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Abstract: Land suitability analysis is employed to evaluate the appropriateness of land for a particular
purpose whilst integrating both qualitative and quantitative inputs, which can be continuous in
nature. However, in agricultural modelling there is often a disregard of this contiguous aspect.
Therefore, some parametric procedures for suitability analysis compartmentalise units into defined
membership classes. This imposition of crisp boundaries neglects the continuous formations found
throughout nature and overlooks differences and inherent uncertainties found in the modelling.
This research will compare two approaches to suitability analysis over three differing methods.
The primary approach will use an Analytical Hierarchy Process (AHP), while the other approach
will use a Fuzzy AHP over two methods; Fitted Fuzzy AHP and Nested Fuzzy AHP. Secondary to
this, each method will be assessed into how it behaves in a climate change scenario to understand
and highlight the role of uncertainties in model conceptualisation and structure. Outputs and
comparisons between each method, in relation to area, proportion of membership classes and spatial
representation, showed that fuzzy modelling techniques detailed a more robust and continuous
output. In particular the Nested Fuzzy AHP was concluded to be more pertinent, as it incorporated
complex modelling techniques, as well as the initial AHP framework. Through this comparison and
assessment of model behaviour, an evaluation of each methods predictive capacity and relevance for
decision-making purposes in agricultural applications is gained.

Keywords: land suitability; Analytical Hierarchy Process; Fuzzy Analysis; Fuzzy AHP; agriculture;
climate

1. Introduction

There is a growing consensus in natural resource management that agricultural policy will need
to address likely impacts foreseen by climate change science and suggest and support adaptation
actions [1]. Effective decisions, in relation to agricultural land use, suitability and capability, are
fundamental to achieve and maintain ideal land productivity and to ensure future sustainability [2].
Decisions taken can influence not only agricultural or environmental practices, however, other linked
components, such as infrastructure and transportation. These impacts will potentially occur across
all spatial domains and have ramifications on the adaptive capacities of all linked components.
The determination of productive land for agricultural systems, which can take into account projected
climatic changes, is an important tool in the planning sphere.
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Land Suitability analysis, which is the evaluation of how well the qualities of a unit of land
match the prerequisites of a specific type of land cover or use [3], can be employed as one such
tool. Suitability analysis can evaluate the appropriateness of the land for a particular purpose whilst
integrating both qualitative and quantitative inputs. Evaluation of suitability is principally done to
assess an area, or region, for optimal crop production and involves the interpretation of agricultural
based data, such as soils, landscape, climate and water, in an effort to match land characteristics with
crop requirements [4,5]. However, in an agricultural frame, the determination of what areas of land
are deemed suitable for a particular use can be complex due to the multiple, and often disparate,
streams of data. Multi Criteria Analysis (MCA) is a suite of methodologies that are primarily used
for making decisions from complex input data and has been used numerous times for modelling
suitability, where the main concern is how to combine multiple points of biophysical related data to
arrive at a suitability decision [6–8]. Two main distinguishing features of a MCA is that it can combine
objective and subjective inputs, as well as absolute or relative criteria, and it is flexible in terms of
adjustment [9].

Initial undertakings in suitability analysis can, broadly, be traced to transparency overlaying
techniques, such as those formalised by McHarg [10]. These hand-drawn methods have been replaced
by computer based GIS systems and systems for assessing suitability have evolved and been formalised
in frameworks and models. A widely accepted modelling framework is the Analytical Hierarchy
Process (AHP) [11–13], which has been extensively applied for MCA purposes and utilised in many
decision-making problems [14]. However, any methods that are employed to make these suitability
determinations can be subject to uncertainties in both the scope and quality of outputs.

Boolean-based methodologies in the assessment of land suitability, which includes the AHP,
consider both the input criteria and the categorisation of such, as clearly defined units [15]. Suitability
assessments account for multiple factors that possess a continuous nature, such as soil properties or
climatic variables. The disregard of these continuous factors in standard Boolean methods can lead
to misallocation of land area within the segmented suitability classification [2]. These methods can
overlook differences and inherent uncertainties found in the modelling inputs and outputs, as well as
imposing new uncertainties relating to the defined suitability classes.

The application of fuzzy set theory or fuzzy logic [16,17] allows for the concept of these continuous
factors to be modelled within a suitability assessment [18] within a GIS or spatial domain [4]. In a
standard approach, membership with a set, or class, is clearly and crisply defined as either in the class
or not in the class. In a fuzzy set, membership in the class can be apportioned a factor that ranges
from not in to completely in the class. In comparison to standard Boolean models, which impose crisp
boundaries and clearly defined geographical spaces that result in homogenised land units with single
value suitability classes [19], fuzzy sets and fuzzy logic extends a method to process the continuous
nature and uncertainty to produce a more realistic suitability classification system [18,20]. Fuzzy set
modelling of spatially orientated data has been documented and exhibited for suitability assessments
within the literature [2,5,14,15,18,19,21–23].

