 

 

estimate the similarity of the cell list of a route and the list of connected cells of a MS for determining 

the route which is driven by the MS user [12,29,30]. However, the previous method could not 

determine the road direction, and the proximal urban roads might lead to lower accuracy of route 

classification. 

 

Figure 1. The case study of CFVD for highway and urban roads. 

2.3. Traffic Information Estimation 

For traffic information estimation, the amount of HOs and NLUs could be collected and 

analyzed for traffic flow estimation [8,10,14,17], and the amount of CAs and PLUs could be retrieved 

and used for traffic density estimation [8,10,14,15]. Then the vehicle speed can be estimated in 

accordance with the estimated traffic flow and the estimated traffic density. Furthermore, some 

studies proposed mobile positioning methods to measure and analyze RSSIs between the MS and 

base stations (BSs) to determine the location of the MS [20–23]. The time difference and the distance 

between two locations of the same MS can be measured for vehicle speed estimation and travel time 

estimation. The estimated traffic information-based CFVD can be referred and analyzed to develop 

traffic control strategies for governments. 

3. Vehicle Positioning Method 

A vehicle positioning method is proposed to collect and analyze CFVD (e.g., the IDs, sequence, 

and cell dwell time of connected cells) from the signals of MS communications (e.g., call arrivals and 

handoffs) for determining urban road segments which are driven by MS users in their cars. For 

instance, Figure 2 shows a case study of an urban road network and cell coverage. There are five cells 

(i.e., Cell1 to Cell5) and three urban road segments (i.e., Road1 to Road3) in this case. When the MS 

moves and performs handoff signals, the road segments which are driven by the MS user in their car 

can be tracked according to the IDs, sequence, and cell dwell time of connected cells. In this case, 

Cell5, Cell4, Cell3, and Cell2 may be connected by a MS when the MS moves through Road1 to Road2; 

Cell5, Cell4, Cell3, and Cell1 may be connected by a MS when the MS moves through Road1 to Road3.  

 

Figure 2. The case study of an urban road network and cell coverage. 

 

Highway 1Highway 1

Urban Road 4Urban Road 4Urban Road 3Urban Road 3Urban Road 2Urban Road 2

Urban Road 1Urban Road 1

Cell 1Cell 1 Cell 2Cell 2 Cell 3Cell 3

 
Road2

Road3

Cell1

Cell2

Cell3

Cell4

Cell5

Road1

Figure 1. The case study of CFVD for highway and urban roads.

2.3. Traffic Information Estimation

For traffic information estimation, the amount of HOs and NLUs could be collected and analyzed
for traffic flow estimation [8,10,14,17], and the amount of CAs and PLUs could be retrieved and used
for traffic density estimation [8,10,14,15]. Then the vehicle speed can be estimated in accordance
with the estimated traffic flow and the estimated traffic density. Furthermore, some studies proposed
mobile positioning methods to measure and analyze RSSIs between the MS and base stations (BSs) to
determine the location of the MS [20–23]. The time difference and the distance between two locations of
the same MS can be measured for vehicle speed estimation and travel time estimation. The estimated
traffic information-based CFVD can be referred and analyzed to develop traffic control strategies
for governments.

3. Vehicle Positioning Method

A vehicle positioning method is proposed to collect and analyze CFVD (e.g., the IDs, sequence,
and cell dwell time of connected cells) from the signals of MS communications (e.g., call arrivals
and handoffs) for determining urban road segments which are driven by MS users in their cars.
For instance, Figure 2 shows a case study of an urban road network and cell coverage. There are five
cells (i.e., Cell1 to Cell5) and three urban road segments (i.e., Road1 to Road3) in this case. When the
MS moves and performs handoff signals, the road segments which are driven by the MS user in their
car can be tracked according to the IDs, sequence, and cell dwell time of connected cells. In this case,
Cell5, Cell4, Cell3, and Cell2 may be connected by a MS when the MS moves through Road1 to Road2;
Cell5, Cell4, Cell3, and Cell1 may be connected by a MS when the MS moves through Road1 to Road3.
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Therefore, the proposed vehicle positioning method is designed to analyze CFVD and to apply the
k-nearest neighbor algorithm (kNN) for determining the location of the vehicle. This method includes
four steps (shown in Figure 3) which include: (1) collecting connection and handoff signals from
cellular networks; (2) analyzing cell ID, sequence, and cell dwell time of connected cells; (3) retrieving
k1 similar records from a historical dataset; and (4) determining the location of the vehicle. The details
of each step are presented in following subsections.
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3.1. Collecting Connection and Handoff Signals from Cellular Networks

