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Abstract: Understanding human mobility patterns is of great importance for urban planning, traffic
management, and even marketing campaign. However, the capability of capturing detailed human
movements with fine-grained spatial and temporal granularity is still limited. In this study, we
extracted high-resolution mobility data from a collection of over 1.3 billion geo-located Twitter
messages. Regarding the concerns of infringement on individual privacy, such as the mobile
phone call records with restricted access, the dataset is collected from publicly accessible Twitter
data streams. In this paper, we employed a visual-analytics approach to studying multi-scale
spatiotemporal Twitter user mobility patterns in the conterminous United States during the year
2014. Our approach included a scalable visual-analytics framework to deliver efficiency and
scalability in filtering large volume of geo-located tweets, modeling and extracting Twitter user
movements, generating space-time user trajectories, and summarizing multi-scale spatiotemporal
user mobility patterns. We performed a set of statistical analysis to understand Twitter user mobility
patterns across multi-level spatial scales and temporal ranges. In particular, Twitter user mobility
patterns measured by the displacements and radius of gyrations of individuals revealed multi-scale
or multi-modal Twitter user mobility patterns. By further studying such mobility patterns in
different temporal ranges, we identified both consistency and seasonal fluctuations regarding the
distance decay effects in the corresponding mobility patterns. At the same time, our approach
provides a geo-visualization unit with an interactive 3D virtual globe web mapping interface for
exploratory geo-visual analytics of the multi-level spatiotemporal Twitter user movements.

Keywords: Geo-located tweets; mobility patterns; multi-scale spatiotemporal analysis; scalable
visual-analytics framework

1. Introduction

Understanding human mobility patterns is of great importance for a broad range of applications
from urban planning [1], traffic management [2], and even the spatial spread of epidemic diseases [3].
Earlier research efforts relied on low-resolution mobility data to understand human mobility patterns,
such as using census records to study human migration patterns [4], or delivering questionnaires and
asking volunteers to report the track of bank notes to infer human travel patterns [5]. However, such
mobility data do not provide detailed human movements with fine-grained spatial and temporal
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granularity, which are usually aggregated and therefore are limited to capture mobility patterns
of individuals [6,7]. In addition to the mobility data collected by GPS trackers [1,8] and mobile
phone call records [6,9,10], emerging as a new mobility data source, today’s pervasive Location
Based Social Media (LBSM) platforms (e.g., Twitter and Foursquare) offer continuous spatial Big
Data streams with massive amount of detailed and frequently updated user digital footprints in the
form of real-world user trails and footprints [11]. A significant advantage of utilizing LBSM data
streams as proxies for studying human mobility patterns is the large spatial coverage. For instance,
researchers have used geo-located tweets for studying global mobility patterns [12], which is
otherwise impossible for other mobility datasets (e.g., GPS traces and mobile phone call records).
Regarding the concerns of infringement on individual privacy, such as the mobile phone call records
with restricted access [7,13,14], the publicly available LBSM data streams offer unique opportunities
for conducting reproducible and comparative scientific findings across different geographic regions.

Many recent studies have adopted LBSM data streams to study human mobility patterns.
For example, they modeled and extracted trajectories of individuals and performed statistical analysis
focusing on the distance decay effects in the collective user movements [6], which were used to reveal
different travel modes [7], travel demands [15,16], and the impact of social connections [17]. These
studies have provided strong supports for using LBSM data as proxies for studying mobility patterns
of individuals and valuable insights into human mobility dynamics. However, the variations of
movements in different spatial scales and temporal ranges are neglected in these studies, where
the measurements of distances are either fixed in a certain time range or to a specific geographic
region. For instance, the examinations on whether there are temporal (e.g., monthly or seasonal)
changes within the movements or how the observed mobility patterns vary across different spatial
scales (e.g., intra- or inter city or national levels) are lacking. Such insights are critical to advance
our understandings of the collective mobility patterns for various applications, such as examining
the mobility patterns across different cities [18], the spread patterns of disease [19,20] and touristic
activities [12]. On the other hand, while the high-resolution spatiotemporal records from LBSM
present unique research opportunities in this direction, the inherent large data volume poses
significant data-intensive challenges for developing multi-scale spatiotemporal analysis approaches
to dealing with the complexities in filtering movements of individuals, modeling and aggregating
user trajectories at multiple spatial and temporal scales [21].