The principal objective of this research is to compare these parametric and continuous modelling
approaches to land suitability analysis. Boolean methodologies will be demonstrated using the
AHP technique, whilst fuzzy logic approaches will be covered under two differing fuzzy set models;
a Fitted Fuzzy AHP and a Nested Fuzzy AHP. Secondary to this objective is to assess how each land
suitability method behaves in a projected climate scenario and the possible variations that may exhibit
between models into a climate future. All three methods will evaluate the biophysical agricultural land
suitability for pear production in the Goulburn Broken Region of the state of Victoria, Australia.
Through this comparison and assessment of suitability model behaviours into a climate future,
an evaluation of each methods predictive capacity, validity and relevance for decision-making purposes
can be garnered. This can potentially highlight the role of uncertainties in the modelling framework
and outputs, in particular how the imposition of crisp boundaries can define and amplify uncertainty.
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2. Methods

2.1. Study Region

The area of focus for this analysis is centred upon the Goulburn Broken Region of the state of
Victoria in Australia (Figure 1). The defined geographic area for the study comprises of the boundary
extent for seven Local Government Areas; Moira, Shepparton, Benalla, Campaspe, Murrindindi and
Mansfield. Hereafter, this area will be referred to as the Study Region. The region is located to the north
of the state capital, Melbourne. It is bordered to the south by the Great Dividing Range and to the north
by the Murray River and the state of New South Wales. It has an area of approximately 24,000 km2

(2.4 million hectares) and has a mixture of land uses within its boundaries. The dominant amongst
these uses is land turned over for agricultural production including dryland and irrigated agriculture,
which account for almost two thirds of the area in the Study Region. The largest agricultural enterprise,
in terms of area, in the Study Region are pasture systems set aside for dairy and beef cattle and other
pasture based livestock. However, the predominant industry, in terms of gross revenue, is horticultural
production, which includes stone fruit and pome fruit. Pear production in this region alone accounts
for over 85% of Australian output.
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2.2. Land Suitability Analysis

The United Nations Food and Agricultural Organisation (FAO) has an established framework
structure for the assessment of suitability for any type of land use and cover [3]. This structure is
hierarchical in design and comprises of Orders, Classes, Subclasses and Units. There are two primary
suitability orders, which indicate if a unit of land is suitable or not suitable. Suitability classes are used
to reflect degrees of suitability; for example the suitable order can be divided into high, moderate and
low suitability classes. Furthermore, the not suitable order can be defined into two classes; ‘temporarily’
not suitable and ‘permanently’ not suitable. If necessary, in a given analysis, the classes can be divided
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into subclasses, which reflect types of limitation in a class, and subclasses can be divided into units,
which are used to show production characteristics or other requirements.

This framework has been modified slightly for use in Goulburn Broken Region. The core of the
framework is maintained for application in this study region. The two principle suitability orders are
maintained; Suitable and Not Suitable (NS). NS is further defined into Permanently Not Suitable (PNS)
and Temporarily Not Suitable (TNS). There are four suitability classes utilised; High, Moderate, Low
and Very Low. However, further breakdowns into suitability subclasses and units are not part of the
framework established.

2.3. Analytical Hierarchy Process

For the analysis of land suitability across the Study Region, a Multi Criteria Analysis (MCA) is
utilised. This was done across a regional spatial realm with the use of a Geographic Information System
(GIS). A MCA is a useful tool for dealing with complicated problems [24], in particular those with
seemingly disparate streams of data points. A common technique applied in a MCA is the Analytical
Hierarchy Process (AHP) [11–13,25].

The framework of the AHP is that of a hierarchical decision tree. The top tier of this hierarchy
is the primary objective. From this primary objective the AHP can be divided into primary criteria
groupings and further into secondary and tertiary criteria groupings, where needed. At the base of
the decision tree at the lowest level criteria, alternatives are established. These alternatives are critical
indexed ranges and determine limitations within the criteria groupings. Ratings are established to
rank the intensity of these ranges from best to worst. This is where the determined suitability classes,
with assigned numerical values, can be applied.

In the determination of primary criteria groupings for agricultural production in the Study Region,
there can be many criteria established. Given the Regional Scale of the Study Region there are three
principal biophysical variables, which form the primary criteria; climatic factors, landscape features
and soil characteristics. These are used as a base to determine growth and production for agricultural
land use. Based on expert input and knowledge, these three main criteria are divided into secondary
criteria that are critical for the growth of the commodity being modelled. Where necessary, further
divisions can be made.

