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Abstract: Road anomalies, such as cracks, pits and puddles, have generally been identified by
citizen reports made by e-mail or telephone; however, it is difficult for administrative entities to
locate the anomaly for repair. An advanced smartphone-based solution that sends text and/or
image reports with location information is not a long-lasting solution, because it depends on
people’s active reporting. In this article, we show an opportunistic sensing-based system that
uses a smartphone for road anomaly detection without any active user involvement. To detect
road anomalies, we focus on pedestrians’ avoidance behaviors, which are characterized by changing
azimuth patterns. Three typical avoidance behaviors are defined, and random forest is chosen as
the classifier. Twenty-nine features are defined, in which features calculated by splitting a segment
into the first half and the second half and considering the monotonicity of change were proven to be
effective in recognition. Experiments were carried out under an ideal and controlled environment.
Ten-fold cross-validation shows an average classification performance with an F-measure of 0.89 for
six activities. The proposed recognition method was proven to be robust against the size of obstacles,
and the dependency on the storing position of a smartphone can be handled by an appropriate
classifier per storing position. Furthermore, an analysis implies that the classification of data from an
“unknown” person can be improved by taking into account the compatibility of a classifier.

Keywords: road anomaly; avoidance; behavior recognition; smartphone; opportunistic sensing

1. Introduction

Road anomalies, such as cracks, pits, puddles and fallen trees, are generally identified from
citizen reports and are repaired by administrative entities. In most cases, the reports are made by
telephone or e-mail, which makes it difficult for the administrative entities to identify the location of
the anomaly. To address this issue, administrative entities and third parties are attempting to provide
smartphone-based applications that accept text and/or image reports with location information [1,2].
Such human-centric sensing is often called participatory sensing [3]. Although the success of these
applications depends on people actively reporting tasks, very few of the citizens who downloaded
these applications have actually reported anomalies [1]. Therefore, we propose a method to detect road
anomalies implicitly based on opportunistic sensing. Opportunistic sensing is another human-centric
sensing paradigm, in which the data collection process is automated without any user involvement [4].
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To detect road anomalies, we focus on avoidance behaviors. Recognizing avoidance behaviors
and aggregating events with locations can help to generate automatic anomaly reports. Automatic road
anomaly detection techniques for cars and bikes have already been proposed [5–9], but these cases
deal with relatively large movements. In contrast, we consider that pedestrians’ avoidance behaviors
are too slight to make the adaptation of existing methods acceptable. The contributions of this article
are as follows:

• A smartphone-based road anomaly detection system is presented, in which obstacle avoidance
behaviors are categorized into three classes. The three classes include: (1) returning to the
same line in the vicinity of avoiding an obstacle; (2) going straight after avoiding an obstacle;
and (3) reversing his/her course; which may indicate the impact of the obstacle on pedestrians.
The three classes may indicate the severity of obstacles, which would be helpful for an
administrative entity to plan a repair schedule.

• Twenty nine classification features are defined based on the characteristics of the azimuth change
of each class. The relevance of the features is evaluated.

• We extensively analyze the effects of various factors on the recognition performance.
This includes the individuals who provide data for training classifiers and the position of sensors
(i.e., smartphones) on their bodies, as well as the size of target obstacles.

An initial decision on the position and the class of an obstacle is made on the smartphone side
against a stream of sensor data, while the collected information from a number of pedestrians is
utilized to make the final decision. Low-power operation and server-side processing are beyond the
scope of this article. Furthermore, we do not deal with a method of distinguishing a normal behavior,
e.g., walking along a curved road, from avoidance behavior. Instead, we focus on classifying a data
segment of avoidance behavior into one of six (three classes × right and left turns) classes.

The remainder of this article is organized as follows. In Section 2, related work is presented.
Section 3 shows the system overview, followed by offline experiments in Section 4. Finally, Section 5
concludes the article. Note that, in [10], we proposed the basic idea of smartphone-based road
anomaly detection. This article has extensions in the following points: a section of related work is
added in order to clarify the uniqueness of the work (Section 2); the overall system ideas are presented,
including not only the local processing on the smartphone, but also the server side processing to
filter out erroneous detection from the smartphone side (Section 3.1); the detail of avoidance behavior
recognition (on the smartphone) is described, including how the raw azimuth data stream is processed
into the final avoidance event and detail definition of features (Section 3.3); experiments were carried
out with different conditions, i.e., a type of behavior “straight” was excluded, because we considered it
could be done in the preprocessing stage; and extensive analyses about person dependency (Section 4.4),
sensor-storing position dependency (Section 4.5) and robustness to unknown obstacle size (Section 4.6)
were undertaken.

