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Abstract: Since its inception, Twitter has played a major role in real-world events—especially in
the aftermath of disasters and catastrophic incidents, and has been increasingly becoming the first
point of contact for users wishing to provide or seek information about such situations. The use of
Twitter in emergency response and disaster management opens up avenues of research concerning
different aspects of Twitter data quality, usefulness and credibility. A real challenge that has attracted
substantial attention in the Twitter research community exists in the location inference of twitter data.
Considering that less than 2% of tweets are geotagged, finding location inference methods that can go
beyond the geotagging capability is undoubtedly the priority research area. This is especially true in
terms of emergency response, where spatial aspects of information play an important role. This paper
introduces a multi-elemental location inference method that puts the geotagging aside and tries to
predict the location of tweets by exploiting the other inherently attached data elements. In this regard,
textual content, users’ profile location and place labelling, as the main location-related elements, are
taken into account. Location-name classes in three granularity levels are defined and employed to
look up the location references from the location-associated elements. The inferred location of the
finest granular level is assigned to a tweet, based on a novel location assignment rule. The location
assigned by the location inference process is considered to be the inferred location of a tweet, and is
compared with the geotagged coordinates as the ground truth of the study. The results show that this
method is able to successfully infer the location of 87% of the tweets at the average distance error
of 12.2 km and the median distance error of 4.5 km, which is a significant improvement compared
with that of the current methods that can predict the location with much larger distance errors or at
a city-level resolution at best.

Keywords: location inference; social media; twitter; emergency response

1. Introduction

Being ubiquitous and omnipresent, social media are becoming significant channels for information
dissemination and communication among the general population. Such platforms are also changing
the speed and nature with which people perceive and respond to emergency or unanticipated events.
The first news about an emergency situation is now likely to appear on social media channels, such as
Twitter, rather than conventional news sources. The most recent example of such an event is the
Paris attacks that occurred on 13 November 2015, after which eyewitnesses posted on their social
network accounts, being mainly Twitter, to warn others about what was happening [1]. The practical
application of Twitter in emergency situations suggests new avenues for investigation regarding the
effective use of social media platforms, such as Twitter, in catastrophic events and making them fit
into the requirements of emergency response. Social media, in this context, can bridge the gap that

ISPRS Int. J. Geo-Inf. 2016, 5, 56; doi:10.3390/ijgi5050056 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2016, 5, 56 2 of 16

exists in the current emergency response systems regarding what South [2] describes as the lack of
immediate flow of information from people at the scene towards authorities or those who can provide
help. Supported by a number of studies [3,4], Twitter, among the social media platforms, has shown
capability to be a valuable augmentation to the current emergency response systems. However, this is
not a straightforward addition, as there are significant challenges that must first be overcome.

Up-to-date and spatially-referenced crisis information plays a vital role in emergency response [5–7].
In other words, emergency response necessitates information that is timely and from an identifiable
location. Whilst Twitter is benefitting from a reliable timeline that meets the timeliness requirement of
emergency response and makes Twitter a perfect fit for the time-sensitive contexts, identifying the
location from where the information is being disseminated is still a non-trivial issue. It is important to
note that timely information from an unknown location does not carry much value for emergency
response. Since 2009, when Twitter started accommodating geotagging [8], tweets have been able
to contain geographic coordinates attached by GPS enabled devices. However, despite the inherent
real-time nature of tweets, geotagging is an “opt-in” service to be enabled at the user’s discretion.
Results of the experimental analysis conducted on over 300 thousand randomly collected tweets in
the Centre for Disaster Management and Public Safety (CDMPS) in April 2015 show that about 2%
of all tweets are geotagged and contain a precise location. In the related literature, this rate ranges
from 0.42% [9] to 3.17% [10]. Systems or tools that extract the location of tweets by taking only
geotagging into account can benefit from a small fraction of Twitter data, even though there is valuable
information in the remaining non-geotagged chunk. Thus, finding methods to infer the location
information from the other inherent capabilities of tweets, such as textual contents or user profile
location, can be an essential alternative.

There is a growing research interest in the issues centred around the location inference of Twitter
along with proposing methods to address them, which are discussed in Section 2. However, there are
considerable gaps in the current state of knowledge. Firstly, the current methods utilise only one of the
existing elements of Twitter data for inferring the location, whilst several potential elements exist for
location inference (e.g., textual content, profile location and place labelling) that can be combined to
improve the performance of location inference algorithms. Additionally, the current methods could
reach a geographical location accuracy of up to the city level in the best case, which does not seem to
be an adequate level of resolution for emergency response.