Once the criteria are specified and the base decision tree formulated, criteria weightings are then
established. These are calculated for each criterion and indicate the relative importance to one another
and to the overall output. This is done by a pairwise comparison. This involves working with relevant
experts to indicate their subjective input about the relative importance of the criteria by comparing
each criterion against one another individually. This importance is scored via an intensity rating as
seen in Table 1.

Table 1. Pairwise comparison decision importance scores.

Intensity Rating Definition

1 X is of equal importance to Y
3 X is slightly more influential than Y
5 X is more influential than Y
7 X is highly more influential than Y
9 X is definitely more influential than Y

These decisions are placed into a pairwise comparison matrix [11]. Weights are determined
through this matrix by normalising the pairwise comparisons; each value in the matrix column is
divided by the sum of the column. The weights for each criterion are then calculated by taking the
mean of each matrix row. The output values are the criteria weightings, which are absolute numbers
with values between 0 and 1 and it is expected that across one criteria level, or grouping, that these
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weightings add up to 1. Chen [26] and Zhang [27] are noted to further expand on the use of the
pairwise comparison matrix.

Alongside this pairwise comparison and the calculated weights, a consistency ratio is also
calculated, which is an indicator of the quality of the subjective assessments made by the experts
involved [5,11,27]. If the calculated CR is below the set threshold of 0.1, then the pairwise comparisons
are relatively consistent and fit for use in the AHP. If not, then the subjective judgements are
not consistent and there is need for a re-evaluation of the pairwise comparison and the decisions
made within.

Pairwise comparison can be a rigorous technique for capturing expert preferences or opinions,
as comparisons of each factor is done against one another, thus making more reliable judgements [28].
This technique improves consistency amongst criteria weights.

2.4. Fuzzy Set Modelling

It can be noticed in the establishment of the AHP framework, that as alternatives, or suitability
classes in this instance, are set, there are defined memberships formed. That is, an input variable in any
given criteria grouping belongs to one alternative, or class, and not another. This Boolean approach in
the framework establishes crisp boundaries on decisions. But given the continuous nature of some
input variables, this true or false approach can impose severe restrictions on the outputs and any
analysis derived from such.

Fuzzy set logic, developed by Zadeh et al. [16,17] works on the principal that the boundaries
between classes, for various reasons, cannot be clearly defined [20]. This can be due to vagueness or
uncertainty in the inputs [29], or related to constant nature of some variables. Hence, fuzzy set logic
removes the crisp boundaries and defines for each criteria class alternative, a degree of membership.
This statement of fuzzy membership is not related to a statistically defined probability, but rather it
is a statement of possibility that a variable is a member of a class [20,21,30]. Through a membership
function calculation, a variable can be given a grade of membership to a set, whereby the membership
grade always relates to a given proposition [27]. For example in this study, that a unit of land, in regards
to the three primary biophysical criteria, is suitable for agricultural production.

Just as there can be in probability studies differing distributions, in fuzzy set analysis there can
be a range of fuzzy membership functions [20]. These can include Boolean, linear, parabolic and
sinusoidal functions, to more complex function calculations. For this study a bounded transition zone
sinusoidal membership function is used, initially described by Burrough [20] as ‘model 2’ (Figure 2).

ISPRS Int. J. Geo-Inf. 2016, 5, 99 5 of 16 

 

Pairwise comparison can be a rigorous technique for capturing expert preferences or opinions, 

as comparisons of each factor is done against one another, thus making more reliable judgements 

[28]. This technique improves consistency amongst criteria weights.  

2.4. Fuzzy Set Modelling 

It can be noticed in the establishment of the AHP framework, that as alternatives, or suitability 

classes in this instance, are set, there are defined memberships formed. That is, an input variable in 

any given criteria grouping belongs to one alternative, or class, and not another. This Boolean 

approach in the framework establishes crisp boundaries on decisions. But given the continuous 

nature of some input variables, this true or false approach can impose severe restrictions on the 

outputs and any analysis derived from such. 

Fuzzy set logic, developed by Zadeh et al. [16,17] works on the principal that the boundaries 

between classes, for various reasons, cannot be clearly defined [20]. This can be due to vagueness or 

uncertainty in the inputs [29], or related to constant nature of some variables. Hence, fuzzy set logic 

removes the crisp boundaries and defines for each criteria class alternative, a degree of membership. 

This statement of fuzzy membership is not related to a statistically defined probability, but rather it 

is a statement of possibility that a variable is a member of a class [20,21,30]. Through a membership 

function calculation, a variable can be given a grade of membership to a set, whereby the membership 

grade always relates to a given proposition [27]. For example in this study, that a unit of land, in 

regards to the three primary biophysical criteria, is suitable for agricultural production. 

