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Abstract: Analyzing sports like football is interesting not only for the sports team itself, but also
for the public and the media. Both have recognized that using more detailed analyses of the teams’
behavior increases their attractiveness and also their performance. For this reason, the games and the
individual players are recorded using specially developed tracking systems. The tracking solution
usually comes with elementary analysis software allowing for basic statistical information extraction.
Going beyond these simple statistics is a challenging task. However, it is worthwhile when it provides
a better view into the tactics of team or the typical movements of an individual player. In this paper
an approach for the recognition of movement patterns as an advanced analysis method is presented,
which uses the players’ trajectories as input data. Besides individual movement patterns it is also able
to detect patterns in relation to group movements. A detailed description is followed by a discussion
of the approach, where different experiments on real trajectory datasets, even from other contexts
than football, show the method’s benefits and features.
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1. Introduction

Just like the ever-increasing importance of football in the media and the fast growth of the related
market, the analysis of football games is becoming more and more important. It is utilized in different
domains with different purposes. For instance, the television broadcasters fade in analysis results via
overlays or split screen.

However, it is not only the media that is interested in such facts and statistics. The football clubs
also want to examine the performance of the team during matches or training. Further use cases could
be the automated analysis of one’s own team during training or the next opponent to discover its
tactics, strengths or weaknesses. At the moment, the latter is done manually via video inspection.
Often, some details, like the velocity during a sprint, the recognition of inconspicuous movement
patterns or repetitive pass sequences, cannot be determined or will not be noticed even by a large
coach team since they are hard to recognize with the naked eye. For this purpose, several systems
have been developed to analyze football matches in real time. Those systems consist of a hardware
(object tracking) component, where the positions of the players, balls and referees are tracked via
video, radio or GPS tracking, and a software component, in which the recorded data is semi- or fully
automatically evaluated.

The evaluation usually consists of different analyses, which provide information about the players’
or teams’ performances. They increase the knowledge about the players’ or teams’ behavior during
the game. This knowledge is important as it enables deep insight into players’ characteristically
behavior or team tactics. The amount of knowledge gained ranges from a single number, which, for
example, describes a parameter of the running performance, to complex movement patterns, which
contain detailed information about repetitive or characteristic movements of a player or a whole team.
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There is quite a wide range of different analyses, which differ in terms of gained knowledge and
algorithmic complexity.

The scheme in Figure 1 shows different levels of complexity, in which the common football
analysis tasks can be classified. They are arranged in an ascending order from “basic” to “advanced”.
The knowledge gain increases as well. The “basic” analyses are of the lowest complexity, but they also
provide the least knowledge about the players’ movement behavior or tactics. They mainly consist of
pure measurements or simple aggregations. Popular examples for these tasks are heat maps (Figure 2a),
which provide an overview over the players’ actual locations preferences and ranges during the game
and the covered distance. The latter may reflect the fitness level of the evaluated player, even if a
high running performance does not always mean a good overall performance. The behavioral or
tactical knowledge gain is relatively low. The “medium” level consists of analyses, which require
more than simple aggregation algorithms. A representative for this group is the automated detection
of team parts and distances in between (Figure 2b). It enables the coach to evaluate the behavior of
the team in respect to the a priori given tactical rules. The most complex analyses with the highest
knowledge output are located in the “advanced” level. Solving those tasks requires sophisticated
algorithms, which, for example, are able to find pass sequence patterns (Figure 2c), to determine
passing possibilities (Figure 2d) or to recognize movement patterns.

Soccer Analysis Tasks

Advanced

Examples: passing possibilities, pass sequence patterns, movement cla
Ol > patterns, ... ® .0
£ o5
clo Medium ORE
Tla Examples: passes & shots, pass graphs, team parts & distances, player 8 _§
8’ g roles, ball possession, offside, ... T %
A2 ‘ gle
<O Basic (measurements) < §

Examples: distance, velocities/intensities, sprints, heat map, mean
position, preferred attacking side, compactness of team, ...

Figure 1. The typical football analysis tasks arranged in three levels of complexity.

Most of the current analysis approaches are located in the lower complexity levels and thus
mainly consist of collecting statistical data or performing medium movement analyses. We are going to
present an approach which enables an advanced movement analysis in terms of recognizing movement
patterns. One advanced task consists in finding repetitive and a priori not known movement behavior
of moving individuals or groups. Examples are typical player paths or behaviors of a team in certain
play situations. Those patterns may provide deep insights into the movement behavior of the players
individually as well as into the tactical movements of a whole team. They can be utilized to either
characterize a player by typical movements or to predict movements.

However, the recognition of those patterns is a challenging task, since we do not know what they
look like or what to search for. In contrast to a priori known patterns, e.g., predefined geometric paths
like circles or group patterns like flocks, we cannot use any matching strategy to identify the pattern
instances in the data. A brute force approach would still be possible, but the computational complexity
combined with the size of the datasets would not lead to a reasonable solution. In order to identify
them, we propose an approach which is based on the transformation of a trajectory pattern recognition
problem to a sequence mining problem. To this end, we transform the trajectories to sequences of
movements, which are later searched for repetitive subsequences forming the requested patterns.
Furthermore, the proposed method is designed in that way that it can be used in other scenarios
besides football analysis as well.
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Figure 2. Four analysis tasks from different complexity levels: (a) a player’s heat map; (b) the team
parts and distances in between; (c) pass sequence patterns (the yellow numbers represent the order of
passing players) and (d) the passing possibilities of a ball possessing player (the black dot is the ball,
possible passes are marked via white arrows).