2. Related Work

Motorcycles and other vehicles are often used as a method of automatic road anomaly detection
and unsafe behavior detection [6–9,11–14]. Thepvilojanapong et al. [14] and Kamimura et al. [12]
proposed a method using a smartphone-mounted accelerometer and gyroscope to detect driving
activities, such as turning left or right, going forward or bicycles and motorcycles going past nearby cars.
Iwasaki et al. [15] proposed a method to recognize road characteristics, such as an intersection
with poor visibility and a congested road based on the bicycle riding behavior. Additionally, a
special sensor unit that measures rudder angle and velocity was developed for bicycle riders to
detect hazardous locations [8]. The vertical displacements of vehicles passing over bumps and
potholes are often subject to monitoring in the case of cars [5,7,9,11,13]. In contrast, Chen et al.
recognized driving factors that cause horizontal displacements, such as a lane change, S-shaped
curved road, turning or L-shaped curved road [6]. In the above-mentioned work, all but [8] utilized a
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smartphone-mounted accelerometer, gyroscope and/or magnetometer. This shows the possibilities
of smartphones as easy-to-deploy sensors in combination with a positioning technique, e.g., GPS.
Furthermore, the aggregation of data followed by proper analysis can create new types of information
content for comfortable and safe transport systems. Our work shares its motivations with the above
studies. However, we focus on road anomalies from the pedestrian’s point of view. In addition,
although the above-mentioned work on horizontal displacement [6,12,14,15] might find similar
trajectories of moving objects, bicycles and cars have larger and faster movements than pedestrians,
and so, applying the existing methods to our domain would be difficult.

For pedestrian-based road condition monitoring, Jain et al. proposed a shoe-based ground
gradient sensing technique [16]. A sensing unit composed of a magnetometer, accelerometer and
gyroscope is mounted on shoes, which collect data that detect the transitions between sidewalks and
streets through the recognition of dedicated slopes. The primary motivation of those studies was to use
the data to alert texting pedestrians who are about to step into the street. The slope sensing technique
can also detect the vertical condition of sidewalks, e.g., bumps. Additionally, the shoes can detect
turns and moving direction. These capabilities suggest that augmented shoes can be combined with
our system as a sensor to detect horizontal behavior changes.

3. Avoidance Behavior Recognition

3.1. System Overview

Figure 1 illustrates the concept of the proposed system. The proposed system is designed to
identify a road anomaly in an automatic manner, which consists of an avoidance behavior recognition
function with location measurement on the smartphone side and aggregation and filtering functions
on the server side. An avoidance behavior is recognized by measuring azimuth changes of the
walking direction by a smartphone-mounted accelerometer and magnetometer. In the Android API,
these two sensors are internally utilized to obtain azimuth data. The position where the avoidance
event occurs is measured by a positioning technique, such as GPS. The information is sent to a database
on the server side. In Figure 1, av1, av2 and av3 indicate the candidates of avoidance events. Note that
power consumption is a central issue for the success of opportunistic sensing from the user’s point
of view. To minimize the communication with a server, the processing for the avoidance event detection
is carried out on the terminal side, and only events of avoidance behavior are sent to the server.
Additionally, we assume the GPS receiver is activated only when an avoidance event is detected
(the positional gap between the time of event detection and that of GPS-ready is also considered).

The aggregated information may contain erroneous events that are falsely recognized as avoidance
behaviors, such as one person passing another person and looking behind with the smartphone
terminal in his/her hand, as well as the effect of positioning error. Therefore, spatio-temporal filtering
should be applied to extract only “static obstacles” on the road (e.g., [17]). In Figure 1, av1 is such
a false detection, and the system finally identifies a road anomaly near the position of av2 and av3.
Calculating the center of the positions of avoidance behavior events is a simple solution. Additionally,
a geographical information system (GIS) for map-matching the position of an event on a road can
be applied. A GIS can also be utilized to eliminate an event falsely classified as avoidance, which is
actually normal behavior, by reflecting the semantics of the road, i.e., identifying that a curve exists at
position (x, y). This article focuses on the avoidance recognition functionality on the smartphone side.
Low-power positioning and server-side processing are beyond the focus of this article.
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Figure 1. Concept of the automatic road anomaly reporting system.

3.2. Avoidance Behavior Modeling

We focus on detecting anomalies on the road surface, such as pits, cracks, puddles, fallen trees
and landslides. These anomalies make pedestrians change their walking paths as a natural defensive
behavior [18]. The avoidance behavior during walking is modeled by the combination of three elements:
(1) avoiding direction (left or right); (2) going through an obstacle (avoid) or going back (return);
and (3) a direction change after avoiding an obstacle. In total, six types of avoidance behaviors
are defined, as shown in Figure 2: avoidLR, avoidL, avoidRL, avoidR, returnL and “returnR”. Here,
the postfix “LR” indicates, for example, that the pedestrian changes direction to the left followed by a
change to the right, whereas the postfix “L” alone does not have the second change after the first change
to the left. The horizontal dotted line in Figure 2 indicates the pedestrian’s straight walking path.
Furthermore, d represents the size of an avoidance behavior, which is primarily determined by the
physical size of an obstacle, i.e., the avoidance behavior size equals the obstacle size. The perceived
size may also affect the behavior or, in other words, the severity of the anomaly. We collectively call
d “obstacle size” or “size of obstacle”. The typical waveforms of raw azimuth signals are shown in
Figure 3.
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Figure 2. Definition of avoidance behavior.
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Figure 3. Raw azimuth signals of avoidR (top), avoidRL (center) and returnR (bottom).