This paper introduces a novel method that, to the best of authors’ knowledge, for the first time
exploits all the potential sources of location information in a multi-elemental approach and achieves the
average and median distance error of 12.2 km and 4.5 km, respectively, for 87% of the sample tweets.
The introduced method makes use of all potential location information carriers for the inference of the
location of Twitter data in the absence of geotagging. Some experiments that validate the proposed
method are carried out. The experiments employ a dataset of tweets that have been collected between
the 21 and 26 of April 2015, when severe weather conditions affected the Sydney area, causing the
collapse of a number of warehouses in Western Sydney [11]. The main contribution of this research
can be summarized in the following areas:

‚ Getting to know Twitter data, the potential elements of location information within a tweet, as well
as dealing with the Twitter data collection and sampling

‚ Proposing a hybrid and multi-elemental approach towards the location inference on Twitter,
which significantly improves the location accuracy of the current methods.

The rest of the paper is organized as follows. Section 2 describes and summarises the related
work. Section 3 gives a brief introduction to Twitter data and investigates the potential location related
elements. Section 4 explains the design of the method and explains essential preliminaries of the work,
including data collection and sampling processes. Both the implementation and evaluation of the
proposed method are discussed in Section 5. The paper is discussed and concluded in Section 6, with
perspectives for future research.
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2. Existing Approaches to Location Inference

Retrieving location information of Twitter data, known as “location inference”, has received
comparatively considerable attention in the literature. Location inference, in general, can be explained
as the retrieval process of the location information from each of textual content, location-specific
elements, or the user’s social network. A number of studies have focused on the nature of geotagged
tweets only, and how this capability can be used to track and analyse different subjects in domains, such
as public health [12], societal events [13], political elections [14], tourist spots [15], and earthquakes [16].
However, as mentioned before, geotagged tweets form about 2% of all public tweets broadcasted
by Twitter users. This poses a need for methods that can use the other components of tweets to
extract location information and enhance the overall location reliability of Twitter data for emergency
response. Different methods have been adopted from various fields, such as machine learning, statistics,
probability and natural language processing to fulfill the need for more accurate and precise location
inference methods [17].

Studies concerned with the textual content of tweets for determining location in the absence
of geotagging predominantly focus on detecting and extracting the geographic references cited in
the textual content. These references might be in the form of “location-indicative words” (LIWs) or
gazetteer terms that can be geocoded using a spatial database. Eisenstein et al. [18] describe a model
named “geographic topic model” and implement this model on US-based users to geolocate them based
on their content. Their model obtains a median distance error of 494 km. This error rate is lowered
by Wing and Baldridge [19], who get a median error of 479 km for their model. Cheng, Caverlee and
Lee [9] offer an approach that analyses the content of geotagged tweets and provides the statistics of
the most frequent words in each city. With their method, 51% of randomly sampled Twitter users are
placed within 100 miles of their actual location. Watanabe et al. [20] propose a system called ‘Jasmine’,
for detection of events on a local scale through extracting and analysing the co-occurring terms within
the content of tweets. In an approach carried out by Dalvi et al. [21], users are located based on indirect
spatial references found in the content, taking into account the restaurants as the target object of the
study. Han et al. [22] introduce a geolocation prediction platform by detecting and analysing the
“location-indicative words”. Their method reduces the median prediction error distance by 209 km.
In a method performed by Minot et al. [23], a combination of content analysis and assessment of the
users’ social interactions (user mentions in content) is used and city-level accuracy is observed for 60%
of users in their sample.

Approaches also exist that go beyond the textual content of tweets for location inference purposes.
For example, Hecht et al. [24] study users’ profile locations through utilising a Multinomial Naïve
Bayes model to classify user location with a regional focus and allocate users to their home states
with an accuracy of up to 30%. Hecht et al. find that users, either knowingly or inadvertently, disclose
location information in their tweets. Hiruta et al. [25] carry out a method to detect and classify tweets
based on the possible correlation of users’ profile locations with both textual content and geotagging
in different categories. There exists no stated evidence of the achieved geographic granularity in their
study, but it seems that the achieved geographic resolution of their work is not finer than city-level.

In a more related work, Schulz et al. [26] propose a location inference method through combining
the potential sources of spatial indicators, such as tweet messages, profile location information, internet
links and time zones using a polygon mapping technique which estimates the location of 54% of
tweets within a 50 km radius. In overall, their method is able to create the location estimation of 92%
of tweets with the average distance error of 1408 kilometres and the median distance error of 30 km
by exploiting multiple external sources such as Geonames, DBPedia Spotlight, IPinfoDB, etc., for
inferring the location of tweets. Though, compared to the other studies, the method enhances the
median distance error, the average distance error is still too coarse to be considered useful in emergency
response context. In addition, utilising multiple external sources for estimating the location of tweets
seems too time-consuming, complex and labour intensive to be employed in time-sensitive scenarios.
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Much of the work conducted on the location inference of Twitter data exploits either tweet content
or one of the location-specific elements to infer the location. The purpose of this study is to explore
a possible combination of different elements to predict the location of tweets that are present in a dataset.
The proposed method evaluates a tweet against each potential location-specific element, to investigate
the level of responsiveness of the tweet to each element. The method eventually predicts the location
of the tweet, based on the best-fit element. Moreover, in terms of average distance error, existing works
achieve either the city-level granularity or the average distance error of over 200 km at best, which are
too coarse and not sufficiently detailed for the emergency response domain. Thus, methods need to
be developed to reach a more detailed and finer granular level. The proposed method in this study
estimates the location of 87% of the sample tweets with the average distance error of 12.2 km and the
median distance error of 4.5 km, which is considered to be a significant improvement compared to the
current methods.