In this paper, we have employed a visual-analytics approach to exploring the Twitter user
mobility patterns across multi-level spatial scales and temporal ranges in the conterminous United
States (i.e., excluding Alaska and Hawaii) during the year 2014. The mobility data are extracted
from over 1.3 billion geo-located Twitter messages (i.e., tweets) from 1st January to 31st December
2014 over North America with over 6 million Twitter users and over 1 TB in data size. To
address the data-intensive challenge embedded in this dataset, we have developed a scalable
visual-analytics framework tailored to accommodate large volume of geo-located tweets. This
framework is implemented based on high-performance distributed computing environment using
Apache Hadoop (http://hadoop.apache.org/), which is an open source software framework to
enable distributed processing of large datasets across computing clusters. Enabled by this framework,
we have performed a set of statistical analysis to understand multi-scale spatiotemporal Twitter user
mobility patterns. We have modeled the frequency of Twitter users visiting different locations to
study the collective user visiting behaviors, where we have identified temporal similarities in the
distributions. In particular, Twitter user mobility patterns measured by user displacements and
radius of gyrations of individuals [6] have revealed different groups of Twitter users with multi-scale
or multi-modal mobility patterns and multiple travel modes [7]. By further studying such mobility
patterns in different temporal ranges, we have identified both consistency and seasonal fluctuations
regarding the distance decay effects in the corresponding mobility patterns. In addition, our approach
provides an interactive 3D virtual globe web mapping interface to enable exploratory geo-visual
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analytics for understanding the detailed Twitter user movement flows within a given spatial scale
and time window.

The remainder of this paper is organized as follows. Section 2 describes the related work in the
context of studying mobility patterns using LBSM data, in particular, the geo-located Twitter data.
We focus on research challenges in using visual-analytics methods to enable multi-scale
spatiotemporal analysis with massive movement datasets, including data management, multi-level
spatiotemporal user trajectory modeling and visualization. Section 3 details the processes
for extracting, aggregating and summarizing multi-level spatiotemporal Twitter user mobility
patterns. Section 4 presents the case study of performing visual-analytics for seeking multi-scale
spatiotemporal Twitter mobility patterns in the conterminous United States of the year 2014. Section
5 concludes the paper.

2. Mobility Patterns in Location Based Social Media Data

2.1. Geo-Located Twitter Data for Studying Large-Scale User Movements

To understand detailed mobility patterns of individuals, the capability to capture human
movements with fine-grained spatial and temporal granularity is critical. In this connection, using
GPS trackers tends to produce, to date, the most accurate records of individuals’ movements
regarding the accuracy of recorded user locations and update frequency [1]. However, such data
are often limited in spatial scale (e.g., within a specific city or region) from a small group of people,
for example, 226 and 182 volunteers participated in collecting such mobility data in [8] and [22]
respectively. Other than tracking people directly, the vehicle-based GPS traces are often tied to specific
vehicles (e.g., taxi), which are only accessible for a certain group of people [10].

Another approach from the literatures for studying human mobility is using mobile phone call
data, such as Call Detail Records (CDR), where the locations of mobile users are estimated by cell
tower triangulation with an accuracy in the order of kilometers [6,9,10]. Such a dataset can cover
relatively large spatial scale [23,24] (e.g., national level) and a large portion of the population in the
study region [10]. However, due to the concerns of infringement on individual privacy, mobile phone
call data are not publicly accessible at all. Even such data were obtained in the mentioned studies,
they came from various service providers covering different groups of users. These issues limit the
capability for conducting reproducible scientific findings for mobility research, such as validating or
extending the existing discoveries.

In this connection, it becomes increasingly popular for researchers to exploit the publicly
accessible mobility data captured from today’s pervasive Location Based Social Media (LBSM)
platforms (e.g., Foursquare and Twitter). LBSM enables users to attach their current location as a
geo-tag to the message they post, which is derived from either the GPS or Wi-Fi positioning with a
high position resolution down to 10 m [7]. A Big Data scenario emerges when millions social media
users constantly post messages. In this study, geo-located Twitter data are chosen as a source for
studying detailed mobility patterns. Compared to other LBSM platforms, Twitter is one of the most
popular platforms and is been actively used in many countries. It provides a publicly accessible
streaming API for easy data access [25]. Indeed, many other LBSM data can be collected from the
data streams, such as Foursquare check-in data [16,26].

However, it is worth noting that there are some limitations and complexities in directly using
LBSM data for studying human mobility patterns. For example, comparing to GPS traces, the update
frequency of an individual’s location varies depending on when a user is posting a new geo-located
message or check-in at a new place. Although geo-located tweets tend to provide geo-locations
with high position resolution as aforementioned [7], the information regarding the quality of the
geo-locations is absent in each tweet. This will contribute to the uncertainties in calculating the
distance of Twitter user movements, especially in densely built environments. There is also a potential
mismatch regarding the representativeness of the overall population since not all people use social
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media or send geo-located messages [10], the demographic information of the Twitter users cannot
be easily identified. The derived mobility patterns may lead to an over or under-representation
of the real-world human mobility patterns. Many studies started to look into the demographic
information of LBSM data, in particular Twitter data [27,28]. Although the used methods are still
arguable, these issues certainly require us to pose stricter criteria in understanding human mobility
patterns using geo-located Twitter data. On the other hand, geo-located Twitter dataset presents some
unique advantages that make it a valuable proxy for studying human mobility patterns. For example,
the high-resolution location information enables to identify multiple travel modes in user mobility
patterns [7]; the large spatial coverage enables to study global mobility patterns [12], which is almost
impossible for other mobility datasets. More importantly, by continuously monitoring the geo-located
Twitter data streams with large volume of detailed and frequently updated spatiotemporal records
of Twitter users, it offers a great deal of potential for studying mobility patterns of large groups
of individuals at different spatial scales (e.g., movements across cities, states or even countries)
and temporal granularity (e.g., weekly, monthly, and seasonal movements), which is one of the
motivations for this study.