The paper is organized as follows: in the next section an overview of related work is presented.
In Section 3 our approach is described in detail. Section 4 contains descriptions of different experiments
where the approach is applied to real trajectory data from football games and car traffic. There, the
extracted movement patterns are shown and evaluated. Finally, we conclude this paper by summing
up the main achievements and giving an overview of possible extensions and future tasks.

2. Related Work

2.1. Commercial Football Analysis Systems

There are several companies which have developed football analysis systems consisting of the
tracking hardware and the corresponding analysis software. While there is a lot of research on the
data generation component, the analysis component shows potential for improvement. For a better
view we concentrate on catapult [1], the Deltatre AG [2], Prozone Sports Ltd [3] and Chyronhego [4].
While first three are focused on football, Chyronhego also offers solutions for other types of sports. All
of them analyze the player and ball movements and create player and team statistics. They present
the results using tables, charts and heat maps as means of visualization. Deltatre further provides
analyses like team border strips, the offside line and player connection lines, which help to visualize
relative movements of team parts. They also have developed a goal line technology, which is based
on an additional magnetic field tracking system and operates parallel to the player tracking system.
In this way they achieve high accuracies when determining whether the ball is behind the line. Prozone
offers several applications, which have different analytical purposes. Besides a database analysis
tool, they provide apps for analyzing the current match, the referee and also the next opposing team
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based on its last recorded matches. Since they also track the ball, they are able to carry out ball related
analyses, e.g., for passes or goal kicks. Each of those tools offers a variety of basic movement and ball
related analyses. To the best of our knowledge, more sophisticated analyses like movement pattern
recognition or sequence analyses, which would belong to the “advanced” level of the task classification
presented in Figure 1, are not provided.

When looking at individual sports like running or fitness in general, companies like Adidas
(micoach) [5], Nike (nike+) [6] or Garmin [7] and platforms like runtastic [8] provide solutions to
evaluate sporting activities. In most cases movement data collected with accelerometers or GPS
receivers is evaluated. Statistics on the covered distance, velocities and accelerations are created,
possibly with the possibility for visual inspection and analysis, as well as a plot of the trajectories on a
map. More detailed analyses on the trajectories are not supported.

2.2. Movement Pattern Recognition

Besides these professional tools there are some scientific approaches to analyze football and,
in particular, to recognize movement patterns. They have been developed in the context of moving
point analyses and have been tackled both from a computational geometry perspective and a
decentralized computing point of view. Further, we distinguish between the recognition of a priori
known and unknown patterns. When the patterns are known, the recognition is similar to a pattern
matching task, whereas the search for unknown patterns is rather a mining process.

In relation to pattern matching, a lot of approaches exist to identify defined group movement
patterns, e.g., flock, leadership or encounter patterns (i.e., [9-11]). Those patterns are clearly described
in [12]. Another algorithm which is able to detect group patterns as well as individual movement
patterns is proposed by [13]. They analyze discretized and relative motions (REMO) of the observed
objects. To this end, they create a matrix representation (rows: objects, columns: time steps), which is
then searched for patterns using spatially extended regular expressions.

There is also related work concerning pattern mining. In the context of analyzing football, there
are several approaches to recognize patterns. A previous study [14] developed a comprehensive
toolbox, which provides some tools to analyze the player trajectories and passes. When analyzing
the movements, they look for subtrajectory clusters, such as repetitive player movements. In order
to find those clusters, they use clustering techniques proposed by [15]. The passing analysis also
contains a type of pattern recognition in terms of frequent pass sequences. They are extracted by
traversing each branch of a generated suffix tree. There are several stand-alone approaches aiming at
the extraction or classification of movement (or tactical) patterns. In [16,17], attacks are categorized by
their starting location and an a priori defined scheme. Several approaches deal with the extraction of
team or group movement patterns in general. In [18] a learned “Spatio-Temporal Driving Force Model”
to characterize group motion patterns is used. In [19] a framework is introduced using a feature model
and the features’ morphological properties to analyze football tactics. Reference [20] uses a hierarchical
architecture of artificial neural networks to find the tactical patterns. Reference [21] describes a way
to not find movement but passing patterns. They applied a multi-scale matching method based on
contour comparisons. To extract ball movement patterns, which may occur during sequences of
passes, [22] proposes a step-wise mining method, which uses different similarity measures to compare
the ball’s trajectory and encounters translation, scaling and rotation invariance.