Just as there can be in probability studies differing distributions, in fuzzy set analysis there can 

be a range of fuzzy membership functions [20]. These can include Boolean, linear, parabolic and 

sinusoidal functions, to more complex function calculations. For this study a bounded transition zone 

sinusoidal membership function is used, initially described by Burrough [20] as ‘model 2’ (Figure 2). 

 

Figure 2. Bounded transition zone sinusoidal membership function. 

In this Membership Function (MF), the behaviour of the positive and negative sinusoidal curves 

are set by the parameters 𝑑1 and 𝑑2, which control the width and the transitional point of the curve 

where MF = 0.5. This model is defined by three equations: 

𝑀𝐹(𝑧) =
1

1 + (
𝑧 − 𝑏1 − 𝑑1

𝑑1
)

2           𝑖𝑓 𝑧 < 𝑏1 + 𝑑1 
(1) 

𝑀𝐹(𝑧) = 1          𝑖𝑓 𝑏1 + 𝑑1 ≤ 𝑧 ≤  𝑏2 − 𝑑2 (2) 

𝑀𝐹(𝑧) =
1

1 + (
𝑧 − 𝑏2 + 𝑑2

𝑑2
)

2           𝑖𝑓 𝑧 < 𝑏2 − 𝑑2 
(3) 
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In this Membership Function (MF), the behaviour of the positive and negative sinusoidal curves
are set by the parameters d1 and d2, which control the width and the transitional point of the curve
where MF = 0.5. This model is defined by three equations:

MF pzq “
1

1`
´

z´b1´d1
d1

¯2 i f z ă b1 ` d1 (1)

MF pzq “ 1 i f b1 ` d1 ď z ď b2 ´ d2 (2)

MF pzq “
1

1`
´

z´b2`d2
d2

¯2 i f z ă b2 ´ d2 (3)

where MF pzq is the value of the membership function corresponding to the variable value of z, d1 and
d2 are transitions zone widths with d1 relating to the positive curve and d2 to the negative curve, and
b1 and b2 are the transitional cross-over points where the variable z has a MF pzq “ 0.

These equations can be used together as a singular model to form a complete curve, or as distinct
separate functions, depending on the nature of the variable being input into the function. When relating
this back to an established AHP model, values of z and b can be ascertained. However, the transitional
zone width of d in this curve is principally defined by the user. Hence, it is dependent on the users’
knowledge and can be subjective in nature. This can be alleviated by fitting the curve to the AHP.

The AHP framework can be expressed within this membership function grading (Figure 3a),
which depicts the crisp boundaries imposed by the criteria alternative classes. These boundary issues
can be alleviated by overlaying and fitting a sinusoidal membership function model, as seen above
(Figure 2), into a Fitted Fuzzy membership function (Figure 3b).
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Here, the values for b are derived from the alternative classes where the suitability class value
is 0.5, which equates to a membership function value of 0.5. Then values for the transition zone
width, d can be calculated by determining the difference between the values where MF pzq “ 1.0
and MF pzq “ 0.5.

An alternative to this Fitted Fuzzy curve is to establish curves within the AHP, forming multiple
nested membership functions between each AHP criteria alternative class (Figure 4). The establishment
and formation of any AHP model utilises multiple experts to define objectives, criteria and alternatives.
By using a fuzzy membership curve, even one that is fitted to an AHP, there can be some obfuscation
of expert decisions and input. A Nested Fuzzy AHP still makes use of the overall structure and values
of the original framework established by the Standard AHP. By fitting the membership functions
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within the AHP, original decisions and expert inputs are, more or less, wholly maintained, but crisp
boundaries are eliminated and fuzzy transitions are introduced in their place. However, in the use of
this approach the width of the transition zone in each nested curve is set by the user and cannot be
fitted to pre-existing knowledge.
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2.5. Model Inputs and Application

The land suitability model was applied for pear production across the Study Region for both
current and future climate conditions. Relevant data inputs were sourced from the representative
Local Councils within the Study Region. Climatic information is both provided in a current timeframe
and as future projections for the year 2050, whereas soils and landscape data remain static between
each timeframe. For current values of climate, a climate normal has been established. This is referred
to as the baseline climate. This baseline is calculated for all climatic variables using climatic data from
1961 to 1990. This thirty year period is long enough to include and account for year to year variations,
but not that long to allow it to be influenced by longer term climate trends. This period of 1961 to
1990 is also used as a baseline by a number of other meteorological organisations including the World
Meteorological Organisation and the Australian Bureau of Meteorology. Future climate scenarios for
the year 2050 were created by use of the CSIRO’s Global Circulation Model (GCM) CSIRO Mk 3.5 [31]
and the A1FI emissions scenario [32]. The atmospheric content of the Mk 3.5 model has been used to
generate monthly-based data. Both the baseline and projected climate data are provided Victoria-wide
for the necessary climatic variables and is furnished at a spatial resolution of a 5 km2 in a grid format.