2.2. Data-Intensive Challenges for Multi-Scale Geo-Visual Analytics

Mobility data are essentially a collection of spatiotemporal records of people re-allocating across
the geographic space. To study mobility patterns of individuals, a space-time trajectory of each
individual user should be modeled and constructed to quantify the collective movements over
space and time. Based on the extracted space-time trajectories, aforementioned studies are able
to perform analysis, such as the measurements of user displacements and radius of gyrations of
individuals, to study the mobility dynamics. Indeed, space-time trajectory is one of the core concepts
in Hägerstrand’s time geography to understand the embedded spatiotemporal dynamics [29],
which has provided useful insights to explore movements across different geographical scales and
temporal ranges. For example, a geo-visualization approach was used to study human activity
patterns, where user trajectories were mapped in a 3D space ordered by timestamps in the third
dimension [30]. While such an approach enables visualization of individual trajectories, its capability
is limited in dealing with large-volume movement datasets [31]. Instead of directly visualizing
an individual user’s trajectories, a space-time cube approach was proposed to analyzing and
visualizing the collective trajectories. It provides flexibilities in setting up both spatial scales and
temporal ranges, and therefore is used to study mobility patterns across different spatial units
(e.g., countries, states, and cities, etc.) and identify the changes over space and time [32,33]. In this
regard, visual-analytics methods are proposed to better convey the findings in terms of analyzing
and visualizing multi-level spatiotemporal mobility patterns [31,34]. Visual-analytics methods
focus on the synergy of computational and analytical methods to reduce the visual clutter, where
aggregation methods are suggested to perform grouping/dividing individual’s moving trajectories
at different spatial and temporal granularity, e.g., utilizing the space-time cube approach [31].
Employing visual-analytics methods dealing with massive movement datasets is not only beneficial
for optimizing visualizations but also provides a great deal of flexibilities for performing statistical
analysis in seeking mobility patterns with different level of spatiotemporal details.

However, in the context of studying mobility patterns using large volume of geo-located Twitter
data, the inherent large data volume poses significant data intensive challenges for visual-analytics
methods to scale with both the data volume and the computational requirements (e.g., movement
extraction and trajectory modeling) [35]. In particular, in our study, 1.3 billion geo-located tweets
were collected with over 1 TB in data size. To construct a space-time trajectory of an individual, it is
necessary to go through the massive dataset to sort and update the trajectory whenever a new location
is found. Such a task is already computationally demanding, let along breaking the trajectories
to construct space-time cube with multiple spatial scale and temporal ranges. Indeed, developing
a multi-scale spatiotemporal analysis approach is identified as one of the research challenges for
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dealing with social media Big Data [21]. To address the data-intensive challenges, there is a need to
develop a scalable visual-analytics framework tailored to accommodate large volume of geo-located
tweets for studying multi-level spatiotemporal Twitter user mobility patterns.

3. Materials and Methods

3.1. Geo-Located Twitter Data

Geo-located tweets are tweets appended with an additional geo-tag in the form of a pair
of geographical coordinates, which represents the location a tweet was sent at. In this study,
the geo-located tweets were downloaded using the Twitter Streaming API, where we specified a
geographical bounding box as an area-of-interest to retrieve all the geo-located tweets that fall within
it. To ensure complete coverage over the conterminous United States, we implemented a crawler that
selects North America as the initial area-of-interest, where the geographical boundary is specified
with lower left (latitude: 5.4, longitude: −167.3) and upper right (latitude: 83.2, longitude: −52.2).
The crawler is constantly running with over 2 million geo-located raw tweets (∼2 GB in size) collected
per day. We have collected more than 1.3 billion geo-located tweets from 1 January to 31 December
2014 with 6,147,430 Twitter users and 1 TB in data size.