3. Twitter Data and Location-Specific Elements

Launched in 2006, Twitter is a free social networking and microblogging service that allows users
to post real time messages, called tweets. Tweets are short messages that are restricted to 140 characters
in length. However, a tweet is more than a short message. Tweets come bundled with a relatively rich
set of metadata. Through the streaming API, subsets of public status descriptions can be retrieved based
on user-defined criteria in JavaScript Object Notation (JSON) formatted data which is a lightweight
and text-based data exchange format. Figure 1 shows a raw Twitter feed presented in indented JSON
format to facilitate reading, as well as understanding thereof.
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What is generally known as a tweet constitutes just one part of a whole feed and is accommodated
within the “text” element. This element is shown within the red box in Figure 1. As it is clearly seen in
the figure, there are a variety of elements accompanying the “text” element in a Twitter feed. It falls
out of the scope of this article to describe all the elements, however, the location-related elements are
introduced and discussed to address the main focus of the study. Based on what is shown in the figure
above, apart from the “text” element, which may contain location references, there are location-specific
elements that can have values of different types. These elements are highlighted in the green boxes
labelled from A to E. The location-related elements and a brief description of each are listed in Table 1.

Table 1. List of location-related elements in a tweet.

Label Element Description

A .\user\location Nullable. The user-defined location for this account’s profile.
Not necessarily a location nor parsable.

B .\user\geo_enabled
When true, indicates that the user has enabled the possibility of
geotagging their Tweets. This field must be true for the current
user to attach geographic data.

C .\geo Deprecated. Nullable. The “coordinates” field can be
used instead.

D .\coordinates
Nullable. Represents the geographic location of this Tweet as
reported by the user or client application. The inner coordinates
array is formatted as longitude first, then latitude.

E .\place Nullable. When present, indicates that the tweet is associated
with (but not necessarily originated from) a Place.

Source: [27].

Among the location-related fields in Table 1, “geo” and “coordinates” correspond to geotagging,
and both contain the same information [27]. Since the “coordinates” field is official and recommended
by Twitter, this study uses the “coordinates” field where needed. There are also a few terms in Table 1
that need to be further clarified. “Nullable” means that a field does not necessarily contain a value
and can be left blank. Most of the fields dealing with the user’s settings are nullable fields, enabling
the users to maintain some level of anonymity and privacy. Additionally, an “unparsable” field, like
user\location, usually means that there might be unexpected entries in the field that are not compatible
with the expected data type of the field. This is because there is no strict format for the user\location, and
it can be anything that user writes down, for example “somewhere” or it might be null. Thus, if there
is an entry, it is not necessarily a location name.

There is also another field within the “user” element called “geo_enabled”. This field is the
indication of whether a user has ever chosen to share any location information. If the “geo_enabled”
field is true, it means that the user has agreed to turn on the location service at least once, but it does
not necessarily indicate that the “coordinates” and “place” fields have values. This field is quite useful
in location-related studies, and can be used to perform initial filtering of the tweets, even though it
cannot provide any location information for inference purposes.

Users are also able to selectively attach a place name (such as a city or neighbourhood) of their
choice to a tweet, by tapping the location marker and selecting the location they want to attach.
“Places”, from the Twitter data perspective, are specific and named locations with a few attributes
that altogether are pushed into the “place” field and its immediate subfields. Tweets bound with
places are not necessarily issued from that place, but are likely to be from within or around the
place [27]. To investigate the current status of the Twitter data in relation to each of the location
corresponding elements, an experimental study is carried out using a random sample of over 300 K
tweets collected globally in April 2015. Figure 2 demonstrates the outcome of the analysis of the
location-related elements.
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Figure 2. Current status of the location related elements of Twitter data.

Figure 2 shows that only 41% of users have agreed to share their location at least once, and 59% of
users have never agreed or consented to share the location information in any way. It is revealed that
only 35% of users have valid location information of various types, formats, geographic scales and
languages in their profiles. In addition, 2.5% of all tweets are place-labelled, out of which 89% are at
city-level granularity. Finally, as mentioned in the earlier section, only 2% of tweets are geotagged
bundled with precise location coordinates. It seems needless to mention that the statistics provided
here are on the average global scale, and the results may vary depending on the geographic resolution,
time and how the data are collected.