3.3. Avoidance Behavior Recognition

As shown in Figure 4, the recognition system takes a segment of the azimuth data as input
and classifies the segment into one of six behaviors. The recognition task should be performed on
streaming sensor data. Sliding variance can be calculated on streaming data to emphasize the start
and the finish of the change of walking direction. However, a change of walking direction also occurs
when a pedestrian turns a corner or walks along a curved road, which are normal behaviors and
should not be detected as obstacle avoidance. Therefore, special care is required to distinguish these
situations from one another. Automatic segmentation is beyond the focus of this article, and we utilize
manually-segmented data to focus on recognizing the six behaviors.
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3.3.1. Waveform Shaping

The waveform shaping process works as a preprocess and is composed of azimuth change
detection and smoothing. We obtain the azimuth value from an Android API. The value, which
is calculated from accelerometer and magnetometer data, ranges from 0◦ to 359◦. Therefore, a
non-contiguous change appears when the walking direction crosses the north, i.e., 0◦, as observed in
B’ of Figure 4. In this case, a person is supposed to change the direction from near west-northwest
(P = 335.2◦) to near east-northeast (Q = 21.4◦). Furthermore, the value is normalized by converting
it from the first value into a relative value. Then, the azimuth change in a segment is calculated by
Algorithm 1, in which Lines 7 to 9 handle a non-contiguous change. The transformed signal is shown
in C of Figure 4.

Algorithm 1 Calculate Azimuth Change Relative to the First Value in a Segment.

1: procedure AZIMUTHCHANGE(araw) . araw represents an array of a segment.
2: th← 200 . A threshold value to judge if a non-contiguous change appears
3: segnum← araw.length
4: achange,0 ← 0
5: for i← 1, segnum− 1 do
6: δ← araw,i − araw,i−1
7: if |δ| > th then
8: δ← δ− sgn(δ)× 360 . sgn(x) returns −1 if x < 0, 1 if x > 0, and 0 if x = 0.
9: end if

10: achange,i ← achange,i−1 + δ

11: end for
12: return achange . Returns an array of azimuth change relative to the initial value
13: end procedure

In addition, to remove the effect of body motion, i.e., smoothing, a moving average is applied as
a low-pass filter, as shown in D of Figure 4. The window size for the moving averages is 1/6 of the
segment of azimuth data, as determined in a preliminary experiment.

3.3.2. Behavior Classification

Behavior classification, which consists of feature calculation and supervised classification,
is performed after waveform shaping. In total, we specified 29 features, which are summarized in
Table 1. These features mainly contain basic statistics, such as mean, maximum, minimum, range, first
and third quartiles, inter-quartile range (IQR), variance, standard deviation, summation, summation of
squares, root mean square (RMS) and absolute values. In lining up features, we paid special attention
to the fact that the trajectories of avoidRL and avoidR are clearly distinguished from each other after
passing an obstacle (Figure 5), so we split a segment into two parts at the center of the segment.
Features calculated from the first half segment and the second half segment have subscripts FH and
SH, respectively. In contrast, features from an entire segment have the subscript ALL. Note that Table 1
is listed in order of contribution to the classification. Not all of the corresponding effects of features
can be significant or could even have a negative impact, which is discussed in Section 4.3.
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Figure 5. Segmentation of avoidRL and avoidR.

Table 1. Features, listed in order of contribution from upper left to lower right.

f1 minSH f16 maxFH
f2 maxSH f17 sum o f squaresSH
f3 meanSH f18 varianceALL
f4 sumSH f19 standard deviationALL
f5 meanFH f20 sum of absolute difference of
f6 meanALL both ends of 10 subsegments
f7 medianALL f21 sumFH
f8 ratio o f rangeALL to ∆SF f22 IQRALL
f9 sumALL f23 3rd quartileALL
f10 rangeALL f24 1st quartileALL
f11 minALL f25 RMSALL
f12 absolute minALL f26 sum o f squaresALL
f13 maxALL f27 varianceFH
f14 absolute maxALL f28 sum o f squaresFH
f15 minFH f29 varianceSH

ALL: an entire segment; FH and SH: first half and second half of a segment; IQR: inter-quartile range;
RMS: root mean square; ∆SF: absolute difference between values at the start and the finish.