The AHP model for pear production is presented in a tabular format in Table 2. Only the highest
and lowest suitability classes are detailed in this particular table due to the complexity and size
of this particular AHP decision tree model. Further presentations of a simpler AHP decision tree
model as applied to suitability analysis in Victoria, Australia, can be found in Sposito et al. [28].
For actual application of the model there are several defined suitability classes, from high to very low,
not documented within the table. The three main biophysical criteria are represented in this model.
Each of these criteria has associated weights attached to them, which are presented as percentages
for ease of interpretation and add up to 100% in any given grouping. For example, landscape had
a weight of 15%, soil 25% and climate 60%. These values reflect the respective significance of each
criterion for the growth of the commodity in question. In the next level down, within climate, rainfall
is the most important criteria with a weight of 60%. All primary and secondary criteria divisions,
weights, suitability classes and index values are determined and defined by expert judgement and
subjected to a pairwise comparison. All these calculated values have been tested for consistency using
a consistency ratio calculation and have been found to be under the threshold of 10%.
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Table 2. Land suitability model for pear production.

Criteria Weight (%) Suitability Class Index Value Membership Function

1st 2nd 3rd 1st 2nd 3rd High Low High Low Equations Curve Behaviour

Landscape 5

Slope 90 <1.8˝ >18˝ 1.0 ´1.0 (Perm) (3) Negative
Aspect 10 N, E, W S 1.0 0.6 (1)–(3) Full

Soil 30

pH 10 5.8–7.0 <4.0 and >8.5 1.0 ´1.0 (Temp) (1)–(3) Full
Sodicity 10 Not Sodic Sodic 1.0 0.6 n.a. n.a.
Useable Depth 25 >45 cm <10 cm 1.0 ´1.0 (Perm) (1) Positive
Texture 25 CL, L, LC, SL S, HC 1.0 0.1 n.a. n.a.

Drainage 10 Well,
Moderate Very Poor 1.0 0.1 n.a. n.a.

ECe 20 Very Low Very High 1.0 ´1.0 (Perm) n.a. n.a.

Climate 65

Temperature 45
Minimum Temperature 50
September–October 70 4–20 ˝C <´2 ˝C 1.0 0.0 (1)–(3) Full

November–March 30 15–20 ˝C <10 ˝C, >25
˝C 1.0 0.0 (1)–(3) Full

Maximum Temperature 50

September–October 70 4–20 ˝C <´2 ˝C, >25
˝C 1.0 0.0 (1)–(3) Full

November–March 30 <25 ˝C >32 ˝C 1.0 0.0 (3) Negative
Wind 5 <5 km/h >30 km/h 1.0 0.5 (3) Negative
Chill Units 5 >500 CU <300 CU 1.0 0.0 (1) Positive

Water Availability 45

June–August 40 50–120 mm <35 mm,
>120 mm 1.0 0.0 (1)–(3) Full

September–October 10 <40 mm >120 mm 1.0 0.0 (3) Negative
November–January 30 20–45 mm >135 mm 1.0 0.0 (1)–(3) Full
May 20 20–150 mm >200 mm 1.0 0.0 (1)–(3) Full
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At base, the defined criteria are classified into suitability classes and are given a numerical index
value. These numerical values are based on the suitability framework, as established by the FAO [3].
There are two main suitability orders; Not Suitable (´1.0) and Suitable (0.0 to 1.0). Not Suitable is
further detailed into Temporarily Not Suitable (TNS), which indicate areas that can be remediated and
Permanently Not Suitable (PNS) for areas completely off-limits. Four suitability classes are utilised;
High (0.8 to 1.0), Moderate (0.5 to 0.7), Low (0.2 to 0.4) and Very Low (0.0 to 0.1).

For analysis of agricultural land suitability for pear production within the Goulburn Broken Study
Region three approaches will be utilised. These will be a Standard AHP approach and two variations
of fuzzy set modelling, namely Fitted Fuzzy curves and Nested Fuzzy AHP. This will be done over
two differing climate periods, the climate normal baseline and the future projected year of 2050.

In translation to fuzzy membership functions for each of the two applied fuzzy set models,
each input criteria will exhibit different behaviours. This will be in relation to the membership
function curves and Equations (1)–(3), and will present as a positive curve, a negative curve or a
combination of both. Table 2 outlines how each of the input criteria will be modelled by their respective
membership functions.

The land suitability model was implemented using Python Scripting Modules and Tools
embedded within ESRI ArcGIS v10.1© (Redlands, CA, USA). Each data input for the biophysical
factors are reclassified and overlayed, as according to the suitability index value and weighting.
The final output is a composite map detailing the suitability for growth for perennial ryegrass across
the study region.