4. Method Design and Development

Figure 3 outlines the design and architecture of the proposed method. It is seen in the figure
below that the method is made up of three main components. The data preparation component
mainly deals with the data collection and sampling processes. Following the data preparation phase,
the event-related sample tweets go towards the location inference component that tries to predict
the location from the potential location-related sources, which are explained in the previous section.
The component needs location name classes as the input required for the location inference. The core
function of this method is the location scoring and extraction function that assigns each tweet with the
finest granular location extracted from the potential sources. The assignment of geocoordinates is the
last step to be performed in the location inference processes. Finally, the result evaluation component,
which is discussed in Section 5, compares the inferred location with the actual location of the sample
tweets and calculates the distance error of the method. The rest of this section describes the data
preparation and location inference components in detail.
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Figure 3. Overview of the method and its components.

4.1. Data Preparation

Before getting into the details of the location inference component, essential parts of the data
preparation component are explained here. This includes the data collection and sampling processes
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along with the data cleaning techniques and pre-processes that are important for performing the
experiment smoothly.

4.1.1. Data Collection

In Twitter research, which can be generally characterised as data-driven, having access to
appropriate Twitter datasets is crucial in order to validate theories and methods. Twitter data
can be obtained either by purchasing from the commercial data vendors that Twitter partners with
(e.g., Dataminr [28], Gnip [29] and Datasift [30], or cost-free collection through the Twitter Application
Programming Interface (API), each with its own pros and cons. However, using freely available Twitter
APIs seems more suitable for research purposes, where funds are strictly limited and multiple data
collection efforts may be needed to gather the appropriate datasets. Among Twitter APIs, the streaming
API, which provides low latency access to subsets of public tweets, is used to collect data from the area
surrounded by a bounding box with the bottom-left corner at (35.00˝S, 150.00˝E), and the top-right
corner at (32.00˝S, 153.00˝E), as shown in Figure 4.
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The area includes Sydney, as well as the major regional centres of New South Wales. The data
collection was carried out from 12:00 p.m., Tuesday, 21 April 2015, up to 11:59 p.m., Sunday,
26 April 2015 during which heavy rainfalls and occasional hailstorms struck Sydney and surrounding
areas and caused dozens of floods across the region. During this period, 90,078 unique and
non-retweeted tweets were collected and stored in a local database. These severe weather conditions
are reflected in Bureau of Meteorology [11], the April 2015 issue of the Australia Monthly Weather.

4.1.2. Data Sampling

In order to create a reasonably sized dataset to examine the performance of the proposed method,
a procedure is used to obtain a sample of tweets from the dataset of about 90 K collected tweets. In the
very first step, non-English tweets are filtered out from the local database. This is because the method
is designed to find the English location references within the location-related elements of a tweet and
presence of the tweets in other languages (e.g., Arabic or Chinese) may result in impracticability of
the method. The second step of the sampling is to find tweets that are assumed to be related to the
observed severe weather conditions. To achieve this, a keyword search is performed on the contents of
the tweets using the hailstorm and flood-related terms such as “storm”, “hail” and “flood”. As the
result of the keyword filtering, over 3000 corresponding tweets are retrieved form the collected tweets.

There are many accounts from automated tweet ‘bots’ with tens of hourly tweets, most of them
identical and high likely to be for business or marketing purposes, which should be taken out of the
sample data. Thus, in the next step, the tweets that are less likely to be sent by real users are targeted.
To conduct this, “source” field of tweets is taken into account and only tweets sent from handheld
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mobile devices (mobile phones and tablets) and web-clients are extracted. The assumption behind this
is that phones and tablets are normally used as personal devices and are unsuitable for mass tweet
dissemination. Additionally, based on the information provided by Twitter, the source value of “web”
is used for tweets that are directly sent from the Twitter website [27], which only allows users to read
and write tweets through a web browser. Thus, its usage as a tweet bot seems very unlikely.

In the final step, the remaining tweets in which the “coordinates” field is non-null and has a value,
are sent to the final sample dataset. The “coordinates” filed, as discussed in Section 3, represents
geotagging information and is used for the evaluation and accuracy assessment of the proposed
method in Section 6. Conducting the sampling procedure results in creation of the sample of this study,
which contains 2409 unique and geotagged tweets in English, which are likely to be related to severe
weather conditions and sent by real human users. Figure 5 shows the entire sampling procedure.
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4.1.3. Data Cleaning

Some elements of Twitter data represent user-created information (e.g., text and user profile
location) and are highly prone to different types of noise and redundancy. For example, there are huge
numbers of emoticons, user mentions and Internet links within the text field, which may result in slow
and inefficient performance of the method. A cleaning process, as the pre-processing step, should be
performed to achieve a uniform textual content on user-created fields. In order to clean text and user
profile location fields, all the following elements are first removed:

‚ Multiple dots “ . . . ” which people use in a variety of situations (replaced by a single space).
‚ User mentions (@somebody).
‚ Hashtag signs (#) from the beginning of all hashtag words.
‚ All the punctuation marks, numbers and Internet links (starting with “http://”).