To calculate the eighth feature, ( f8) is introduced to represent the monotonicity of the azimuth
change in a segment. As shown in Figure 6a and expressed by Equation (1), the feature gets larger as the
maximum (maxALL) and the minimum (minALL) values approach both ends (startALL and f inishALL).
We consider that “returnR” has the largest value of the three behaviors because the azimuth change of
“returnR” is ideally a monotonic increase or decrease (see Figure 5).

f8 = | maxALL −minALL
startALL − f inishALL

| (1)

a

b

maxALL

minALL

startALL

finishALL

(a) Max-Min range and Start-Finish 
range for f8

(b) Absolute difference of both 
ends of 10 subsegments for 
f20

a0/10
a1/10
a2/10

a3/10
a4/10
a5/10a6/10

a7/10
a8/10
a9/10

a10/10

Figure 6. Notations for f8 and f20.
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For the 20th feature ( f20), a segment is equally divided into 10 subsegments, and the absolute
difference between both ends of each subsegment is summed up to 10 subsegments. The notation is
illustrated in Figure 6b, as well as expressed by Equation (2). The rationale for introducing this feature
is that a behavior with a large azimuth change tends to have a large absolute difference. As shown in
Figure 5, avoidR has a smaller value than avoidRL due to a lack of azimuth change in the second half
of the segment. Meanwhile, returnR should have the largest change because the walking direction
changes to the opposite side.

f20 =
9

∑
i=0
|a(i+1)/10 − ai/10| (2)

Regarding the recognition (classification) functionality, handmade rule-based approaches [6,12],
a statistical machine learning approach (J48decision tree) [8] and a probabilistic approach (hidden
Markov model (HMM)) [14] were utilized in the literature of horizontal displacement recognition.
A handmade rule-based approach can be considered as a form of decision tree in that “if-then” rules
are set using the expert knowledge. Therefore, the decision-making process is more interpretive than
what the J48 decision tree provides; however, the approach requires the careful design of the rule, and
thus, the case with a small number of recognition classes seems to be suitable, e.g., three for [6] and
two for [12]. The avoidance behavior recognition problem can be regarded as a time series pattern
recognition, in which HMM is one of the following: popular approach speech [19], hand-written
character [20] and gesture recognition [21]. However, the HMM-based system is considered to require
a sizable amount of training to data to perform well [22,23]. Based on these considerations, we utilized
a supervised learning classifier. The comparison among various types of classifiers is presented in
Section 4.2.

4. Offline Experiment

An offline experiment was carried out on various aspects, such as contributing features and
the difference in individuals, the storing positions and the sizes of obstacles, in addition to the basic
classification performance.

4.1. Dataset

Data collection was performed as summarized in Table 2, and Figure 7 shows a scene of
data collection. A “cross” mark was placed on the ground as an obstacle. Subjects were asked
to walk on a straight path while avoiding obstacles with directed types of avoidance behaviors.
They started walking about seven meters behind the center of the obstacle. The timing of the start and
the finish in each avoidance behavior was based on their decisions, although they were asked to walk
past a mark that represented the edge of an obstacle. The segmentation was done by hand.

obstacle

d

Figure 7. A scene of data collection.
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Table 2. Condition of data collection.

Types of avoidance avoidRL, avoidR, returnR

Size of obstacles (d) 0.2, 0.5, 0.7, 1.0, 1.5 m

Storing positions
hand (texting), trousers front pocket,

trousers back pocket, chest pocket

Subjects 7 males and 2 females in their 20s

Number of trials 6 times per condition

Terminal Samsung, Galaxy Nexus

Android version Android 4.2.1

Sensor type Sensor.TYPE_ORIENTATION

Sampling rate 10 Hz

In addition to the original data, we synthesized avoidLR, avoidL and returnL based on the findings
that avoidance behaviors have left-right symmetry [18]. As shown by Equation (3), the synthesis is
realized by inverting the sign of each sample. Here, aL,k and aR,k indicate the k-th sample in the collected
data and in the synthesized data, respectively. Finally, the profile of the collected and synthesized
dataset is summarized in Table 3. Note that data with obstacle sizes 0.5 and 1.0 m were only used in
Section 4.6 to evaluate the robustness of the classifier against the unknown size of obstacles.

aL,k = −aR,k (3)

Table 3. Profile of the dataset.