Step 1 captures and collects the cell IDs and timestamps from cellular network signals (e.g.,
call arrivals and handoffs) which are obtained by MS and core networks via A and IuCS interfaces.
This study applies an international mobile subscriber identity (IMSI) as the ID of the MS for tracking
each MS. For instance, a call was performed by IMSI1 at PM 16:08:02 on 18 May 2016, and the cellular
network signals during this call were collected and showed in Table 1. When this MS moved from
Cell1 to Cell2, a handoff procedure was performed at PM 16:10:35. However, cell oscillation might
occur between 16:10:35 and 16:11:07. Then, the MS kept moving and entered the coverage of Cell3, and
a handoff signal was generated at PM 16:15:58. Finally, a call complete procedure was performed at
16:18:39. These signals can be captured and used as CFVD for vehicle positioning and speed estimation.

Table 1. The cellular network signals during a call performed by IMSI1 on 18 May 2016.

Record ID Mobile Station ID Time Cell ID Signals

1 IMSI1 18 May 2016 16:08:02 Cell1 Call Arrival
2 IMSI1 18 May 2016 16:10:35 Cell2 Handoff
3 IMSI1 18 May 2016 16:10:46 Cell1 Handoff
4 IMSI1 18 May 2016 16:11:07 Cell2 Handoff
5 IMSI1 18 May 2016 16:15:58 Cell3 Handoff
6 IMSI1 18 May 2016 16:18:39 Cell3 Call Complete

3.2. Analyzing Cell ID, Sequence, and Cell Dwell Time of Connected Cells

Step 2 can analyze the records (i.e., cell IDs and timestamps) from Step 1 and extract three features,
which include the cell IDs, sequence, and cell dwell time of connected cells. This study assumes
that n cells are available in experimental environments. The extraction processes of each feature are
illustrated in the following subsections.
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3.2.1. Cell ID

For the feature analysis of cell ID, this study sets the value of Celli (ci) as 1 if Celli is connected
during a call, but otherwise the value of cell is 0. The feature of cell ID, which can be presented as
a vector space model (C), is defined in Equation (1). For example, Cell1, Cell2, and Cell3 are connected
by IMSI1 in Table 1, so the values of c1, c2, and c3 are 1 (shown in Equation (2)).

C = {c1, c2, c3, c4, ..., cn} , where ci =

{
1, if Celli is connected during a call
0, otherwise

(1)

C = {1, 1, 1, 0, ..., 0} (2)

3.2.2. Sequence

For the judgment of urban road direction, the handoff sequence is an important feature, so this
study analyzes the sequence of connected cells for determining the road segment driven by a MS user.
When Celli is firstly connected, the value of Celli (oi) is given with a higher weight value. Then the
feature of sequence which can be presented as a vector space model (O) is defined in Equation (3).
Furthermore, this study only considers the first x connected cells, and a vector set of weight values (A)
for the feature of sequence is defined in Equation (4). For instance, this study set the value of x as 3,
and Equation (5) is adopted to set the values of A (i.e., a1 = 1; a2 = 0.5; a3 = 0.25). In the case of IMSI1 in
Table 1, Cell1 is firstly connected, so the value of Cell1 (o1) is given as 1 (i.e., a1). Then Cell2 is secondly
connected, and the value of Cell2 (o2) is adopted as 0.5 (i.e., a2). Finally, this study set the value of Cell3
(o3) as 0.25 (i.e., a3) and the values of other cells as 0 (shown in Equation (6)).