Looking besides the football analysis, further approaches can be found in other domains, e.g.,
traffic or animal movement. Those can also be transferred to our context. A couple of methods
(i.e., [23-27]) use clustering algorithms in combination with distance measures, e.g., edit distances,
Dynamic Time Warping, or Longest Common Subsequence, to identify similar trajectories and derive
typical object movements. A related method based on the transformation of the trajectories into
sequences of class symbols is presented by [28]). This symbolic representation is then used to compare
the sequences with the help of a normalized weighted edit distance as distance measure. In [29] an
algorithm is described that enables the detection of patterns in terms of object groups which have
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the same movement behavior. They use a mining algorithm to detect local movement patterns which
afterwards are clustered using a similarity measure to identify group relations. Furthermore, there
is a group of approaches which mine periodic patterns in 1-dimensional symbolic sequences. Their
key challenge is the transformation of the 2-dimensional movement data into 1D-sequence data.
To this end, they generate sequences of rectangular [30], frequently visited [31] or predefined
regions [32], which are visited by the trajectories. In this way, they simultaneously reduce the dimension
of the data and the high number of trajectory points to more meaningful aggregations. The patterns
are then extracted by using existing sequence analysis methods.

To sum up, there are a lot of sophisticated approaches dealing with the extraction of patterns in
movement data. However, they do not really fit with our use case. On the one hand, we do not want
to match predefined patterns, as the patterns we are looking for are a priori unknown. On the other
hand, the methods, which also mine unknown patterns, often work on either whole trajectories or on
segments and thus require some kind of segmentation as preprocessing. Since we assume that in our
use case patterns only extend over some parts of a trajectory, we cannot work on whole trajectories.
However, we also deliberately avoid a segmentation, because we are not able to identify the relevant
trajectory parts in advance and do not want to cut possible patterns. Besides that, a reasonable and
not arbitrary partitioning of trajectories from a football game without any additional information, e.g.,
ball possession, play situations, game interruptions, is a quite challenging task. The most likely fitting
methods are the approaches that are based on sequence mining. However, a determination of spatial
regions, which would be the sequence items, is not applicable in this context as we are dealing with
unconstrained player movements.

3. The Movement Pattern Recognition Approach

In this work we present an analysis method which recognizes movement patterns of the players
or the team, respectively. The process of our algorithm consists of three stages and is schematically
presented in Figure 3. It starts with an input, which is the trajectory data provided by some tracking
solution. A following preprocessing prepares the trajectories for being analyzed. In the sequence-based
pattern recognition stage, the movement patterns are extracted. In the following sections each of those
stages is described in detail.

Input Preprocessing Sequence-based pattern recognition
Transformation
Invariances Similarities Aggregations
{fracking Filtering
solution
. . Filtered e Back transformation to
UFESEIE trajectories trajectory data

Frequent pattern

mining
Frequent Movement
sequences patterns

Figure 3. Scheme of our pattern recognition approach.
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3.1. Input

Our analyses are based on trajectories for each individual player. It can be generated by a video-,
radio- or GPS-based tracking solution. Those systems obtain the positions at discrete time steps. The
sampling interval ranges from few nanoseconds to few seconds. The geometric accuracy depends on
the used system: while video and radio tracking provides accuracies within few centimeters, the GPS
tracking depends on the sensors used and generally is within few meters, absolutely, and within one
meter, relatively. Besides the quite expensive professional tracking systems offered by Deltatre AG,
Prozone Sports Ltd or Chyronhego, which provide high quality movement data, a novel approach
by [33] fuses GPS- and video-based tracking in order to exploit their individual advantages. It aims
to combine the reliability of GPS tracking with the high geometric accuracy of camera detections. In
this way, systems, which may consist of a smartphone (working as a camera) and a set of GPS-devices
(carried by the players) can be used to obtain trajectory data of a similarly high quality. Combined
with such a low-cost system, an automatic football analysis may also become attractive to financially
weaker users.

3.2. Preprocessing

Depending on the used tracking solution, the input trajectories contain systematic as well as
random errors. Systematic errors are caused by inaccurate calibrations or bad measurement conditions,
e.g., non-calibrated cameras or bad viewing angles during video tracking. They are predictable and
constant during the observation and, for example, can therefore be removed by transforming the data.
Random errors are unpredictable and inconstant. Averaging methods can use multiple observations in
order to reduce them.

In our approach we use trajectory data from GPS and video tracking. While the GPS trajectories
show the typical GPS errors, the video tracking contains more random errors. Those are often caused by
player occlusions or erroneous bounding box detections which lead to player location errors (Figure 4).
We use transformations to correct the systematic inaccuracies. For the reduction of the random errors
we apply a filtering technique. Besides Kalman filtering, which certainly is often a good choice for
this task, a simpler (centered) mean filter also provides sufficiently good results (Figure 4, right).
The filtered trajectories are then input for the next stage of our algorithm.

Figure 4. Inaccuracies in trajectories due to erroneous bounding box detections. (Left) The calculated
bounding box does not match the object exactly. (Right) The resulting raw trajectory (red line) is
afflicted with significant inaccuracies, which are reduced after having applied a filtering technique
(blue line).

3.3. Sequence-Based Pattern Recognition

The pattern recognition approach has been introduced in [34]. Originally, it was a generic method
to detect movement patterns of object groups of constant group size. In this work we adapt it to
the football scenario and create a generalized version, which is also capable of analyzing individual
movement patterns. As shown in Figure 5, the algorithm consists of consecutive processing steps
which are described in detail in this section. The right hand side of this scheme has already been
treated in an original paper.
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Sequence-based pattern recognition

individual input data =amn
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generation of
movement
sequence
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of similarity
(cluster sequence)

I A4 recognition of
a—bi-cibiat-brc frequent patterns ' g
(sequence analysis)
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trajectory data

Figure 5. A detailed scheme of the recognition process for individual and team movement patterns,
as it is contained as “sequence-based pattern recognition”—stage in Figure 3.