3. Results

The execution of the model produces a composite map that ranks areas in terms of suitability
for the growth of perennial ryegrass; it has an index range of 0.0 to 1.0, where 0.0 means a site
which is deemed to have no potential and 1.0 represents a site deemed ideal for growing perennial
ryegrass/sub-clover. For interpretation purposes these vales have been converted to percentages,
which correspond to, and can be grouped into, the defined suitability classes. For the purposes of this
study, all area within the Study Region will be considered for analysis in spatial analysis and total area
counts. In reality a portion of the study region is deemed public land or for urban use, such as national
or state parks or residential settlements.

3.1. Standard AHP Outputs

Figure 5 depicts the suitability outputs for the climate normal baseline year and the year 2050 in
the Standard Boolean AHP Model. In the baseline years (left panel) the majority of the Study Region
shows high suitability, primarily in the 90% suitability index value, with some areas in the southeast
and north in the lower 80% values. Across the central region, northeast to west, is a distribution
detailing a suitability of 100%. There are some minor distributions into the southern areas showing
suitability in the moderate ratings at 80%. Large areas in the south detail land that is determined to
be PNS, which is related to landscape and soil factors that inhibit pear cultivation. Other areas into
the north have been determined to be PNS since they are large water bodies. Into 2050 (right panel),
the majority of the region still shows high suitability at 80%, and above. However, towards the north
there are some declines into more moderate suitability classes. The central band of high suitability has
shifted into the south, with this central region now showing suitability at 90%.
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3.2. Fuzzy Set Modelling Outputs

The two panels in Figure 6 are fuzzy set modelling outputs in which the sinusoidal membership
function curve is fitted to the determined values within the AHP, as depicted in Figure 3. These two
panels represent outputs for the climate normal baseline year (left panel) and the year 2050 (right panel).
Suitability index values, i.e., membership function values, in the Standard AHP approach are presented
as being as being in distinct classes. In comparison with this, the suitability index values in the fuzzy
set models are continuous. Hence, the spatial outputs can be depicted with a gradated colour schema,
similar to that in the Standard AHP spatial outputs, but more reflecting the complex modelling values.

In the climate normal baseline panel, the majority of the region depicts high suitability values,
which are at 80% and above. Higher values are concentrated into the central sub-region from the
northeast into the central west, with lower high values either found along the periphery of these
distributions or interspersed in smaller minor distributions. Moderate ratings at 70% and below are
also noted into the southern areas. Here also are patches of land determined to be PNS, which is
principally due to landscape slope factors and other limiting soils criteria. However, in comparison
to the Standard AHP outputs, these non-suitable distributions are smaller in area. Into the year 2050,
these areas of higher suitability are seen to shift southward, with the majority of the south of the Study
Region detailing values at approximately 80% and above. Moderate ratings in the south, noted in the
baseline, are now replaced by these higher ratings. However, moderate ratings are now observed in
the north, where higher suitability values decline into lower classes.

Spatial outputs for the secondary fuzzy set model, in which individual membership functions
are nested within the Standard AHP framework, are detailed in Figure 7. Index values within these
outputs are continuous and therefore, the output figures are presented with a gradated colour ramp.
The two panels for the baseline climate normal (left panel) and the year 2050 (right panel), show very
similar trends and patterns to the two previous modelling outputs, with high suitability ratings in the
baseline that is noted to shift southward into 2050, with a general decrease in suitability in the north.
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However, outputs can be described as an amalgam of both the prior modelling techniques.
These figures depict slightly more clearly defined distributions or regions of suitability, which reflects
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the Boolean framework in the Standard AHP approach. But there is a more gradated and continuous
flow between these areas, which is a characterisation of the membership curves fitted into and within
the AHP. This is more clearly represented in the 2050 output, where there is a clear demarcation
between the northern and southern areas with a northeast to west distribution of high suitability
ratings. Additionally, moderate ratings in the north are more clearly defined and slightly larger in area,
whilst still retaining the continuous and gradated pattern.

3.3. Output Comparisons

For each suitability class, the total hectare amount each class occupies within the Study Region,
as well as their relative proportion can be obtained, which is shown in Table 3. For comparison
purposes between the Standard AHP and both fuzzy set models, the suitability index values have been
defuzzified, that is they have been grouped in their respective whole number broad suitability classes.

Table 3. Total hectare output for each suitability index value class in the study region for each of the
three suitability modelling methods in a climate normal and a 2050 climate.