After removing the mentioned elements, all the characters are converted to lower case. The lower
case conversion helps assessment of the location references carrying the same value with either upper
or lower case forms. Following the lower case conversion, all probable multi-spaces are merged
into a single space. The clean-up process is completed through standardising the text, by removing
non-ASCII characters (like ä, £, 質). The cleaning process is applied on both text and user profile
location fields within the sample dataset.

4.2. Location Inference

The location inference component deals with the extraction of predefined location references from
each of three possible sources: textual content, user profile location and place labels. The predefined



ISPRS Int. J. Geo-Inf. 2016, 5, 56 9 of 16

sets of location name references are named “location name classes” and are described in the
following subsection.

4.2.1. Location Name Class

To define the location name classes, this study partially uses the GIS shapefiles provided by the
Australian Bureau of Statistics (ABS) [31], which are free and publicly accessible. Considering the
availability of reliable data, location names are divided into three different levels of granularity.
These levels, where each represents a class, are divided into three groups:

1. Suburb level: Suburbs that are partially or totally within the data collection zone are selected.
To identify the suburbs, the suburbs polygon shapefile downloaded from the ABS website is
intersected with the data collection zone (Figure 6). 1381 suburbs are selected and the name
field of these suburbs represents the suburb-level name class (L1). The geographic centroid of
the selected suburbs is calculated in a GIS environment. The coordinates of the centroid are
considered to be the location of the corresponding suburb.

2. City level: The main cities within the data collection zone are identified to constitute the city-level
name class (L2). The coordinates of these cities are extracted from Google Maps and attached to
the related name class.

3. Administrative level: The names of large-scale administrative areas (state or country) in any
possible forms (NSW, New South Wales, Australia, Aus and OZ) surrounding the data collection
zone are considered to shape the administrative name class (L3). As they are too large to be
represented as a single location point, geographic coordinates at this level are not calculated.
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4.2.2. Location Scoring and Assignment

As evident in Figure 3, the location inference component exploits three main sources: textual
content, profile location and place labels. Each of the mentioned sources is checked against
location name classes to investigate whether it corresponds to any location name within one of
the location-name classes or not. To formulate this:

Let,

‚ text.di be the textual content of a tweet di

‚ profile.di be the profile location field of a tweet di

‚ place.di be the place label field of a tweet di

‚ Lj be a location-name class
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Then, a matrix representation of any relationship between the content of a tweet text.di and class
Lj can be shown as:

Mcon “

L1 L2 L3

text.d1

text.d2
...

text.di

»

—

—

—

—

–

f1,1

f2,1
...

fi,1

f1,2

f2,2
...

fi,2

f1,3

f2,3
...

fi,3

fi

ffi

ffi

ffi

ffi

fl

(1)

where fi,j is a location name, which is observed in both text.di and Lj and can be defined as below:

fi,j “

#

x, i f D x P text.di
ˇ

ˇ x P Lj
null, otherwise

(2)

In the equation above, when there are multiple instances of the location names in text.di, which
belong to the same location name class (e.g., multiple suburb names), only the first instance will be
assigned to x.

Having Mcon constructed, the content-based location extraction is performed based on the
following IF statement, which assigns the location name of the finest granularity as the content-based
location of the tweet di through function F.

IF
`

fi,1 ‰ null
˘

THEN
F ptext.diq “ fi,1
ELSE IF

`

fi,2 ‰ null
˘

THEN
F ptext.diq “ fi,2
ELSE IF

`

fi,3 ‰ null
˘

THEN
F ptext.diq “ fi,3
ELSE
F ptext.diq “ null
END IF

(3)

F ptext.diq can have a null value if there is no matching location name observed in the content.
Exactly the same process is performed on the profile location field (pro f ile.di), as well as place label
field (place.di) and as a result, F ppro f ile.diq and F pplace.diq, representing the finest granularity level
of each field, are identified for all the sample tweets. As the output of this stage, each tweet is assigned
new fields containing the values extracted for ptext.diq, F ppro f ile.diq and F pplace.diq along with the
class ID that the value belongs to. Following this step, each tweet should be assigned with one location
only, and a decision should be made on which extracted field is the most suitable to be used as the
final location of a tweet. For this purpose, a rule is defined as follows:

‚ Final location of a tweet is the extracted field that belongs to the finest granular level.
‚ If there is more than one field belonging to the same granular level, the final location is assigned

based on the following order of importance:

‚ Content-based location F ptext.diq

‚ Place-labelled based location F pplace.diq

‚ Profile-based location F pprofile.diq

The reason behind the second rule is that the location references in both the text and place labelling
are generated at the time of creation of a tweet, and are likely to be in connection with the topic of the
tweet. They are also much more current than user profile location, which is likely to be generated at
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the time of Twitter account opening. Moreover, the content-based location is considered to be more
related and more detailed than place labelling, which is mostly used to assign broad and general place
names (cities). After all, if the method is unable to find any location references that match the location
name classes, or if there are no location references found within the location-related elements, it simply
returns NA (Not Applicable) to indicate that the method is unable to infer the location of that specific
tweet. Following the rule above, each tweet is assigned a location name from the corresponding
location name class. After assigning each sample tweet with a location name, the coordinates of the
centroid of the inferred location (calculated in Section 4.2.1) are allocated to that tweet. The next section
reports the results of the implementation of the method.

5. Results and Evaluation

The method described in the previous section is applied to 2409 sample tweets. Table 2 shows
a few examples of sample tweets after the execution of the method.

Table 2. Results of the application of the method on sample tweets.

No. Tweet ID Source
Location
Name
Class

Inferred Location Actual Location Distance
Error
(KM)

Location Name Latitude Longitude Latitude Longitude

1 590334736905572352 Place L1 Brighton-Le-Sands ´33.9583 151.1536 ´33.9697 151.1367 2.0105
2 590335052610936833 Text L1 Manly ´33.8042 151.2905 ´33.7825 151.2847 2.4746
6 590338256392323072 Profile Location L1 Sunshine ´33.1121 151.5619 ´32.9252 151.7733 28.6381
7 590338761805930498 Place L2 Newcastle ´32.9167 151.7500 ´32.9242 151.7470 0.8836
8 590338765140332544 - - NA NA NA ´33.9194 151.2526 und
9 590339563270184962 Text L1 Sydenham ´33.9167 151.1680 ´33.9482 151.1401 4.3454
10 590341916333629441 Text L1 Broke ´32.7681 151.0883 ´33.9174 151.2310 128.4835
11 590342183258968064 Place L2 Central Coast ´33.2992 151.1922 ´33.3722 151.4796 27.9043
14 590351290875518976 - - NA NA NA ´31.8964 152.4614 und
15 590351614130528256 Text L1 Bulahdelah ´32.3868 152.1530 ´32.0242 152.4728 50.3128
16 592169625951014912 Text L1 Petersham ´33.8946 151.1549 ´33.8963 151.1535 0.2267
17 592172876750409728 Text L1 Wyong ´33.2778 151.4374 ´33.2688 151.4343 1.0432
18 592184074103566338 Profile Location L1 Manly ´33.8042 151.2905 ´33.7744 151.2929 3.3290
20 592212076082405377 Text L1 Petersham ´33.8946 151.1549 ´33.8964 151.1532 0.2534
...

...
...

...
...

...
...

...
...

...
2399 592217778284814338 Text L1 Rhodes ´33.8292 151.0877 ´33.8870 151.1791 10.6023
2400 592218784267567104 Profile Location L1 The Entrance ´33.3450 151.4957 ´33.3384 151.4958 0.7343
2401 592221934223368192 Text L1 Manly ´33.8042 151.2905 ´33.7679 151.1065 17.4738
2402 592204745135108096 Place L3 New South Wales NA NA ´30.8144 152.5375 und
2403 592228305371172864 Place L2 Sydney ´33.8651 151.2099 ´33.7191 150.8924 33.5307
2404 592228457842544640 Place L2 Newcastle ´32.9167 151.7500 ´32.9340 151.7250 3.0236
2405 592263688632963072 Text L1 Rooty Hill ´33.7733 150.8401 ´33.8580 151.0340 20.2390
2406 592267839433637888 Place L2 Sydney ´33.8651 151.2099 ´33.8663 151.0465 15.0855
2407 592269376172109824 Text L1 Rosebery ´33.9189 151.2048 ´33.7890 151.0849 18.1999
2408 592281403053764608 Text L1 Rhodes ´33.8292 151.0877 ´33.8866 151.1787 10.5456
2409 592283790472445952 Text L1 Maroubra ´33.9440 151.2443 ´33.9556 151.2249 2.2034

In the table above, the “Tweet ID” field is the unique identifier of a tweet assigned by Twitter.
The “source” field indicates the location-related element, which is determined as the suitable element
for location inference by the method. The “Location Name Class” field indicates the corresponding
location name class, from which a location name is assigned to each sample tweet. The “Inferred
Location” field and its subfields (“Location Name”, “Latitude” and “Longitude”) show the name and
geocoordinates of the inferred location. In addition, as mentioned in Section 4.1.2, only geotagged
tweets are chosen to be in the sample dataset. This means that each sample tweet has the geotagging
information (in the form of longitude and latitude) nested within the “coordinates” element of the
tweet. The geotagged coordinates of the sample tweets are assumed as the actual location of the tweets
and are shown in the “Actual Location” field. The “Distance Error” field, which is discussed later
in this section, denotes the distance between the actual location and the inferred location of a tweet.
This field is used as the evaluation metric to measure the accuracy of the results.