In particular, this data collection of the year 2014 was originally used to map the spatial spread
of flu in North America during the time period [36]. As a social media account is not equal to a real
person in the physical world [21], to ensure the data quality, the collected raw tweets were further
filtered by the following steps: We first removed duplicated messages in the dataset [37]; and then
we removed non-human users based on the heuristic of unusual relocating speed discussed in [7,12].
In this case, we adopted the speed limit value as 240 m/s used in [7], where we examined all the
consecutive locations of each user and excluded those with relocating speed over the limit. Note that
the original location information embedded in each geo-located tweet is given in units of latitude and
longitude, the distance is calculated by the great-circle distance between two points on a sphere with
the haversine formula. Finally, we used the geographic boundaries of the conterminous United States
(excluding Alaska and Hawaii) to further restrict the remaining tweets, where the technical details are
presented in the following section. Based on these reinforcements, the dataset contains 1,052,861,000
tweets and 4,559,205 unique users.

3.2. A Scalable Visual-Analytics Framework

To address the data-intensive challenges, we have developed a scalable visual-analytics
framework tailored to accommodate large volume of geo-located tweets for studying multi-level
spatiotemporal Twitter user mobility patterns. The scalable visual-analytics framework consists
of two main units: (1) Data processing unit: a distributed computing environment using Apache
Hadoop for modeling and extracting Twitter user movements, generating space-time user trajectories,
and summarizing the movements at multiple spatiotemporal scales. (2) Geo-visualization unit: an
interactive 3D virtual globe web mapping interface for exploratory geo-visual analytics to understand
detailed Twitter user movement flows across different spatial scales and temporal ranges.

Apache Hadoop combines a distributed file system, namely Hadoop Distributed File
System(HDFS) [38] with MapReduce programming paradigm [39], which can be applied to a
wide range of data-intensive problems. Our framework benefits from using Hadoop in both data
management and processing. First, since the input data are large it is desirable to store it on multiple
machines. This provides scalability in relation to the growth of data size, where Hadoop can scale to
more computing nodes in a cluster to maintain the performance. Second, by using Hadoop we can
parallelize the computational tasks, where MapReduce breaks the entire computation into small tasks
and schedule them among different computing nodes, to make the data processing faster and more
efficient. An overall system architecture of the framework is shown in Figure 1. The details regarding
the function and implementation of each unit are presented in the next sections.
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Figure 1. The overall system architecture of the framework.

3.3. Space-Time Twitter User Trajectories

To derive meaningful mobility patterns of individuals, a space-time trajectory of each individual
user should be constructed [29]. Each raw geo-located tweet contains multiple fields of information,
such as the created time, country, language code, and location, etc. To construct a space-time
trajectory from the data collection, we are interested in the following fields: user ID, location,
timestamp, which can be represented by a tuple 〈id, loc, t〉, where id is a unique string representing
a Twitter user’s id; loc is the recorded location of the message represented as a pair of projected
coordinates 〈x, y〉; and t is the timestamp of when the message was posted; A Twitter user’s
space-time trajectory is defined as follows.

Definition 1. Space-time Twitter user trajectory: The space-time trajectory of a Twitter user is defined as
a collection of recorded geo-locations in the chronological order (i.e., based on the attached timestamp):

Trajectoryuserid ≡ {〈id, loc1, t1〉, 〈id, loc2, t2〉, 〈id, loci, ti〉, ..., 〈id, locn, tn〉}, i = 1, 2, 3, ..., n

To remove non-human users based on unusual relocating speed, a user will be removed if the
speed between any two consecutive locations in the user’s trajectory with speed (loci − loci−1) >

240 m/s. Based on this definition for modeling the space-time Twitter user trajectories, we converted
the process of extracting trajectories from the raw geo-located Twitter data as a MapReduce task.
Specifically, each mapper utilizes the unique user id as a key to prepares the records that belong to
the same user and send them to reducer. Once the reducers receive the 〈key, value〉 pairs, a Twitter
user’s space-time trajectory is formed by the sorting the locations in chronological order while
considering the speed limit.
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Definition 2. Visitation behavior, displacement and radius of gyration: As each space-time Twitter
user trajectory records all the locations a user has visited, the visitation behavior refers the frequency of a user
visiting different locations within a specific time frame. This metric provides an overall assessment regarding
the diversity and similarity in the collective mobility pattern [40].

In particular, the measurements of displacements and radius of gyrations of individuals are
two popular metrics to investigate and quantify the distance decay effects in the collective mobility
patterns [6]. The displacement refers to an individual’s re-allocation across the geographic space
measured in distance, i.e., distance(loci − loci−1). It is not equivalent to a “trip” taken by an
individual, for instance, even the time interval between two recorded locations is one month, it
will still count as a displacement. By studying the collective displacements from a group people, it
helps to identify the distance bounds associated with different travel modes [7] and to quantitatively
differentiate the mobility patterns from random walks [5]. On the other hand, radius of gyration
(donated as rg) is a metric to distinguish mobility patterns of individuals [6], which is defined as
follows.

rg =

√
1
n

n

∑
i=1

(pi − pcentroid)2, where pcentroid =
1
n

n

∑
i=1

pi

It measures the accumulated distances of deviation from the center of mass of an individual user’s
trajectory, and therefore indicates the individual’s spatial coverage, where pi and pcentroid are the
ith location and the geometric center of the user’s trajectory, respectively. When applying the
measurement to the study population, it identifies different groups of people in terms of spatial
coverage from their corresponding mobility patterns. Note that both displacements and radius of
gyrations are measured by “crow’s fly distance” in this study (i.e., the direct great-circle distance
between two recorded locations). Since these metrics are based on the generated trajectories,
by breaking and aggregating the trajectories in multiple spatial scales and temporal ranges, it
enables performing multi-scale spatiotemporal analysis on these measurements and studying the
corresponding mobility patterns.