Suitability
Index Value

Standard Fitted Nested

Normal 2050 Normal 2050 Normal 2050

Hectares (ha)

TNS 1 8045 (0.3%) 8045 (0.3%) 8045 (0.3%) 8045 (0.3%) 8045 (0.3%) 8045 (0.3%)

PNS 2 320,632
(13.1%)

320,632
(13.1%)

178,508
(7.3%)

178,508
(7.3%)

178,508
(7.3%)

178,508
(7.3%)

60% 3 (>0.1%) - - - - -

70% 29,674
(1.2%)

489,530
(20.0%)

3513
(0.1%)

24,129
(1.0%)

16,713
(0.7%)

67,159
(2.8%)

80% 340,934
(14.0%)

487,400
(20.0%)

277,150
(11.4%)

533,325
(21.8%)

226,459
(9.3%)

665,944
(27.3%)

90% 1,431,712
(58.6%)

1,008,898
(41.3%)

1,655,614
(67.8%)

1,576,833
(64.6%)

1,999,149
(81.9%)

1,508,904
(61.8%)

100% 310,643
(12.7%)

127,138
(5.2%)

318,813
(13.1%)

120,803
(4.9%)

12,769
(0.5%)

13,083
(0.5%)

1 Temporarily Not Suitable; 2 Permanently Not Suitable.

General trends for each method indicate that between the climate normal baseline and 2050 there
is an overall decline in suitability ratings, but the higher proportions always remain within the 90%
suitability index value. Also of note is that the values for the TNS and PNS index values remain the
same. However, from the Standard AHP and fuzzy set models, for these non-suitable classes, there is
a reduction in the total occupied area in the Study Region. The differences between each modelling
method can be discerned from these numerical outputs, in particular between the Standard AHP and
the Fitted Fuzzy model.

Although these numbers cannot illustrate any of the spatial shifts seen in the outputs, they
can demonstrate behaviours in suitability groupings between the impositions of crisp boundaries in
the Standard AHP approach and the fuzzy memberships in both fuzzy set modelling approaches.
Of particular note here is the large increment in the 70% rating in the Standard AHP between the normal
and 2050 outputs. Likewise, another observation within these numerical outputs is the relatively minor
changes in the 90% suitability index value in the Fitted Fuzzy approach.

The Nested Fuzzy approach, as an amalgam of the Standard AHP and Fitted Fuzzy, exhibits
some behaviours of both models. This can be seen in how the 90% suitability class has a strong
decline between the normal and 2050, which is comparable to the Standard AHP results, or the large
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increment in the 80% suitability index value, which is analogous to results garnered from the Fitted
Fuzzy approach.

4. Results Discussion

Between each suitability modelling technique it is only the climatic criteria that are changed
between the two timeframes, whilst both the soils variables and landscape factors are kept constant.
The projected change in climate into the year 2050 invariably leads to a change in suitability. With a
likely decrease of available water and increase in temperatures, the favourable climatic envelope for
the production of pears in the Study Region is seen to shift. Each suitability analysis method witnesses
these changes as a southward shift of higher suitability ratings, with an increase in lower suitability
ratings in the north. This is principally driven by projected increasing inland temperatures coupled
with a lowering of potential water supplies in the current irrigations districts and surrounds.

From a decision-making and planning perspective, it can be beneficial to examine these
suitability changes between the climate normal baseline and projected climates for agricultural
applications. One of the principal reasons intended for a multi-model analysis between two
timeframes was to examine model behaviour between Boolean and Complex modelling techniques
with changing variables.

As described, each method exhibits a similar change pattern between the two timeframes, albeit
with their own idiosyncrasies. The standard AHP approach imposes a Boolean logic to the suitability
index values. Ratings are either definitely part of one grouping, there are no possibilities that it could
share membership with other neighbouring groupings. These crisp boundaries on the suitability index
values enact an either/or on ratings. Hence, in some instances where an index value falls between
two classes, it can be relegated to one class over another. This can occur even where a value is neither
wholly a member of a particular class.

Instances of this can be evidenced within the PNS classes for both timeframes in each of the
modelling techniques. In the Standard AHP approach this class is shown to occupy a higher amount of
land, whereas in the fuzzy models these amounts are lower. This is an archetype of where index values
can have a grade of membership between two classes and it is reflected in the fuzzy model spatial
outputs, where more area is show to fall within the suitable range. This is also evidenced in other
classes, such as the 70% moderate class. Here, in the standard AHP approach, between the climate
normal baseline and 2050 there is significant increase in the amount of area occupied by this class.
However, for the Fitted Fuzzy and Nested Fuzzy approaches, this increase in this class is not as large.

5. Concluding Comments

The base AHP framework on which all approaches have been built is an Expert Systems Model.
That is, the models are informed by and built by agricultural experts. There are land use data layers
that spatially indicate where agricultural enterprises exist in the landscape. But, as is often the case,
the placement of agriculture across the Australian landscape has largely been informed by historic
settlement patterns and tradition has maintained their placement. Suitability of the land is only now
becoming a more established concept that is slowly being accepted across the Australian farm-scape.
The suitability outputs, for all approaches, at best exhibit a representation, or snapshot, of reality at a
particular point in time. This is dependent on the best available data at the time of modelling and the
reliability of expert input and interpretation.