3.3.1. Input to the Algorithm

In general, our pattern recognition approach uses the filtered trajectories as input. Depending
on the use case, in which either individual or team movement patterns are searched, the input of
the algorithm differs. The input for the individual analysis is the single trajectory of the observed
player. Its pendent to detect team patterns takes into account the trajectories of all team members
simultaneously. To this end, object constellations are used, which describe the positions of objects
relative to each other by position relations, e.g., coordinates, distances, angles, etc. Depending on

the selection, there are ) position relations stored in a constellation, where n is the number of

observed objects. In our case a constellation represents a formation of a team at a certain point in
time. Due to the fact that we also want to detect transformed (translated or rotated) patterns, we
have to choose the suitable position relations to be stored in a constellation. The constellations are
described by a vector of these relation values. Using the distances between the positions makes a
constellation invariant regarding rotation and translation. Figure 6 visualizes a constellation example
and the requirements concerning transformation invariance. Depending on the application, the three
scenarios are considered equal.
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a) b) ¢)

Figure 6. Depending on the desired invariance regarding translation T (b) and additionally rotation
T + R (c) the shown constellations will be treated to be equal to (a).

3.3.2. Generation of the Movement Sequence

Our approach is based on the transformation of the whole trajectory data into a sequence of
movements Sot, which can be fed into sequence mining methods to extract movement patterns. This
sequence lasts the whole observation period and consists of sequence elements I; which contain
information about the object movements at each time step.

Stot = {IO, Il/ s Intot} (1)

For a case in which we are analyzing single-object movements and we do not demand that the
patterns be invariant in any way, the elements are the player’s position in x and y (for the 2D case).
If we are looking for team movement patterns, each element will be a constellation that gives
information about the players’ locations at one point in time. If we allow pattern subsequences
to be translated, we have to change the content of the sequence elements to movement vectors for the
individual analysis and to vectors containing the distances in x and y between each pair of players for
the team analysis. In Table 1 other possible scenarios are listed.

Table 1. Different requirements for the invariances of the patterns lead to different contents of the
sequence elements (X, y: coordinates; ®: heading; r: length of movement vector).

Content of Sequence Elements

Invariances
Individual Team of n Players (j,k =1,...,n)
T T
None =[x v ] Ii:[xj y]']
. I = dx dy ]T or T
Translation T L= dx; dyjk 1 i#k
i=[¢ 1] N
Translation + Rotation L=[de r]" I = [dj,k} , JFk

The sampling rate, which determines the length of the time steps, has to be chosen reasonably
and greatly depends on the use case. For instance, when analyzing player trajectories during a football
game, we have to deal with unconstrained movements including a high number of changes in direction
and speed. In order to preserve the details of the movements we have to choose a correspondingly high
sampling rate. This means, in general, that a higher sampling rate enables a more precise capturing of
the player movements and results in more detailed patterns. However, it also causes a longer sequence
of movements and thus requires a greater computational effort.

3.3.3. Determination of Similarity

Since a football field is a Euclidean movement space [35] with few limitations on movement,
we have to deal with free and continuous motion of the players. We further have to take the
uncertainties concerning the movement sequence elements into account, which stem from the inherent



ISPRS Int. ]. Geo-Inf. 2016, 5, 208 9 of 20

inaccuracies of the measurement devices (see Section 3.2). Because of that, we do not expect to find
exactly matching subsequences of movements in a limited observation timespan. Therefore, we
derive a sequence of elements containing discrete values from Syt by discretizing and clustering the
movements. In this way we search for similar elements instead of requiring them to be equal. The
measure of similarity, which also depends on the use case, is the calculated distance in the space, which
is set up by the vectors stored in the sequence elements. Similar sequence elements are assigned to the
same cluster. To this end, we have two possibilities: on the one hand we can use predefined feature
characteristics, e.g., movement directions like north, south, west, east for individual and translation
invariant movements. On the other hand we can use a density-based clustering, like DBSCAN [36],
or a centroid-based clustering method, like k-means [37], if we want to identify a priori unknown
clusters. To control the degree of similarity which is required that sequence elements are assigned to
the same cluster, we can use the required clustering parameters, e.g., the k-means algorithm needs
the number of clusters. The higher the number of resulting or predefined clusters is, the higher the
similarity of equally clustered elements will be. The result of this step is a sequence of elements
Stot cluster With corresponding cluster-names and is used as input for the next step.