Type Segments Person Segments Size Segments

avoidRL 865 A 540 0.2 844
avoidR 866 B 262 0.5 486
avoidLR 865 C 508 0.7 838
avoidL 866 D 528 1.0 480

returnR 215 E 288 1.5 814

returnL 215 F 336 Stored Segments

G 358 hand 952
H 538 trousers front pocket 966
I 534 trousers back pocket 968

chest pocket 1006

Note that the azimuth measurement relies on the magnetometer that may be affected by
architectural construction, including metal, high-voltage current and magnetism. The data collection
was carried out in an environment where no building and machinery exist around the subjects, in
which we did not observe any unstable reading from the sensor. However, to observe if any disturbance
in sensor reading exists, we empirically walked near air conditioner’s outdoor units, vehicles, vending
machines, exterior wall of buildings, etc., and visually checked a graph of the data stream. As a result,
we found disturbance in very limited cases of passing by an electric vehicle and passing through
a narrow passage surrounded by a reinforced concrete wall. In both cases, the data appear to be
randomly and rapidly changing. Therefore, we consider that such a situation is distinguishable
to avoid misrecognition of avoidance behavior; however, further study is required to recognize an
avoidance behavior that occurs in such a situation.



ISPRS Int. J. Geo-Inf. 2016, 5, 182 10 of 18

4.2. Basic Classification Performance

4.2.1. Method

First of all, various types of classification methods, i.e., classifiers, are compared by applying
10-fold cross-validation (CV) to fix one classifier for later evaluation. Here, naive Bayes (a baseline
approach), Bayesian network (a graphical model approach), multi-layer perceptron (MLP, an artificial
neural network approach), sequential minimal optimization (SMO, a support vector machine
approach), decision tree (J48) and random forest (an ensemble learning approach) were used.
Table 4 summaries the parameters for each classifier used in a machine learning toolkit Weka
ver. 7.3.13 [24], in which default values were utilized. The parameter symbols can be referred to
as the reference manual of Weka.

Table 4. Classifier parameters in Weka.

Classifier Parameter

Naive Bayes N/A
Bayesian network -Q K2 “-P 1 -S BAYES” -E SimpleEstimator “-A 0.5”

MLP -L 0.3 -M 0.2 -N 500 -V 0 -E 20 -H a
SMO -C 1.0 -P 1.0E-12 -K “PolyKernel -E 1.0 -C 250007”
J48 -C 0.25 -M 2

Random forest -I 100 -K 0

4.2.2. Result and Analysis

Figure 8 shows the F-measure of each classifier, in which random forest performed the best
followed by MLP. Another advantage of random forest is the small number of tuning parameters.
In the Weka implementation, the number of major parameters is two, while that of MLP is five.
Therefore, we consider that random forest is easy for tuning. Hereinafter, random forest with 100 trees
is utilized.

Naïve	Bayes Bayes	Net Multi-layer
Perceptron SMO J48 RandomForest

F-Measure 0.74 0.78 0.87 0.80 0.78 0.89

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

F-
m
ea
su
re

Figure 8. Comparison of various supervised classifier models.

Table 5 shows the confusion matrix, in which the row indicates the labeled class and the column is
the recognition result. Table 6 summarizes the results of recall, precision and F-measure. Note that we
normalized the recognition results by the smallest number of segments throughout this article because
the number of data varies by class, as shown in Table 3. The result shows an average classification
performance with an F-measure of 0.89 and a range from 0.84 to 1.00.
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Table 5. Confusion matrix of 10-fold cross-validation (CV) using random forest.

Label\Recognition (1) (2) (3) (4) (5) (6)

(1) avoidRL 182 19 7 7 0 0
(2) avoidR 25 179 6 6 0 0
(3) avoidLR 7 6 183 19 0 0
(4) avoidL 7 6 24 179 0 0
(5) returnR 0 0 0 0 215 0
(6) returnL 0 0 0 0 0 215

Table 6. Recall, precision and F-measure using random forest.

Class Recall Precision F-Measure

avoidRL 0.85 0.83 0.84
avoidR 0.83 0.85 0.84
avoidLR 0.85 0.83 0.84
avoidL 0.83 0.85 0.84

returnR 1.00 1.00 1.00
returnL 1.00 1.00 1.00

Average 0.89 0.89 0.89

Classes avoidRL and avoidLR were misclassified into avoidR and avoidL, respectively. We consider
that this occurred because the second half of the segment of these classes is flat, which made it difficult
to distinguish the classes from each other. In contrast, returnR and returnL were perfectly classified.
We assumed that the start and the end of the walking direction of avoid are identical, whereas the start
and the end of return are different, i.e., on the opposite side. We consider that the features of return
had large differences from those of avoid.

The recognition of road anomaly class is useful for a road administration office; however,
to prioritize their repairing tasks, the size of the road anomaly should be recognized, since a large
avoidance behavior indicates the significance of the anomaly. Currently, we have a dataset with
five obstacle sizes. Defining new classes for each size is not practical. Therefore, we will build a
regression model based on some features and the obstacle size, which will be applied after classifying
datasets into the six avoidance behavior classes.