3.4. Multi-Level Spatiotemporal Trajectory Aggregation

An important strategy for visual-analytics methods to deal with massive movement
datasets is performing spatial aggregations to provide different levels-of-detail [31,34]. It
is similar to the map generalization approach that when a user is interacting with a map
interface, the details of visualization should be adaptive to a user’s area-of-interest [41]. To
enable aggregating Twitter trajectories into multiple spatial scales, we have extended the
hierarchical space-time cube model developed in [35], where we partitioned the geographic
space of the conterminous United States into 10 hierarchical spatial layers and each
space-time cube is created with a fixed time window of a week interval. Specifically,
the state boundaries of the conterminous United States are treated as the base layer
(i.e., level 0) for aggregating state-level Twitter user movements, Alaska and Hawaii are excluded for
the consideration of better visualization effects in the mapping interface of the framework. We then
created a hierarchical fishnet by diving the study region into regular cells, where the finest level
(level 10) consists 1 km × 1 km cells. Such a cell size is consistent with the spatial resolution in
LandScan (http://web.ornl.gov/sci/landscan) product for measuring the global population density.
In our case, the cell width/height for level i-1 is twice of the size in level i. Figure 2 illustrates a
hierarchical fishnet spatial units for mapping multi-level Twitter user movements. Note that any
predefined geographic boundaries can be used and appended in this framework to show different
level-of-detailed movements (e.g., national-level and census-tract level), in our case, we replaced the
level 8 fishnet layer with the US county boundaries.

To perform a multi-level spatial aggregation of the Twitter user trajectories using hierarchical
spatial layers, each location in a user’s trajectory is redistributed to the corresponding spatial units.
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A MapReduce algorithm for the spatial aggregation is implemented, where the ID of unit in each
spatial layer (e.g., polygon in state and country layer and cell in the rest) is treated as key in the at
the Map stage. It performs a “point-in-polygon” geospatial operation to determine which polygon
the point belongs to. If the location does not belong to any polygon, it will be dropped, which is
how we used the geographic boundaries of the conterminous United States to filer the raw tweet
collection that initially covered the North America and kept the “domestic” ones. To optimize the
“point-in-polygon” determination without comparing the location with every polygon in the spatial
layer, we also created a quadtree [42] for each spatial layer to speed up the process. Finally, the
reducers generate two data outputs: (1) reconstructed space-time Twitter user trajectories at each
spatial level (2) movement flows in the form of in and out movement flux between the spatial units.
The movement flows are stored in the database for interactive explorations in the 3D web mapping
interface, whereas the re-constructed trajectories can be further processed to produce distance
measures at different spatial scales, which is illustrated as follows:

Trajectoryuserid ≡ {〈id, loc1, t1, unit1〉, 〈id, loc2, t2, unit2〉, 〈id, loci, ti, uniti〉, ...〈id, locn, tn, unitn〉} where
i = 1, 2, 3...n

Figure 2. Hierarchical spatial layers for aggregating movements in different level-of-details.

4. Multi-Scale Spatiotemporal Twitter User Mobility Patterns

4.1. Spatiotemporal Twitter User Mobility Patterns

The situation of using geo-located tweets as proxies to infer people’s movements is complex
as users’ tweeting behavior can be significantly different from one to another, in particular, the
frequency and time-interval between two consecutive tweets. For example, some people may tweet
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once a day while others do more; some people may tweet regularly while others do not. These
tweeting behaviors are expected as such human dynamics are also seen in the mobile phone call
data [6]. Many studies have carried out data collection within a certain time period (e.g., a year in our
case). However, as the geo-located tweets were collected in a conterminous fashion, it is necessary
to examine the sensitivity regarding these behaviors to ensure we are not just capturing a random
snapshot from the whole data streams.

In this study, we have analyzed the cumulative distribution of the frequency of Twitter users
visiting different locations in the year 2014 (and every month), which uses the methods developed
in [43]. The frequency is summarized based on the trajectories of individuals extracted from a
monthly time span. Note that different groups of Twitter users may exist in each month. It appears
that the distribution of the collective Twitter user visitation behaviors in the year 2014 follows
a two-tiered power law distributions (shown in Figure 3. The majority (the front part) of the
distribution follows a truncated power-law distribution p(x) ∼ x−αe−λx, where x is the number of
visited locations and the α value is 1.32. The tail part (less than 2% of the whole population) follows a
power-law distribution p(x) ∼ x−α with α value is 3.5. This finding is consistent across all 12 months,
with the mean α value as 1.34 ± 0.05 (standard deviation) and the mean λ value as 0.00178 ± 0.0002
(standard deviation).