3.3.4. Recognition of Frequent Patterns

As we are interested in repetitive patterns, we assume a pattern P to be an at least suppc;,
(minimum support count) times repeating subsequence S; with a minimum length of [,,;, in the total
sequence Stot,cluster:

pP= {SO/ S1/ Ssuppc} (2
suppc (P) > suppcyin (©)]
1 (P) = Liin 4)

By following this assumption, we are able to apply an existing frequent pattern mining method.
Those methods usually require as input parameters the minimal subsequence length /,,;,, and the
minimum support count suppc;,. If we further allow slight deviations within frequent subsequences
and thus apply an approximate sequence mining, we need another parameter d which quantifies
the allowed deviation. The approximate mining methods use certain distance metrics to determine
the deviation between two subsequences. Common are edit distances, like the Levenshtein distance,
which provide the minimum number of required single-element edits (i.e., substitution, insertion
or deletion) to transform one sequence into another. Depending on whether we search for exact or
approximate frequent subsequences, we have to apply a corresponding mining algorithm. While for
the exact case methods like the Apriori [38] or the FP-Growth [39] algorithm is appropriate, for the
approximate case the Baeza-Yates-Gonnet algorithm [40], amongst others, is possible. In both cases
all frequent subsequences are determined which meet the requirements given by the corresponding
parameter set. Each of those frequent subsequences containing all its occurrences forms one pattern in
the cluster sequence.

3.3.5. Remapping to Trajectory Data

As we are not only interested in the pattern itself, but also in their instantiations in the data,
we have to remap the found cluster patterns to the original movement subsequences in S;; and to
the trajectories, respectively, to get the actual movement patterns. To this end, we use a suitable data
structure, which is described in [34] and links the corresponding sequence elements of Syt jyster and
Stot and thus allows a mapping in both directions. The mapping from the element in the movement
sequence to the actual object movement is done via timestamp and object-id.
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4. Experiment and Discussion

4.1. Datasets

In order to evaluate our developed pattern recognition approach, we applied it to three
datasets with different characteristics. While the first two datasets contain movement information
of players during football matches, the third contains car trajectories and thus is from a completely
different context.

In the first experiment we processed an available football dataset, which was generated at the
FraunhoferlIS [41] and contains a small field football game with one referee and 8 players in each
team (Figure 7, left). It was recorded with their own Real-Time Locating System. During a 60 minutes
match the players and the referee were equipped with two sensors close to their feet. The balls were
equipped with a sensor. For this experiment we merged both foot trajectories to get one representative
player trajectory. The positions of the objects were recorded at a sampling rate of about 200 Hz
(the balls even at 2000 Hz) with an accuracy of few centimeters, so it is a very accurate and temporally
highly resolved dataset.

Figure 7. Left: The high accurate trajectories contained in the football dataset of the first experiment.
Right: The car trajectories processed in the third experiment.

For the second experiment we use a large football dataset of GPS trajectories. It contains the
movement information of a whole team (11-14 players) in more than 20 complete games. The GPS
devices which have been used to record the trajectories provide data with a sampling rate of 5 Hz with
an accuracy of about 5 m on average. Thus, we have to process about 27 k trajectory points per player
per game (in total about 7 million points). In contrast to the previous one, this dataset contains much
more movement information although the spatial accuracy and temporal resolution are lower.

The third and last dataset contains data from the traffic context. In the Chicago data from [42],
the trajectories have been recorded via GPS with an average sampling rate of about 4 Hz. The dataset
contains 889 trajectories with in total about 118k points. In this scenario the observed objects move in a
network space [35] which leads to fewer degrees of freedom in movement and thus to a high density
of trajectories, although the observation space is much larger than in both previous experiments.
We assume that this high density also favors the chance of finding patterns even if no invariances are
allowed. In Figure 7right the complete dataset is shown.

In Table 2 an overview of the used datasets, their characteristics and the considered invariances
is given.
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Table 2. An overview of the different datasets used for the experiments in this section.

Dataset Experiment Characteristics Used Invariances
Spatial res.: high accurate (few cm)
FRAUNHOFER 1 Sampling: 200 Hz None, translation,
FOOTBALL Euclidean movement space translation & rotation

11.5 m points (1 game)

Spatial res.: 5-10 m (GPS)
Sampling: 5 Hz

GPS FOOTBALL 2 - Translation
Euclidean movement space
~7 m points (>20 games)
Spatial res.: 5-10 m (GPS)
MAPCONSTRUCTION 3 Sampling: ~4 Hz None
(CHICAGO) Network movement space

118 k points

4.2. Result Verification and Pattern Interestingness

The verification of basic movement analyses is straightforward when having ground truth data
or using alternative methods to compare. However, the verification of movement patterns is quite
challenging, since there is no ground truth data in general. The comparison to results of pattern
mining approaches, which are based on a clustering of trajectory segments, is possible; however,
we do not expect to find comparable patterns due to the very different way of approaching the
problem. By comparing the elements of the individual sequences, we can evaluate the correctness of
the resulting patterns, which, however, is ensured by using a tested and correctly working sequence
mining algorithm. We cannot evaluate the completeness of the results, since no ground truth data are
available for our experiments.

Because of this, we introduce the pattern interestingness as a metric, which makes the results
comparable and also describes the information gain the patterns can provide, which is our original
intention. The information gain strongly depends on the applications scenario. In common scenarios,
in which movement patterns are used, namely movement prediction and characterization, the gain
is determined by the pattern extent and the similarity of the contained subsequences. For example,
the longer and more similar the movement patterns are, the better the movement of an object can be
predicted. The extent of the pattern is determined by the number of trajectory segments suppc and
their lengths I(P). When analyzing individual movements, /(P) is the mean spatial distance s the player
has covered in the contained subsequences (Equation (5)). In the case of analyzing group movements,
s(5;) is the mean of all involved player distances D; ((Equation (6)).