As it can be observed in the table above, the records highlighted in yellow show examples of the
records in which the “Location Name”, “Latitude” and “Longitude” subfields are marked as NA (Not
Applicable). This means that the method was unable to allocate geocoordinates to those tweets, either
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because there were no matching location names within location name classes or there were no location
references cited within the potential sources. Moreover, as marked in cyan in Table 2, the method
may return NA for only “Latitude” and “Longitude” subfields if the inferred location belongs to the
administrative level pL3q, which is considered to be too large and thus inappropriate to be represented
by an assigned point coordinates. A detailed analysis of the results shows that the method was unable
to infer and assign the geocoordinates to 312 sample tweets. This implies that the method failed to infer
the location coordinates of 312 (out of 2409) sample tweets due to the discussed reasons. For the rest of
the sample dataset, which includes 2097 tweets, the proposed method was able to successfully infer
the location name and allocate the matching geocoordinates to each tweet. This indicates a success
rate of 87% for the proposed method in terms of inferring the location of the sample tweets.

In order to further evaluate the performance of the method within the location inferred tweets
(87%), an evaluation metric is defined to measure the accuracy of the results. Accuracy in the location
inference context is defined as the distance between the inferred location obtained from the localisation
attempt and the actual location in the physical space [32]. Accuracy, from the perspective of location
inference techniques, can be referred to as distance error. Zekavat and Buehrer [32] argue that the
average distance error can be adopted as the performance metric for the evaluation of the location
inference and localisation techniques.

To evaluate the accuracy of the method, the distance between the inferred geocoordinates and the
geocoordinates of the actual location of the tweets is calculated using the “Haversine” formula [33].
This formula calculates the great-circle distance as the shortest distance between two points based
on the given coordinates. For instance, let’s assume that there are two points as P1 “ pφ1, λ1q and
P2 “ pφ2, λ2q, then the distance between these two points can be calculated using the following formula:

d “ 2rarcsin

˜

d

sin2
ˆ

φ2 ´ φ1

2

˙

` cos pφ1q ˆ cos pφ1q ˆ sin2
ˆ

λ2 ´ λ1

2

˙

¸

(4)

where r is the radius of the sphere, which is approximately equal to 6372 km.
Using Equation (4), the distance between the inferred and actual locations of the sample tweets is

calculated and shown in the “Distance Error” field in Table 2. The function which applies the formula
returns NA where the inferred geocoordinates have no valid values due to the aforementioned reason.
The results indicate that the distance error ranges from as little as 0.11 km to as much as 177.6 km.
Figure 7 shows the distance error for the sample tweets in 10 km intervals. The sample tweets for
which the distance error is indeterminable are marked as NA in the figure.
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Figure 7. Distance error based distribution of the location inferred tweets.

It is evident from Figure 7, that for 1435 tweets (60%) out of 2409 sample tweets, the inferred
location was at a distance equal to or smaller than 10 km from their actual location. In addition, it
can be seen that 569 tweets were located within proximity of 10 to 50 km of their actual location.
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Among the remaining tweets, the location of 93 tweets was inferred, with an accuracy of 50 to 180 km,
and finally, the distance error of 312 tweets remains undeterminable due to the inability of the method
to infer their location. Figure 8 shows the accuracy of the method based on the percentage of sample
tweets falling within different ranges of the distance error (DE) metric.

ISPRS Int. J. Geo-Inf. 2016, 5, 56 13 of 16 

 

infer their location. Figure 8 shows the accuracy of the method based on the percentage of sample 

tweets falling within different ranges of the distance error (DE) metric. 

 

Figure 8. Accuracy of the location inference method based on distance error (DE). 

To evaluate overall performance of the method, the average distance error can be calculated as 

the mean value of the calculated distance errors for 2097 tweets, for which the method was able to 

successfully perform the location inference. Putting the undetermined tweets aside, the method infers 

the location of 87% of the sample tweets, with the average distance error of 12.2 km, which, compared 

to the current state-of-the-art methods, can be viewed as a significant improvement over the current 

location inference methods. 

6. Discussion, Conclusions and Future Work 

Twitter has shown potential to be an effective tool in disseminating and obtaining up-to-the-

minute information about real-world incidents. However, there are significant issues and problems 

in ensuring the quality and reliability of Twitter data for emergency response. Currently, being less 

than 2% geotagged, the location inference of Twitter data is one of the notable challenges. To give 

insight into Twitter data and to suggest possible solutions, the study provides a detailed investigation 

into the location-related elements of Twitter data. Getting to know the nature of Twitter data and 

utilising methods to deal with it, by itself, is an essential knowledge area. Therefore, a state-of-the-

art description of location-related elements, as well as providing the overall current status of each 

element through practical studies, can be considered as the first contribution of this paper. 