The two-tier power law distribution indicates that the collective behaviors of Twitter user
visiting different locations can be well approximated with a (truncated) Lévy Walk model [8,44],
which has also been identified in many human mobility studies using different mobility data [45].
The similarities among the cumulative distributions suggest that the mobility data collected from
geo-located tweets are temporally stable, at least at the monthly interval, which indicates the collected
geo-located tweets in one month can potentially reveal similar findings as the ones collected in
multiple months. In addition, the two-tier power law also reveals the diversity in the Twitter user
visiting behaviors: (1) a small group Twitter users visited significantly more locations than the others
(2) within each group, the probability of Twitter user visiting more locations decreases significantly
with a power function.

Figure 3. Two-tier power law distribution of the collective Twitter user visitation behaviors.

As it is aforementioned, the measurements of displacements and radius of gyrations of
individuals are two popular metrics to quantify the distance decay effects in the collective mobility
patterns [6]. In this case, we first gathered the displacements from all the collected Twitter users in
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the conterminous United States in the year 2014, where those Twitter users with only one geo-located
tweet were filtered out. To investigate the mobility patterns of individuals, we also derived the
accumulated displacements and the radius of gyrations of each individual Twitter user based on the
corresponding space-time trajectories over the one year period. Note that both displacements and
radius of gyrations were calculated by the direct great-circle distance (d) between two consecutively
recorded locations in a user’s trajectory.

To seek mobility patterns from these measurements, we performed statistical analysis regarding
the probability distributions of displacements and radius of gyrations, which is also known as the
spatial dispersal kernel P(d) [5]. The probability distribution of the user displacements (as well as
accumulated displacements) is shown in Figure 4, whereas the probability distribution of radius of
gyrations is shown in Figure 5. In this study, we used the fitting methods developed by [7]. The
probability distributions of overall displacements, and the accumulated displacements and radius of
gyrations of individuals, can all be approximated by a combination of three functions: an exponential
function, a stretched-exponential function and a power-law function.

Figure 4a shows the probability distribution of the overall displacements, which is approximated
by P(d) ∼ λ1e−λ1(d−dmin), dmin = 10 m from [10 m, 70 m] (accounting for 2% of the population),

P(d) ∼ βλ1dβ−1e−λ1(dβ−dβ
min), dmin = 100 m from [100 m, 80 km] (accounting for 93% of the

population), and P(d) ∼ d−α [> 80 km] (accounting for 5% of the population). In addition, the
displacement in the distance bound from 100 m and 80 km in Figure 4b can be further approximately
by two power-law distributions with a cutting point at 5 km (53% distances are less than 5 km
and 40% distances between 5 km and 80 km), which indicates two different travel modes, such as
inter- or intra-city movements. Overall, the fitting functions with different distance bounds
suggest the existence of multi-scale or multi-modal mobility patterns [7] of the Twitter users in the
conterminous United States, for example, the displacements larger than 80 km could be related to
inter-state travels and stronger distance decay effects are observed in longer distance travels.

The probability distribution of radius of gyrations of individuals at the national level (Figure 5a)
is approximated by P(rg) ∼ λ2e−λ2(rg−rgmin), rgmin = 10 m from [10 m, 50 m], P(rg) ∼
βλ2rg

β−1e−λ1(rg
β−rg

β
min), rgmin = 50 m from [50 m, 30 km], and P(rg) ∼ rg

−α [> 30 km]. In particular,
the radius of gyration between 50 m and 30 km can be further approximately by two power law
distributions with a cutting point at 6 km (Figure 5b), which suggest two main types of spatial
coverage of from the collected Twitter users in the conterminous United States. The distribution
shows that around 10% the tweet population has a radius of gyration less than 50 meters, which
indicates those twitter users mostly tweet at a particular place, such as home or office; around 60%
of the population has a radius of gyration less than 30 km, which indicates that most of the collected
Twitter user movements are “short” distances, e.g., within a city locale. Note that the accuracy of
these values for defining the distance bound depends on the accuracy of the location information of
each geo-located tweet.