1(P) = Si), 5
(P)=, Sg;ﬁgpf( i) )
s(5i) = mean Dj, (6)

The similarity sim(P) is calculated by

sim(P)=1/(1+ 1§i1/rjrg>§ppcd (5,55)) )

For the determination of the distance between two sequences d (Si, S ]-) we calculate the distance
between their corresponding trajectories by using the Fréchet metric. For the individual case we
simply consider each combination of sequences. However, since there is one trajectory per player for
each sequence for the group motions, we first have to determine the corresponding trajectories across
the sequences, before we can calculate the sequence distances. Therefore, the interestingness I of a
pattern is

I (P) = suppc (P) - 1(P) - sim (P). 8)
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This score enables the usage of our algorithm in a visual analytics context, since it points the user
to interesting patterns. The final interpretation of the patterns has to be done by user himself or herself.
Figure 8 shows some resulting patterns ordered by their interestingness scores. Please note that the
score increases from left to right. In the following section, we will use this measure to evaluate the
results of our approach. We further visually inspect the patterns concerning their reasonability based
on our sufficient football expertise.

1=13.37 1=23.81 1=53.66 e 1=77.57

Figure 8. Illustration of the interestingness score based on individual movement patterns: it
increases from left to right. The different colors represent different cluster assignments of each single
movement/sequence element.

4.3. Movement Pattern Recognition Results

4.3.1. Experiment 1

Since our approach requires a set of parameters during the different steps, we first did a parameter
study to find out the most reasonable setting for each kind of invariance given in Table 1. The
parameters were the number of clusters k (k-means) and the input suppc,,;,, and I,,,;, to the Apriori
mining algorithm. For both latter we assumed fix values, namely suppc,,;, = 2 as minimal possible
support count and [, = 10 m for sufficiently long patterns.

In this way, we investigated the influence of the number of clusters, which control the degree
of similarity, on the resulting patterns. We evaluated each setting by summing up the resulting
interestingness scores to obtain an overall interestingness (Table 3).

The parameter study shows the following trends: when the number of clusters increases, the
mean similarity also increases, whereas the number of the resulting patterns, the mean support
count and pattern length decrease. The total interestingness has a maximum as it depends on all
factors. In this way, the study provides the most promising parameter settings for an individual and
group analysis (red/yellow highlights in Table 3), which will be used in the following experiment.
Further, looking only at the maximum values for each invariance combination, the number of resulting
patterns increases with each additional invariance (individual: 983, 1895, 5609 patterns, group: 188,
207, 243 patterns). In Figure 9 we further show some pattern examples, which were recognized with
those settings.

In the same dataset, 207 team movement patterns were found by our extraction method (same
algorithms as before) when we use the parameter setting (k-means: k = 128 clusters) provided by the
study (Table 3) for translation invariance. Figure 10 shows one group movement pattern (constellations
408-413), which lasts 6 seconds and consists of a sequence of 3 different constellation types (2 green,
2 dark blue, 2 blue clusters); it shows how five (red encircled) players in the group move top down.
It occurs twice during the observation time (i.e., also in the cluster sequence 831-836). This pattern
shows a typical defense behavior, in which the team shifts from right to left field (the lonely right player
is the goal keeper of the team) to put pressure on the ball-possessing players of the opposing team.
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Table 3. Influence of the number of clusters on the resulting (individual/group) patterns. Maximum

interesting values for individuals are highlighted in red, for groups in yellow.

# Clusters # Patterns 9 Suppc O Length O Similarity Y Interestingness
(ind. / group) [ (Im]) ([1/m1]) [-1
No invariance
4 99/83 2.04/2.00 44.06/84.20 0.07/0.008 622.9/111.8
8 180/126 2.08/2.05 33.87/44.93 0.08/0.011 1014.5/127.7
16 439/188 2.14/2.15 25.22/28.23 0.10/0.020 2369.3/228.2
32 813/209 2.21/2.15 18.39/21.64 0.13/0.020 4295.4/194.5
128 787/234 2.16/2.12 13.30/11.69 0.19/0.026 4295.7/150.8
Translation invariance
8 1411/39 2.46/2.03 15.66/119.08 0.31/0.010 16850.6/94.3
16 817/96 2.27/2.05 13.92/48.95 0.37/0.011 9551.9/106.0
32 391/123 2.16/2.04 13.03/32.42 0.41/0.014 4511.9/113.9
64 155/173 2.06/2.06 12.43/19.44 0.42/0.018 1667.0/124.7
128 34/207 2.0/2.10 11.91/13.12 0.40/0.023 324.0/131.2
Translation + rotation invariance
8 2521/154 2.66/2.14 22.06/33.51 0.02/0.017 2958.6/187.7
16 2245/197 2.79/2.14 15.95/23.83 0.02/0.018 1998.1/180.8
32 1348/209 2.80/2.14 14.57/19.97 0.02/0.016 1175.3/142.9
64 587/243 2.34/2.23 13.48/18.02 0.02/0.020 370.3/195.3
128 172/200 2.06/2.17 12.90/11.09 0.03/0.023 137.1/110.7

Figure 9. Some resulting movement patterns: (Top left) no invariances: spatially overlapping

trajectories are found. (Top right) Translation and rotation invariance: the trajectories belonging

to the same pattern are shifted and rotated.

only shifts are allowed.

movement/sequence element.