O = {o1, o2, o3, o4, ..., on} , where oi = the corresponding weight value of Celli (3)

A = {a1, a2, ..., ax} (4)

A = {1, 0.5, 0.25} (5)

O = {1, 0.5, 0.25, 0, ..., 0} (6)

3.2.3. Cell Dwell Time

For the discrimination of proximal urban roads, the cell dwell time is an important feature, so
this study analyzes the cell dwell time of each connected cell during the same call. However, cell
oscillation may occur, especially in a city. Therefore, the total cell dwell time of each cell is considered
and summarized. Then, the feature of cell dwell time, which can be presented as a vector space model
(T), is defined in Equation (7). Moreover, this study only considers the first y cells with longer cell dwell
time, and a vector set of weight values (B) for the feature of cell dwell time is defined in Equation (8).
For example, cell oscillation might occur between 16:10:35 and 16:11:07 in Table 1. Therefore, the total
cell dwell time of Cell1 is 174 s (i.e., 174 = 153 + 21), and the total cell dwell time of Cell2 is 302 s (i.e.,
302 = 11 + 291). Then, the cell dwell time of Cell3 is 161 s. In this study, the value of y is adopted as 3,
and Equation (9) is adopted to set the values of B (i.e., b1 = 1; b2 = 0.5; b3 = 0.25). The cell dwell time
of Cell2 is the longest in the case of Table 1, so the value of Cell2 (t2) is given as 1 (i.e., b1). Then, the
values of Cell3 (t3) and Cell1 (t1) are adopted as 0.5 (i.e., b2) and 0.25 (i.e., b3), respectively. Finally, this
study sets the values of other cells as 0 (shown in Equation (10)).

T = {t1, t2, t3, t4, ..., tn} , where oi = the corresponding weight value of Celli (7)

B = {b1, b2, ..., bx} (8)

B = {1, 0.5, 0.25} (9)
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T = {0.25, 1, 0.5, 0, ..., 0} (10)

3.2.4. Combination

This study considers the features of cell ID, sequence, and cell dwell time simultaneously and
combines vector space models of C, O, and T into the vector set of R (shown in Equation (11)).
For instance, the records of IMSI1 can be modeled in Equation (12):

R = {C, O, T} = {c1, c2, c3, c4, ..., cn, o1, o2, o3, o4, ..., on, t1, t2, t3, t4, ..., tn} (11)

R = {1, 1, 1, 0, ..., 0, 1, 0.5, 0.25, 0, ..., 0, 0.25, 1, 0.5, 0, ..., 0} (12)

3.3. Retrieving k1 Similar Records from a Historical Dataset

In this study, m calls are transformed in accordance with Equation (11) and stored in a historical
database. These m records are defined as historical dataset H (shown in Equation (13)). Furthermore,
the driven road segment of each historical record is labeled in the database. When a new call is
performed and completed, the vector set of this call (r) (shown in Equation (14)) is transformed
according to Equation (11) and compared with each record in historical dataset H by Equation (15).
Then the most similar historical record with the distance g1 can be retrieved in accordance with
Equation (16), and Step 3 retrieves k1 similar records from the historical dataset for vehicle positioning.

H = {h1, h2, ..., hm}
where hi = {Ci, Oi, Ti}

= {ci,1, ci,2, ci,3, ci,4, ..., ci,n, oi,1, oi,2, oi,3, oi,4, ..., oi,n, ti,1, ti,2, ti,3, ti,4, ..., ti,n}
(13)

r = {C, O, T} = {c1, c2, c3, c4, ..., cn, o1, o2, o3, o4, ..., on, t1, t2, t3, t4, ..., tn} (14)

d (r, hi)

=

√√√√√√
 [

c1 − ci,1 · · · cn − ci,n

]  c1 − ci,1
...

cn − ci,n

 [
o1 − oi,1 · · · on − oi,n

]  o1 − oi,1
...

on − oi,n

 [
t1 − ti,1 · · · cn − ci,n

]  t1 − ti,1
...

tn − ti,n



 1

1
1


=

√
n
∑

j=1

(
cj − ci,j

)2
+
(
oj − oi,j

)2
+
(
tj − ti,j

)2

(15)

g1 = min
1≤i≤m

d (r, hi) (16)

3.4. Determining the Location of a Vehicle

For the determination of vehicle location, Step 4 applies a majority rule to analyze the k1 similar
records, which include the corresponding driven road segment from Step 3. For instance, a case
study of a historical dataset and a new record is given in Table 2. There are five cells (i.e., n = 5) and
six historical records (i.e., m = 6), and the value of k1 is adopted as 3 in this case. Equation (15) is used to
calculate the distance between dataset r (i.e., a new record) and each historical record. The result shows
that the k1 similar records are h1, h2, and h4, so Road1 is supported by two records (i.e., h1 and h2).
Therefore, the driven road segment of this new record is determined as Road1.