4.3. Feature Relevance

4.3.1. Method

To understand effective features for avoidance behavior recognition, the relevance of features was
evaluated based on information theory. Information gain is commonly used in feature selection,
where the gain of information provided by a particular feature is calculated by subtracting a
conditional entropy with that feature from the entropy under a random guess [25]. We used
InfoGainAttributeEval and Ranker in Weka [24] as implementations for evaluating information gain
and generating ranking, respectively.

As described in Section 3.3.2, Table 1 is already listed in order of contribution (relevance) with the
above implementations. To observe the change of classification performance against the number
of features, a 10-fold cross-validation was carried out against a dataset with the top-k features,
and F-measures were calculated. Here, k varies from one (best) to 29 (all).
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4.3.2. Result and Analysis

As shown in Figure 9, the F-measure for the top five features rapidly increases. From the top six
to 20 features, the F-measure gradually increases by very slight up-and-down movements. Finally,
the increase almost levels off for more than 20 features. As described in Section 3.3.2, we split a segment
into two parts: first half (FH) and second half (SH) (see Figure 5). By looking at Table 1, the top-four
contributing features are derived from SH. This indicates that the decision to calculate features by
dividing them into FH and SH proved to be correct. Note that the division of the two parts is based on
the number of samples in a segment under the assumption that people walk at a constant velocity;
however, in practice, the speed might change in the vicinity of an obstacle. This makes the two divided
parts not as clear as those shown in Figure 5. Detecting such a changing point would emphasize the
difference of activities more clearly and improve the performance.
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Figure 9. Classification performance with top-k contributing features. Features are provided in Table 1.

Furthermore, the “ratio of rangeALL to ∆SF” ( f8), which was added to get the the monotonicity
of the change, appeared as the eighth in the ranking. In the two-thirds of the ranking, features that
eliminate negative values are found ( f12, f14, f17, f25, f26 and f28). This implies that the component
of direction is more important than the magnitude of movement. As opposed to the expectation
on the accumulated azimuth change described in Section 3.3.2, “sum of the absolute difference of
both ends of 10 subsegments” appears in the 20th ranking ( f20). We consider that f20 contributes to
discriminate return from avoid because of the large change in the direction. However, the difference
of the accumulated change between avoidR and avoidL is not so large as other features and less
contributive. Furthermore, since f20 represents the amount of change, it is difficult to discriminate
avoidRL from avoidLR, which are symmetric about the horizontal axis.

4.4. Person Dependency

4.4.1. Method

The classification performance shown in Section 4.2 was obtained by 10-fold cross-validation
against the dataset from all subjects. This represents the average performance of the classification
method. To evaluate the method under realistic conditions, where the data of a user are not used
to train the classifier, we conducted leave-one-subject-out cross-validation (LOSO-CV). In LOSO-CV,
the dataset of a particular subject is used for testing purposes, while the dataset of the rest of the
subject group, i.e., eight subjects, is utilized for training a classifier. This process was iterated for all
subjects, and an average was calculated.

It is not difficult to foresee that the best performance comes from using a personalized classifier,
in which a classifier is trained with the dataset of a particular person and tested with the dataset of the
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same person (e.g., [26]). Therefore, to see the performance under this best condition, we conducted
10-fold cross-validation using personalized classifiers. This evaluation is referred to as self-CV.

4.4.2. Result and Analysis

Figure 10 shows the comparison in individual differences (Subjects A to I) and the averages for
the two evaluation conditions. As shown in this figure, all subjects had equal or better classification
performance with self-CV than with LOSO-CV. On average, self-CV performed better than LOSO-CV
with an F-measure difference of 0.07.
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F-
M
ea
su
re

Figure 10. Individual differences in self-cross-validation (CV) and leave-one-subject-out
cross-validation (LOSO-CV).

The differences between the F-measure of self-CV and LOSO-CV for Subjects B, D and I are
relatively large (0.11, 0.12 and 0.15, respectively). To analyze the reasons, a classifier was tuned for each
subject. The classifiers were then tested with the datasets from other subjects. Figure 11 summarizes
the resulting F-measures. In this table, the grayscale levels are normalized between the minimum
(0.54) and the maximum (0.94) values to white and black, respectively. Furthermore, the values on the
diagonal line of the same subject IDs indicate the F-measures of self-CV, shown also in the first row of
Figure 10. As a result, we consider that “noisy” data are included in the LOSO-CV for Subjects B, D
and I. In other words, some of the training data may have some subjects whose data were incompatible
with Subjects B, D and I. In Figure 11, Subject H seems to be incompatible with Subjects B and D,
as shown by the lowest values in each column (0.56 and 0.54, respectively). Furthermore, Subject B
seems to be an incompatible subject for Subject I (0.58). To validate these thoughts, we built classifiers
with datasets from “compatible” subjects as follows. First, an average of the F-measure excluding the
self-CV value is calculated for each column. Then, the datasets of the subjects whose personalized
classifiers performed better than the average are used to train a new classifier. Hence, Subjects C, D,
E, F and G were selected as compatible subjects for Subject B, while Subjects A, B, E, F and G were
selected as compatible subjects for Subject D. Similarly, as compatible subjects for Subject I, Subjects A,
E, G and H were selected. As a result of testing with these new classifiers, the F-measures of LOSO-CV
against Subjects B, D and I were improved to 0.80, 0.85 and 0.86, respectively; this was an increase
of 0.05, 0.07 and 0.09 from the original LOSO-CV. In the future, we will investigate a method to find
compatible persons to build a classifier in a systematic manner.