(Bottom) Translation invariance: in this case
The colors symbolize different cluster assignments of each single
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408 409 410 411 412 413
831 832 833 834 835 836
Figure 10. Movement pattern of the whole team which occurs twice during the game.

4.3.2. Experiment 2

In contrast to the first experiment, where we processed a dataset containing only one football game,
we used the second dataset containing several games and thus much more movement information
for each player for this experiment. Because of that we could process each player individually to
obtain player specific patterns, which also contain more player specific knowledge. Therefore, in
this experiment we selected players with different roles to check whether there are specific patterns.
We compare a central midfielder and a wing player, whose heat maps (Figure 11) show their typical
positions during the games. If we require the patterns to be neither translation- nor rotation-invariant,
the distribution of the patterns will correspond to the heat maps. Further, the orientation of the patterns
will be different for both players: the patterns of the wing player will be mainly horizontally orientated,
while the central midfielder’s patterns will be orientated both horizontally and vertically.

Figure 11. Typical heat maps of a central midfield (left) and wing player (right) during the games.

In this experiment we allow the patterns to be translated. Further, we used the k-means and
Apriori algorithm. The parameter setting was the same we identified in the previous experiment.
We evaluated 12 games, in which both players participated. In Figure 12 we show some patterns for
both players. Using this setting we can observe the same orientation behavior of the patterns. Further,
there is a difference in the shapes of the patterns. The patterns of the wing player (Figure 12 right) are
mainly straight runs with only little change in direction. Contrary to that, the patterns of the central
midfielder (left) contain significantly more turns. This also fits to the usual behavior of both player
roles. While the midfielder in general has more freedom of movement in most of the play situations,
the wingman has to stick to his position/side most of the time. It is also possible look at the results
from a tactical point of view, which certainly is interesting for the coaches or scouts. For instance,
it is possible to observe different behaviors of the wing player in both match periods. Please note that
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the lower three (blue, yellow, pink) stem from the first, the upper three patterns (cyan, red, green)
from the second half of the match. Especially, the cyan and blue colored patterns illustrate different
movement behaviors. While in the first half (blue pattern) the player stayed longer on the wing and
thus moved straight along the outer line, in the second half (cyan pattern) he left his position quite
early (few meters before the centerline) and moved directly towards the opponent’s goal. The reason
why he changed his behavior cannot be found by this analysis. Nevertheless, it is an important piece
of information which can be used by either the player’s coaches to judge his performance or by the
opponent coaches to prepare their teams.

]

]|

ll

2o

Figure 12. A comparison of movement patterns for players with different roles. Left: center midfielder.
Right: wing player.

4.3.3. Experiment 3

With this experiment we wanted to prove the portability of our approach to other data and
contexts. However, we had to consider the characteristics of the dataset used. Since the movements
of the objects were strongly influenced by the underlying street network and we were not interested
in repetitive network structures but in repetitive movements, we required the patterns to be neither
translated nor rotated this time. We further used 64 clusters (k-means) to determine the similarity
of the movements. In order to mine the patterns, we again used the Apriori algorithm with the
same parameter setting as in both previous experiments. We only looked for patterns of individuals
and skipped the group pattern analysis because the dataset does not contain any information about
meaningful groups of cars, e.g., convoys, which travel together.

In total, 350 patterns were found. Compared to the previous parameter study (Table 3) the mean
support count (2.04) and similarity (0.08 1/m) are a little lower. However, the mean length of a pattern
(406.21 m) and the total interestingness score (23,203) are much higher, which can be explained by
the less degrees of freedom in movement in this movement space. Please note that the application of
the interestingness score is also valid for this scenario, since there are no context-dependent factors in
Equation (8). In Figure 13 some of the most interesting patterns, according to our interestingness score,
and the underlying street network (grey color) are shown. The presented patterns (each pattern has
its own color) consist of two or more overlapping trajectory segments and represent frequently taken
routes through the city. Those routes are often on the main roads and the feeder roads, respectively.
However, the patterns can also show frequently used rat runs or shortcuts those popular routes can
be used for different fields: urban planning or management can use this information to optimize the
street network design as well as the traffic management. Navigation systems can make use of this
information to predict the user’s next trajectory and, in a collaborative way, when the information is
shared among the road users, to predict traffic in the corresponding area. Further, it will be possible to
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extract public transport, such as bus lines, as they usually use the same routes regularly, if they are
included in the data.

Figure 13. Some of the most interesting movement patterns extracted from the traffic dataset. Each
color represents a pattern.

5. Conclusions and Outlook
5.1. Summary

5.1.1. Motivation and Approach

The intention of this work was to go beyond the common football analysis tasks to reveal more
meaningful knowledge about the movement behavior of individual players as well as the tactics of
whole teams. To this end, we have identified movement patterns as an important provider of that kind
of knowledge. We have presented an approach to recognize a priori unknown patterns in individual
and group movements based on trajectory data.