This study also proposes a multi-elemental location inference method, which uses three probable 

sources of location information and attempts to infer the location of tweets based on these elements. As 

far as authors are aware, the proposed location inference method is the first of its kind, which 

considers all the possible elements of a tweet through scoring and ranking algorithms, to achieve and 

predict the finest level of location granularity. In addition, in terms of the performance and accuracy 

of the proposed method, it was able to successfully infer the location of 87% of the sample tweets 

with an average distance error of 12.2 km and the median distance error of 4.5 km. This is a significant 

improvement compared with that of the current methods in the literature, which can predict the 

location either with a much larger average and median distance prediction error of 200 km and 30 km, 

respectively. This study, however, presents limitations that should be acknowledged. These 

limitations, at the current stage, include but may not be limited to the following: 

 When there are multiple location references belonging to the same location name class within a 

location-related element (e.g., tweet text), the method only detects the first instance and ignores 

the others. A more detailed investigation of a selected number of tweets shows that about 1% of 

tweets may have multiple location references of the same class (e.g., multiple suburb names), 

which are most likely to be neighbouring and adjacent. Even though this amount can be 

considered negligible without significantly affecting the performance and accuracy of the 

60%
23%

4% 13%

0 < DE ≤ 10 km

10 km < DE ≤ 50 km

50 km < DE ≤ 180 km

Undetermined

Figure 8. Accuracy of the location inference method based on distance error (DE).

To evaluate overall performance of the method, the average distance error can be calculated as
the mean value of the calculated distance errors for 2097 tweets, for which the method was able to
successfully perform the location inference. Putting the undetermined tweets aside, the method infers
the location of 87% of the sample tweets, with the average distance error of 12.2 km, which, compared
to the current state-of-the-art methods, can be viewed as a significant improvement over the current
location inference methods.

6. Discussion, Conclusions and Future Work

Twitter has shown potential to be an effective tool in disseminating and obtaining
up-to-the-minute information about real-world incidents. However, there are significant issues
and problems in ensuring the quality and reliability of Twitter data for emergency response.
Currently, being less than 2% geotagged, the location inference of Twitter data is one of the notable
challenges. To give insight into Twitter data and to suggest possible solutions, the study provides
a detailed investigation into the location-related elements of Twitter data. Getting to know the
nature of Twitter data and utilising methods to deal with it, by itself, is an essential knowledge area.
Therefore, a state-of-the-art description of location-related elements, as well as providing the overall
current status of each element through practical studies, can be considered as the first contribution of
this paper.

This study also proposes a multi-elemental location inference method, which uses three probable
sources of location information and attempts to infer the location of tweets based on these elements.
As far as authors are aware, the proposed location inference method is the first of its kind, which
considers all the possible elements of a tweet through scoring and ranking algorithms, to achieve and
predict the finest level of location granularity. In addition, in terms of the performance and accuracy of
the proposed method, it was able to successfully infer the location of 87% of the sample tweets with
an average distance error of 12.2 km and the median distance error of 4.5 km. This is a significant
improvement compared with that of the current methods in the literature, which can predict the
location either with a much larger average and median distance prediction error of 200 km and 30 km,
respectively. This study, however, presents limitations that should be acknowledged. These limitations,
at the current stage, include but may not be limited to the following:

‚ When there are multiple location references belonging to the same location name class within
a location-related element (e.g., tweet text), the method only detects the first instance and ignores
the others. A more detailed investigation of a selected number of tweets shows that about
1% of tweets may have multiple location references of the same class (e.g., multiple suburb
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names), which are most likely to be neighbouring and adjacent. Even though this amount can be
considered negligible without significantly affecting the performance and accuracy of the method,
future developments of the method should include a more sophisticated handling of such cases.

‚ The method is not able to appropriately cope with the location references that might be found in the
location-related element in a tweet but are not present in the location name classes. Resolving this
issue in the future can increase the overall success rate of the method.

‚ The method is programmed to be applied to English tweets and may not be applicable on
Non-English languages, especially the languages that use non-ASCII characters (e.g., Arabic
and Chinese).

The study does not end here. Implementing the method for different types of datasets related to
various kinds of incidents (e.g., bushfire, earthquake and terrorist attacks), along with the steps required
for overcoming the above-mentioned limitations of the study, shape a future research direction that the
authors wish to follow. Furthermore, a deeper investigation of results, focusing on the location-related
elements with an aim to fine-tune the method, can be considered as other future work in this line.
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