The F-measures of self-CV for Subjects E and F are relatively low, i.e., 0.75 and 0.81, respectively.
This indicates that the features obtained from them failed to capture the characteristics of the target
behaviors due to the large variation within subjects. Moreover, the average number of segments
per class for Subjects E and F are 48 and 52, respectively, as calculated from Table 3. Therefore, the
classifiers for these subjects are trained with around 44 and 47 segments (nine-tenths of the number of
segments), respectively. We consider that these classifiers were not trained sufficiently.
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Person ID whose dataset was used for testing.

Pe
rs

on
 ID

 w
ho

se
 d

at
as

et
 w

as
 u

se
d 

fo
r t

ra
in

in
g.

A B C D E F G H I Ave.

A 0.87 0.67 0.88 0.81 0.75 0.76 0.83 0.89 0.87 0.81

B 0.69 0.86 0.69 0.83 0.73 0.77 0.90 0.60 0.58 0.74

C 0.83 0.75 0.94 0.73 0.71 0.75 0.84 0.78 0.70 0.78

D 0.80 0.75 0.81 0.90 0.68 0.67 0.81 0.73 0.69 0.76

E 0.71 0.70 0.74 0.80 0.75 0.77 0.83 0.85 0.82 0.77

F 0.73 0.77 0.84 0.87 0.79 0.81 0.86 0.80 0.68 0.79

G 0.84 0.80 0.89 0.83 0.77 0.75 0.92 0.82 0.74 0.82

H 0.82 0.56 0.76 0.54 0.73 0.61 0.70 0.92 0.82 0.72

I 0.82 0.60 0.80 0.71 0.71 0.61 0.80 0.89 0.92 0.76

Ave. 0.79 0.72 0.82 0.78 0.74 0.72 0.83 0.81 0.76

Figure 11. Applicability of person-dependent classification model.

4.5. Effect of Sensor Storing Position

4.5.1. Method

As investigated by Ichikawa et al. [27], people carry their smartphone terminals in various
positions, such as their trousers pocket and chest pocket. We carried out an experiment to see the
impact of storing position on the classification performance. The experiment was carried out by
training a classifier with a dataset from a particular position and testing the classification with the
datasets from the other positions.

4.5.2. Result and Analysis

Table 7 summarizes the F-measure results. In this table, the row indicates the storing positions
from which datasets for training position-specific classifiers were obtained, and the column represents
the datasets for testing. Note that the values on the diagonal line at the same positions were obtained
by 10-fold cross-validation. These values indicate the ideal performance when classifiers are tuned
for dedicated positions, and the average is 0.87. The table demonstrates that the classifiers tuned for
particular positions did not predominantly perform best. This observation allows us to propose two
approaches for constructing classification models.

Table 7. Robustness to storing position variation.

Trained with\Test with (1) (2) (3) (4) Average

(1) Hand (texting) 0.86 0.82 0.82 0.91 0.86
(2) Trousers front pocket 0.85 0.85 0.86 0.89 0.86
(3) Trousers back pocket 0.83 0.85 0.88 0.88 0.86
(4) Chest pocket 0.86 0.83 0.80 0.91 0.85

Average 0.85 0.84 0.84 0.90 –

The first approach is a straightforward one that constructs a single classifier with the datasets
from all positions. This is the case shown in Section 4.2, and we obtain an F-measure of 0.89. This is
better than the average of the tuned classifier approach (0.87). However, to realize this approach,
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datasets from all positions should be collected. The second approach is to share classifiers with
some positions. In this case, a tuned classifier for the position “hand” is shared with the case in which
the position of a terminal is judged as “chest pocket”, since the performance of “chest pocket” using
a classifier tuned for “hand” is as high as with a tuned classifier for “chest pocket”. This can omit
training data collection for the “chest pocket” classifier. Similarly, a classifier built from the dataset
from “trousers back pocket” is shared with the data obtained from “trousers front pocket”. As shown
in [26], front and back trousers pockets are often misrecognized for each other. Therefore, sharing
the classifier between two positions can become robust against the mistake of the underlying storing
position recognizer. In the second approach, the averaged F-measure is 0.88. Table 8 summarizes
the result. The second approach has a slightly worse F-measure; however, it just needs to collect the
dataset from two positions, “hand” and “trousers back pocket”, which we consider a great advantage
in reducing the cost of data collection. Such low-cost modeling accelerates the deployment of the
system. The sharing approach may sacrifice the accuracy of recognition; however, it could be improved
on the server side if a number of people utilized the system.