The approach consists of a preprocessing, in which errors in the movement data are reduced, and
a sequence-based pattern recognition. The latter uses a discretization of the trajectory data to sequence
data, which then are analyzed by sequence mining methods to identify repetitive subsequences.
Finally, those subsequences are transformed back to the original trajectory data to obtain the trajectory
segments, which are part of a pattern.

We applied this approach in three different experiments to trajectory data from football games
as well as from a traffic scenario. In each of those experiments we were able to identify movement
patterns of the observed objects. These patterns usually provide more knowledge about the movement
behavior of the players, or objects in general, than other basic or medium analysis methods (Figure 1)
which are often based on basic statistics.

5.1.2. Features of the Approach

The structure of our whole approach is modular, so it is possible to exchange the proposed
methods in the different steps as long as the alternatives are able to provide results of the same structure.
For instance, we have already proposed different alternative clustering methods for generating S;o; c1yster
or mining methods to identify frequent subsequences.
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In current state of this approach the patterns cannot be extracted in real-time. Due to their high
computational complexities the proposed clustering (DBSCAN: O (nlogn), k-means: O (nkdi)) and
sequence mining (candidate generation in Apriori: O (2d> , FP-Growth: O (1n?)) methods do not allow
a real-time analysis. In order to identify patterns at runtime our approach has to be customized
in the way that incrementally working algorithms for clustering, e.g., Incremental DBSCAN [43] or
I-k-means ([44], or sequence mining, e.g., IncSpan ([45], are used. However, due to the modular
structure, this exchange of subparts of the overall algorithm is supported.

Besides its internal flexibility, our approach also offers an application to other analysis scenarios
than to the football analysis. Since it has no further requirements, it is applicable to trajectories of any
kind of moving point objects from various research domains, e.g., animal behavior analysis, traffic
management, surveillance, etc. For instance, this is described in the last experiment of this work,
and in the previous work [34], where an experiment on animal (sea gull) movement was conducted.
The set of parameters for the different methods that are used in this approach as well as the possibility to
define the degrees of freedom of the patterns, which show up in different invariances (Table 1), makes it
portable to other use cases, which has been proved by the third experiment of the experimental section.

5.2. Outlook

5.2.1. Extension of the Approach

There are several possibilities to extend the presented work in future. As already mentioned
before, one remaining item is to enable real-time capability, which is useful for certain applications,
with the given means.

Moreover, different context information can be included to identify even more meaningful
patterns as well as to speed up the algorithm to address real-time processing. At the moment only the
movement of the observed players is considered. For instance, using the player role (e.g., left or right
wing player, forward, etc.) as prior information could help to reduce the pattern search space. In order
to do this, movement possibilities, which are very unlikely for the corresponding position, will not be
considered during the recognition process as the chance to recognize a pattern in these movements is
very low, too. Further, since this movement is often influenced by the positions of the opponents and
team members as well as the position of the ball, their trajectories could also be included. This could
be achieved by integrating the corresponding position information in the vectors, which are contained
in the sequence elements of Sy jyster-

Further, different play situations could be analyzed separately to obtain, for instance, offense
and defense patterns of individual players or the whole teams. The same applies for the execution of
standard situations like corner or free kicks. Even there, typical rehearsed player or team movements
could be identified. For this purpose, the time periods, which contain those play situations, have to be
determined first, for example by using supervised learning methods. In this way the search space is
reduced to only relevant trajectory segments. This reduction leads to the identification of fewer but
more meaningful patterns.

5.2.2. Utilization of Movement Patterns

Another open item is the utilization of the resulting patterns. In [46] two typical usages are
named: characterization and prediction. In terms of characterization, the recognized patterns are used
to describe the observed players or teams, respectively. The description can either be used as simple
information gain for the coaches or viewers or to recognize players purely based on their movements.
The latter is useful when this additional player information is fed to the tracking system to improve its
performance by an automatically reassignment of lost players in complex scenes. A first step towards
the characterization of the players is done in the second experiment, where we compare patterns of
two different players with different roles. This knowledge can then be used as described above.
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The prediction provides knowledge about future movements of the players. In Figure 14, two
instances, one for the football and another for the traffic scenario, are shown where movement patterns
describe different possibilities of what the future trajectory may look like, assumed that the object
(green) located at the beginning of those patterns. For this purpose, we have to identify the current
movement pattern of a player. With the help of this pattern we are able to make prediction regarding
the future trajectories. Thus, we need a sulfficiently high number of patterns for each player to cover as
many situations as possible and to become more precise. In the traffic context, so-called user-aware
navigation systems, which automatically predict the user’s usual destinations, e.g., the daily way to
work and back home or the way to regularly visited free-time activities, can make use of the extracted
patterns. The knowledge for the predictions can be retrieved from the currently travelled path and the
user’s route history. This history is mined for patterns which then are matched to the current path to

derive the possible destination.

Figure 14. Movement patterns can be used to predict future object movements. In both cases
(left: football, right: traffic) two patterns (red and blue) describe the possible future trajectories
of the green object (player/car).
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