Table 2. A case study of historical dataset and a new record.

Record Road ID Speed (km/h) c1 c2 c3 c4 c5 o1 o2 o3 o4 o5 t1 t2 t3 t4 t5

h1 Road1 60 1 1 1 0 0 1 0.5 0.25 0 0 0.25 1 0.5 0 0
h2 Road1 58 1 1 1 0 0 1 0.5 0.25 0 0 0.25 0.5 1 0 0
h3 Road1 40 1 1 1 0 0 0.5 1 0.25 0 0 1 0.5 0.25 0 0
h4 Road2 59 1 1 1 0 0 0.25 0.5 1 0 0 0.25 1 0.5 0 0
h5 Road2 50 0 0 1 1 1 0 0 0.5 1 0.25 0 0 1 0.5 0.25
h6 Road2 53 0 0 1 1 1 0 0 0.25 1 0.5 0 0 0.5 1 0.25
r ? ? 1 1 1 0 0 1 0.5 0.25 0 0 0.25 1 0.5 0 0



ISPRS Int. J. Geo-Inf. 2016, 5, 181 7 of 13

4. Speed Estimation Method

This study proposes a method and applies the k-nearest neighbor algorithm to extract the features
of CFVD (e.g., the IDs, sequence, and cell dwell time of connected cells) and to estimate vehicle speed.
The proposed method includes four steps (shown in Figure 4) which include: (1) determining the
location of a vehicle; (2) analyzing cell ID, sequence, and cell dwell time of connected cells; (3) retrieving
k2 similar records with the same road segment from historical dataset; and (4) estimating the speed of
a vehicle. The details of each step are presented in following subsections.
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4.1. Determining the Location of Vehicle

Step 1 determines the driven road segment of the MS in accordance with CFVD and the proposed
vehicle positioning method in Section 3. This study only considers and analyzes the historical records
with the same road segment to estimate vehicle speed. For example, when a new record is determined
as Roadl, the historical records with Roadl are considered in the following steps.

4.2. Analyzing Cell ID, Sequence, and Cell Dwell Time of Connected Cells

Step 2 adopts Equations (1), (3) and (7) to extract the features of historical records and new records
which include the IDs, sequence, and cell dwell time of connected cells. Each record can be transformed
as a vector space model (shown in Equation (11)). Historical records are presented as a vector set H,
and a new record is presented as a vector set r in accordance with Equations (13) and (14).

4.3. Retrieving k2 Similar Records with the Same Road from Historical Dataset

Step 3 retrieves k2 similar records with the same road segment from a historical dataset according
to Equation (15). Furthermore, the vehicle speed of each historical record is labeled in a database.
For instance, in the case of Table 2, the new record r is determined as Road1, so three historical records
(i.e., h1, h2, and h3) are considered to be analyzed for vehicle speed estimation. If the value of k2 is
adopted as 2 in this case, the records h1 and h2 are retrieved as the k2 similar records.

4.4. Estimating the Speed of a Vehicle

Step 4 applies a weighted mean method to analyze the k2 similar records for vehicle speed
estimation. In this study, new record r is determined as Roadl, and the distance between this record
and the more similar record with vehicle speed v1 is defined as p1 in Equation (17). Moreover, the
distance between this record and the j-th most similar record with vehicle speed vj is defined as pj.
Then the vehicle speed of this record is estimated as u by Equation (18). For example, the k2 similar
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records are h1 and h2 in Table 2 when the value of k2 is 2. The value of d(r, h1) is 0 (i.e., p1 = 0), and the
value of d(r, h2) is about 0.707 (i.e., p2 = 0). Then, Equation (18) is adopted to estimate the vehicle speed
of the new record r as 60 km/h (shown in Equation (19)).