Table 8. Dealing with position dependency.

Approach Average

(0) Tuned classifier for each position 0.87
(1) Single classifier with the dataset from all positions 0.89
(2) Sharing classifiers with some positions 0.88

4.6. Robustness to Unknown Obstacle Size

4.6.1. Method

The performance evaluations above were performed by the classifiers trained by datasets with
the obstacle sizes 0.2, 0.7 and 1.5 m. To understand the robustness against unknown sizes of obstacles,
we used the datasets of obstacle sizes 0.5 and 1.0 m for the test, in which the dataset of obstacle sizes
0.2, 0.7 and 1.5 m was used to train the classifiers, as before.

4.6.2. Result and Analysis

The F-measures of the results are shown in Table 9, where we can find that all values are better
than the ones in the rightmost column in Table 6. We consider that this is because the obstacle size used
for this test is in the range of the training dataset, i.e., 0.2 to 1.5 m. Therefore, the features obtained
from the dataset with unknown obstacle sizes might fit into the ranges of trained features. The result
implies that a classifier can be trained with a limited size of obstacles, i.e., probably for detecting upper,
middle and lower sizes of obstacles.

Table 9. Performance against unknown obstacle size.

Class avoidRL avoidR avoidLR avoidL returnR returnL Average

F-measure 0.93 0.91 0.92 0.91 1.00 1.00 0.94

5. Conclusions

In this article, we proposed a road anomaly detection system based on opportunistic sensing
by using pedestrians’ smartphone terminals. Opportunistic sensing requires no explicit user
involvement, which is expected to lower the barrier of people’s participation to the sensing activity.
Although automatic road anomaly detection methods have already been proposed for cars and bikes,
we considered that pedestrians’ avoidance behaviors are too slight to adapt these existing methods.
After showing the overall system concept, we focused on the design of an obstacle avoidance behavior
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recognition system, in which waveform shaping, feature extraction and supervised classifiers were
presented as major components. Six classes of avoidance behaviors were defined to test the recognition
system from various aspects after collecting data from nine people with 410 trials on average.
The following results were obtained:

• A 10-fold CV showed an average classification performance with an F-measure of 0.89 for
six avoidance behaviors.

• The recognition system could handle the obstacle sizes of 0.2 to 1.5 m. Untrained sizes of obstacle
avoidance were also recognized with an F-measure of 0.94.

• A user-independent classifier classified six avoidance behaviors with an F-measure of 0.81.
The possibility of improving a user-independent classification by choosing classifiers trained by
compatible persons was shown.

• Features resulting from (1) splitting a segment into the first half and the second half and
(2) considering the monotonicity of change effectively recognized avoidance behaviors.

• The performance slightly depends on the sensor (smartphone) storing position on the body.
Selecting a classifier for a particular position improves the performance. To reduce the cost of data
collection, only the data from “hand” and “trousers back pocket” need be collected.

The results are obtained under an ideal and controlled environment; however, the results indicate
that the proposed recognition method is robust against the size of obstacles and that the dependency
on the storing position of a smartphone can be handled by an appropriate classifier per storing
position. Furthermore, an analysis implies that classification of data from an “unknown” person can
be improved by taking into account the compatibility of a classifier. The next step toward an all-in-one
road anomaly detection system is to investigate an automatic avoidance event segmentation method
that was performed by hand in this article. The key challenge is to discriminate normal behaviors
that are associated with a change of walking direction, e.g., a pedestrian turns a corner or walks
along a curved road, from true obstacle avoidance. We will leverage the characteristics in the azimuth
difference and the walking distance to complete the change of walking direction to distinguish these
situations. A real-world experiment is also required to assess the robustness of the proposed system.
Lower-power operation is a critical issue for opportunistic sensing to be accepted by people because
GPS-based positioning is generally a power-intensive approach [28]. Unlike continuous positioning,
such as a noise map [29], our system can take an event-driven positioning, in which the positioning is
performed only when an obstacle is detected. The challenge here is the positioning error due to the
delay of activating a GPS receiver, i.e., the actual position of an avoidance event may be backward
from the position where a GPS receiver returns. We will investigate a correction method by leveraging
a pedestrian dead-reckoning (PDR) technology. Finally, server-side aggregation and the filtering
technique will be investigated to realize the overall system.
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