We also measured the distribution of the radius of gyration of Twitter users at different spatial
scales, specifically, the state and city level. In this study, we selected the state Illinois and California for
comparisons at the state level (Figure 5c), whereas we chose Chicago city as an example (Figure 5d) at
the city level. Interestingly but not surprisingly, the P(rg) at the state level can also be approximated
by a combination of three functions: an exponential function, a stretched-exponential function and
a power-law function. We noticed that distance bound of the radius of gyration at the state level is
at 10 km instead of 30 km at the national level. The distance decay effects in larger spatial coverage
[> 30 km] slightly differ, in this case, the P(rg) decreases faster in smaller size state (i.e., Illinois) than
the large size state (i.e., California). In particular, the P(rg) over Chicago city can be fitted by similar
functions. However, as it reflects intra-city level mobility patterns, there is no distinct distance range
to indicate large spatial coverage.

On the other hand, as our framework can aggregate Twitter user trajectories within different
temporal ranges, we further analyzed the probability distributions of accumulated displacements
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took places in January, June, and October (Figure 4d) and radius of gyrations within 4 quarters in
the year 2014 (Figure 6, in order to examine whether there are temporal changes in the mobility
patterns. While the probability distributions of accumulated displacements are almost identical in
those selected three months, we do find changes in the probability distributions of radius of gyrations
in different quarters of the year. The fluctuations in the tails of the distributions indicate that long
distance radius of gyrations (i.e., above 30 km) will experience more seasonal changes in the Twitter
user mobility pattern, which means the increase or decrease of long distance movement activities in
the corresponding time period. However, it is worthy noting that the overall trends in the Twitter
user mobility patterns revealed by radius of gyrations are still consistent.

Figure 4. (a) The probability distribution of the collective Twitter user displacements P(d); (b) the
distance between [100 m, 80 km] is approximated by a double power-law functions; (c) The probability
distribution of the accumulated displacements of individual Twitter users P(d); (d) The probability
distribution of the accumulated displacements of individual Twitter users in 3 different months.
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In summary, by comparing these results from different spatial scales and temporal ranges,
different distance bounds were identified for describing the spatiotemporal Twitter user mobility
patterns. However, the overall similarity and consistence found, in using a combination of three
functions to approximate the probability distribution functions of displacements and radius of
gyrations, clearly provide supports for using geo-located tweets as useful proxies for understanding
human mobility patterns and conducting reproducible findings at multiple spatial scales and
temporal ranges.

Figure 5. (a) The probability distribution of radius of gyration of individual Twitter users P(rg) at
the national level; (b) the distance between [50 m, 30 km] is approximated by a double power-law
functions; (c) P(rg) at the state level (Illinois and California); (d) P(rg) for Chicago city.

The above analysis of Twitter user mobility patterns mainly focuses on the spatiotemporal
aspects. Our framework provides the flexibility to aggregate and extract Twitter user trajectories
in a specific spatial scale and re-produce the analysis. In particular, as it is evident from the above
analysis that there are multi-scale or multi-modal Twitter user mobility patterns, this framework
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can help further look into the mobility pattern regarding how Twitter users move across different
spatial scales and temporal ranges, which is measured by the movement flows between these spatial
units. The movement flows are obtained by aggregating the movements that started from and ended
in the corresponding spatial units within the giving time frame. In this case, we demonstrate the
inter-state mobility patterns by using the framework to capture the movement flows between the
states. Note that the movement flows can be summarized across all the 10 spatial layers in the
framework. We tested the overall distribution of the movement flows (in the form of weighted
in-degree and out-degree of a graph, where each state is treated as a node) among different states in
the year 2014. We found that the probability distribution of Twitter user movement flows of visiting

different states follows a log-normal distribution: p(x) ∼ 1
x exp[− (lnx−µ)2

2σ2 ], which suggests the flux of
Twitter user movements among the states are highly skewed and dominated by a few states (Figure 7).
It indicates that the Twitter population is not proportional to account the movement flux between the
states, which may provide some insights for other researchers in studying social-economical aspects
of the migration dynamics.

Figure 6. The probability distribution of radius of gyration of individual Twitter users in different
quarters of the year 2014.
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Figure 7. The distribution of Twitter user movement flows among different states in the year 2014
measured in weighted in- and out-degrees.

4.2. The Interactive 3D Virtual Globe Web Mapping Interface

In addition to providing supports for understanding Twitter user mobility patterns with
statistical analysis, the framework integrates a 3D virtual globe interface to enable users to
perform exploratory geo-visual analytics of the multi-level spatiotemporal Twitter user movements
(http://sandbox.cigi.illinois.edu/home). The 3D virtual globe is developed and extended from the
Cesium library (http://cesiumjs.org), which is an open-source WebGL virtual globe and map engine.
We customized the map engine to adapt different spatial scales, which correspond to the hierarchical
spatial layers, for aggregating movements in different levels-of-detail. The map interface interprets
user’s interactions, such as area-of-interest, time window, and zoom levels, etc. as parameters and
send to the dedicated visualization servlet on the CyberGIS Gateway, which is the leading online
cyberGIS environment for a large number of users to perform computing- and data-intensive, and
collaborative geospatial problem-solving enabled by advanced cyberinfrastructure [46].