p1 = mind (r, hi) where the driven road segment of hi is Roadl (17)

u =

[ pk2
−p1

pk2
−p1

pk2
−p2

pk2
−p1

· · · pk2
−pk2

pk2
−p1

]


v1

v2
...

vk2



[ pk2
−p1

pk2
−p1

pk2
−p2

pk2
−p1

· · · pk2
−pk2

pk2
−p1

]


1
1
...
1



=

[
ω1 ω2 · · · ωk2

]


v1

v2
...

vk2



[
ω1 ω2 · · · ωk2

]


1
1
...
1



where ωi =
pk2
−pi

pk2
−p1

=

k2
∑

i=1
(ωi×vi)

k2
∑

i=1
ωi

where ωi =
pk2
−pi

pk2
−p1

(18)

u = ω1×60+ω2×58
ω1+ω2

where ω1 = 0.707−0
0.707−0 = 1 and ωi =

0.707−0.707
0.707−0 = 0

= 60
(19)

5. Experimental Results and Discussions

The collection of CFVD and the information of urban road networks are presented in Section 5.1.
The collected CFVD is used to evaluate the proposed vehicle positioning method and speed estimation
method in Sections 5.2 and 5.3, respectively.

5.1. Experimental Environment

In experimental environments, a MS (e.g., HTC (Taoyuan, Taiwan) M8 running the Android
2.2.2platform) is carried in a car to perform call procedures when the car is driven on urban roads, and
the cellular network signals of these calls can be captured for the collection of CFVD. Six urban road
segments in Kaohsiung and Pingtung in Taiwan (shown in Figure 5) are driven in 27 runs. There are
64 different base stations (BSs) (i.e., n = 64) detected on these road segments in Taiwan.

For the evaluations of the vehicle positioning method and speed estimation method, some popular
machine learning methods (e.g., kNN, naive Bayes classification (NB), decision tree (DT), support
vector machine (SVM), and back-propagation neural network (BPNN) [31,32]), are implemented and
compared by using the R language [33,34] and Rstudio [35] to analyze collected CFVD in experiments.
This study uses the packages of class [36], e1071 [37], party [38], and neuralnet [39] to implement
kNN, NB, DT, SVM, and BPNN algorithms, respectively. Furthermore, the k-fold cross-validation
method [31,32] is used to analyze each test run. In the i-th iteration, the data of the i-th run is selected as
the test corpus, and the other test runs are collectively used to be training data for performance analyses.
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5.2. The Evaluation of Vehicle Positioning Method

For the evaluation of the vehicle positioning method, this study considers different features and
machine learning methods to analyze CFVD. Considering cell ID and kNN first; it can be observed
that its performance of vehicle positioning is 51.85% (shown in Table 3). The cause of several errors
is direction misjudgment when only the feature of cell ID is considered. Then, the features of cell
ID and sequence are considered for the judgment of urban road direction, and the results show that
the accuracy of the vehicle positioning method is improved to 92.59%. However, some proximal
urban roads cannot be discriminated by using the features of cell ID and sequence. Finally, this study
analyzes all features (i.e., the IDs, sequence, and cell dwell time of connected cells) to determine the
driven road segment of the MS user, and the accuracy can be improved to 100%. Therefore, the feature
of cell dwell time can support for the discrimination of proximal urban roads.

Table 3. The comparisons of the proposed method with different features for vehicle positioning.

Feature Accuracy

Cell ID (Previous method [12,29]) 51.85%
Cell ID and sequence 92.59%

Cell ID and cell dwell time 88.89%
Cell ID, sequence, and cell dwell time 100%

For the comparisons of different machine learning methods, all features are considered and
analyzed to determine the driven road segment. Four factors, which include precision, recall,
F1 −measure (shown in Equation (20)), and accuracy are used to evaluate the performance of each
method. Table 4 shows that the performance of the proposed method is higher than other methods.

F1 −measure =
2

1
Precision + 1

Recall

(20)
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Table 4. The comparisons of different machine learning methods with all features for vehicle positioning.