However, this expert systems modelling methodology can be subject to a range of uncertainties.
The expert input that forms a core part of the framework is subjective in nature, it can be formulated
on biased opinions or a narrow field of expertise. Also definitions of certain land factors derived by
experts, which may be considered important in the determination of suitability, can be intrinsically
vague [21]. These uncertainties can be diminished through certain actions, such as in an AHP where
pairwise comparisons, use of multiple experts and consistency ratios all act in unison to reduce
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subjectivity. Furthermore, Sicat et al. [21], through the application of fuzzy set modelling on expert
knowledge, essentially controls and reduces this subjective uncertainty.

Moreover, uncertainties are seen within the AHP model framework. The Boolean design of an
AHP imposes an either/or format on the suitability index values. In a natural system where there
is often a gradual change in particular factors, such as climate or soils, over space and time, this
categorical structure in attributing values introduces a range of uncertainties. This is clearly evident in
the Standard AHP spatial output where there are distinct crisp boundaries across the Study Region.
The complex modelling approach, seen in both fuzzy set methods, are useful in minimising these
uncertainties as they more closely approximate the natural systems. Fuzzy set theory is able to depict
this land continuity for differing classes, which provides a major advantage [2]. The spatial outputs
for both the Fitted Fuzzy and Nested Fuzzy approaches illustrate this, with both outputs describing
a gradation of suitability across the Study Region, with very little evidence of boundaries between
suitability classes.

To this end, the fuzzy set approaches utilised provide an improved and more comprehensive final
product over that produced by the Standard AHP. Similar conclusions were expressed, amongst others,
by Burrough [18], Keshavarzi [2], Elaalem [15] and Zhang [27]. Between the Fitted Fuzzy and Nested
Fuzzy methods, both have associated positives and negatives that inform their usage. The Fitted
Fuzzy approach is beneficial in that the sinusoidal membership function curves are fitted to the AHP,
that is, the curves transition zone is defined by the AHP framework. Hence, the curve structure is
wholly defined by the AHP and any modeller-based subjectivity is removed. However, this singular
curve used over the whole AHP framework smooths out the AHP, which overlooks the staggered or
disparate suitability index value class categorisation of some AHP frameworks.

The Nested Fuzzy approach, as an amalgam of the Standard AHP approach and fuzzy set
modelling, proffers some benefits over the Fitted Fuzzy approach, with minimal weaknesses.
One drawback to this approach lies in the determination of the transition zone in membership function
curve. Since there is not set parameter to guide the width of this zone, the value has to be set by the
determination of the modeller. Hence, this does introduce some uncertainty back into the framework
via the subjective input. Further to this, Elaalem [15] extends that in reality there can be overlap
between classes. By nesting membership curves between suitability classes, some of this overlap,
or continuity, can be lost. However, by retaining the original structure and suitability index value class
categorisation found in the Standard AHP in the Fuzzy Nested AHP approach, the expert decisions
and input are preserved. Secondly it introduces the complex modelling found in fuzzy sets, which is
shown to replicate the continuous compositions found in natural systems.

Therefore, whilst both fuzzy approaches provide better outputs over the Standard AHP, it is
expected that a Nested Fuzzy AHP approach will more soundly represent and integrate the continuous
nature of the biophysical factors as input into the suitability framework, while producing a more
astute and pertinent suitability output for decision making and planning purposes in agricultural
applications. It allows the inherent vagueness of the landscape to be expressed by not imposing limits
or breaks on the system [18], whilst still integrating expert based knowledge into the framework.
Other illustrations of this approach of marrying expert knowledge and fuzzy set theory are observed
in Sicat et al. [21] and Reshmidevi [22].

This comparison and subsequent assessment of the three suitability analysis techniques, from a
climate normal baseline into a climate future, furnishes an insight into model behaviour. It provides a
base for evaluation of each method’s predictive capacity, validity and relevance. A principal application
of the base outputs is that they will be used to inform decisions in agricultural and natural resource
management and shape planning decisions in the Study Region.

Decision making under any cloud of uncertainty, as imposed by Standard AHP approaches, can
be complex and attaining any significant conclusions will be based on any number of caveats [2]. In the
identification of suitable agricultural land that compliments the continuous nature of the environment,
for both a current and future timeframes, there will be greater protection of valuable agricultural land
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in planning decisions. This can be particularly poignant in regional growth areas, where urban and
rural expansion interfaces with productive agricultural land. The development of a suitability model
that more aptly reflects natural systems will potentially provide a more accurate output that has a
greater predictive value for agricultural land suitability.
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