An overview of the 3D web mapping interface is shown in Figure 8. The mapping interface
visualizes the corresponding movement flows on the virtual globe, where the number of movement
flows are divided by 20 percentiles and categorized by the colors shown in the legend. In terms
of performing exploratory visual-analytics of Twitter user movement patterns, users can specify the
time window to enable the query. When the results are shown, users can hover the mouse over
each individual lines on the map to see the value of movement flows for both in and out directions
(highlighted in color green). If the selected criteria keep unchanged, whenever the user zooms
in/out, tilt or rotate the globe, the 3D virtual globe mapping interface will automatically provide
the corresponding level-of-details on the fly. For example, Figure 9 and Figure 10 demonstrated
the movement flows in different level-of-details around the Chicago city, and between O’Hare
International Airport and the city center of Chicago city, where top 20% movement flows were
shown. The 3D mapping interface facilitates uses to query multi-scale Twitter user movements with
a geographical context and in an interactive fashion. For example, users can perform comparative
studies of Twitter user movements in different cities by simply rotating the globe. More importantly,
this mapping interface can be easily customized and extended to accommodate future geo-located
Twitter data collection with larger spatial coverages. The source code of the visual-analytics
framework in this paper is available upon request.
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Figure 8. An overview of the 3D interactive web mapping interface.

Figure 9. The top 20% movement flows around Chicago city.
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Figure 10. The top 20% movement flows between O’Hare International Airport and the city center of
Chicago city.

5. Conclusions

In this study, we have used large volume of geo-located tweets to study Twitter user mobility
patterns across multi-level spatial scales and temporal ranges in the conterminous United States
during the year 2014. To address the data-intensive challenges, we have developed a scalable
visual-analytics framework tailored to accommodate large volume of geo-located tweets for studying
multi-scale spatiotemporal Twitter user mobility patterns. This framework is implemented on
high-performance distributed computing environment using Apache Hadoop. It provides efficiency
in filtering large volume of geo-located tweets, modeling and extracting Twitter user movements,
generating space-time user trajectories, and summarizing multi-level spatiotemporal user mobility
patterns. For example, we have included an experiment for illustrating the processing time regarding
generating Twitter user trajectories across different time span in the supplement material.

With this framework, we have found some interesting Twitter user mobility patterns, both
statistically and visually. We studied the collective Twitter user visiting behavior regarding the
frequency of Twitter users visiting different locations, which was fitted by a two-tier power-law
distribution function. The two-tier power law distribution indicates that the collective behaviors
of Twitter user visiting different locations can be well approximated with a (truncated) Lévy Walk
model, which has also been identified in many human mobility studies using different mobility data.
The similarities among the cumulative distributions suggest that the mobility data collected from
geo-located tweets are temporally stable, at least at the monthly interval, which provides supports
that we are not just capturing a random snapshot of the whole data stream.

We studied the distance decay effects in the collective Twitter user movements measured
by the probability distributions of the displacements and radius of gyrations of individuals.
These distributions can all be approximated by a combination of three functions: an exponential
function, a stretched-exponential function and a power-law function. In particular, distance bounds
between different fitting functions in displacement distribution reveals the existence of multi-scale
or multi-modal mobility patterns of the Twitter users, whereas the distribution of radius of gyration
reveals different groups of Twitter users with different types of spatial coverages at multiple spatial
scales. We further studied these mobility patterns in different temporal ranges to investigate the
temporal changes in the mobility patterns. We found that the accumulated displacements are almost
identical in different months, while the long distance radius of gyration (i.e., above 30 km) will
experience more seasonal changes in the Twitter user mobility pattern.
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Finally, it is worth noting that at the current stage the geo-located Twitter data are not able to
generalize to the entire population. As the demographic information of the Twitter users cannot
be easily identified, the results derived in this study may not reflect a complete real-world image
of human movements, which should be carefully considered in future studies. Nevertheless, the
Twitter user movements provide clear supports to reveal the distance decay effects in human mobility
research, which is observed in multiple spatial and temporal scales. Due to the large sample size, it
is difficult to generalize the mobility pattern found at national level to entire population, city-level
mobility pattern may provide better insights for investigating mobility dynamics. For example, the
results of radius of gyration in Chicago exhibit similar pattern found in larger spatial scale, and with
inputs of other mobility dataset that are often available at city-level, such as taxi trip records and
mobile phone call data, there is a potential to synthesize these different sources of information and
therefore provide a more complete image for understanding human mobility patterns. On the other
hand, as we have discussed in this paper that geo-located Twitter data show the advantages regarding
the easy data accessibility, the large spatial coverage and massive sample size, our approach took
advantage of such data source to understand the mobility patterns across multiple spatial scales and
temporal ranges. Also, our approach can be applied to the setting of other countries, which can be
used to carry out comparative studies regarding spatiotemporal Twitter user mobility patterns.
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