Method Precision Recall F1-Measure Accuracy

Naive Bayes classification 91.90% 88.33% 90.08% 88.89%
Decision tree 11.67% 20.00% 14.74% 22.22%

Support vector machine 27.78% 50.00% 35.71% 55.56%
Back-propagation neural network 65.83% 56.67% 60.91% 59.26%

The proposed method 100% 100% 100% 100%

For the comparisons of different parameters, this study designs five cases which include {1, 0, 0},
{1, 0.5, 0}, {1, 1, 1}, {1, 0.67, 0.33}, and {1, 0.5, 0.25} for the values of A and B. Furthermore, Euclidean
distance, Minkowski distance, and Mahalanobis distance are considered for the proposed method.
The experimental results of these cases (in Table 5) indicated that the parameters A and B can be
adapted as {1, 0.5, 0.25} to obtain a higher accuracy of vehicle positioning.

Table 5. The comparisons of different parameters for vehicle positioning.

A B Distance Method F1-Measure Accuracy

{1, 0, 0} {1, 0, 0} Euclidean 87.50% 88.89%
{1, 0.5, 0} {1, 0.5, 0} Euclidean 91.67% 92.59%
{1, 1, 1} {1, 1, 1} Euclidean 89.17% 88.89%

{1, 0.67, 0.33} {1, 0.67, 0.33} Euclidean 96.67% 96.30%
{1, 0.5, 0.25} {1, 0.5, 0.25} Euclidean 100.00% 100.00%

{1, 0, 0} {1, 0, 0} Minkowski 87.50% 88.89%
{1, 0.5, 0} {1, 0.5, 0} Minkowski 91.67% 92.59%
{1, 1, 1} {1, 1, 1} Minkowski 92.50% 92.59%

{1, 0.67, 0.33} {1, 0.67, 0.33} Minkowski 96.67% 96.30%
{1, 0.5, 0.25} {1, 0.5, 0.25} Minkowski 100.00% 100.00%

{1, 0, 0} {1, 0, 0} Mahalanobis 87.50% 88.89%
{1, 0.5, 0} {1, 0.5, 0} Mahalanobis 91.67% 92.59%
{1, 1, 1} {1, 1, 1} Mahalanobis 89.17% 88.89%

{1, 0.67, 0.33} {1, 0.67, 0.33} Mahalanobis 96.67% 96.30%
{1, 0.5, 0.25} {1, 0.5, 0.25} Mahalanobis 100.00% 100.00%

5.3. The Evaluation of the Speed Estimation Method

For the evaluation of the speed estimation method, this study considers different features after
determining the driven road segment of the MS user. Table 6 shows the results of the proposed speed
estimation method with different features. These experimental results indicate that cell dwell time is
the most important feature, and the accuracy of vehicle estimation with all features can be improved
to 83.81%. Therefore, the proposed method based on CFVD is suitable for detecting the status of urban
road traffic.

Table 6. The comparisons of the proposed method with different features for speed estimation.

Feature Accuracy

Cell ID and sequence 78.34%
Cell ID and cell dwell time 80.86%

Cell ID, sequence, and cell dwell time 83.81%

6. Conclusions and Future Work

Several studies of CFVD focused on the traffic information estimation for freeways. Furthermore,
these studies assumed that the cellular network signals from the moving MSs on roads can be filtered.
However, a cell may cover several road segments of urban roads, so the assumption may not be
realized on urban roads.
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Therefore, this study proposes vehicle positioning and speed estimation methods to capture
CFVD and to track MSs for intelligent transportation systems. Three features of CFVD, which include
the IDs, sequence, and cell dwell time of connected cells from the signals of MS communications, are
extracted and analyzed. The feature of sequence can be used to judge the urban road direction, and
the feature of cell dwell time can be applied to discriminate proximal urban roads. The experiment
results show that the accuracy of the proposed vehicle positioning method is better than other popular
machine learning methods (e.g., NB, DT, SVM, and BPNN). Furthermore, the accuracy of the proposed
method with all features (i.e., the IDs, sequence, and cell dwell time of connected cells) is 83.81% for
speed estimation.

However, cell oscillation problems may disturb the cell dwell time of each cell and vehicle speed
estimation. This study summarizes the total cell dwell time of each cell to solve these problems, but
these problems may occur in accordance with some environment factors. Therefore, the environmental
factors may be analyzed to filter out cell oscillation in future work.
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