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Abstract: The interaction between human activity and landscape pattern has been a hot research
topic during the last few decades. However, scholars used to measure human activity by social,
economic and humanistic indexes. These indexes cannot directly reflect human activity and are not
suitable for fine-grained analysis due to the coarse spatial resolution. In view of the above problems,
this paper proposes a method that obtains the intensity of human activity from GPS trajectory data,
collects landscape information from remote sensing images and further analyzes the interaction
between human activity and landscape pattern at a fine-grained scale. The Lijiang River Basin is
selected as the study area. Experimental results show that human activity and landscape pattern
interact synergistically in this area. Built-up land and water boost human activity, while woodland
restrains human activity. The effect of human activity on landscape pattern differs by the land cover
category. Overall, human activities make natural land, such as woodland and water, scattered and
fragmented, but cause man-built land, such as built-up land and farmland, clustered and regular.
Nevertheless, human activities inside and outside urban areas are the opposite. The research findings
in this paper are helpful for designing and implementing sustainable management plans.
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1. Introduction

Human activity has a direct and indirect impact on landscape pattern [1], and their mutual
relationship shows different characteristics with the development of society [2]. With the rapid growth
of population and the improvement of the engineering skills of man, the impact of people on the
natural environment is continuously increasing [3,4]; whereas in pre-history time, humans’ ability to
change the environment was limited. Particularly after the Industrial Revolution since the 1740s, the
scale of human impact has been considerably larger than at any point previously [5], and the landscape
pattern of the Earth’s surface has significantly changed since then. According to [6], one-third of the
humid forest in Southeast Asia disappeared between the beginning of the twentieth century and World
War II. The arable land area has decreased more than 80% in the Gorce Mountains area in the past
50 years [7]. In addition, about 1% of the global coastal wetland stock is destroyed each year, caused
by direct human reclamation [8]. Human activity and related socioeconomic variables have become
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very important factors influencing the change of the landscape [9]. On the other hand, the landscape
also exerts an effect on human activity [10]. The lack of knowledge about the relationship between
human activity and landscape could hinder the implementation of sustainable management plans [11];
therefore, understanding the interaction between them becomes an urgent need [12-14].

The advent of various kinds of airborne and satellite-based Earth observation platforms makes
it possible to collect a large area of ground information, including landscape information, quickly
and frequently [15,16]. This technology triggers research on investigating the coupling relationship
between landscape and human activity [17-19]. Two main ways of studying the impact of human
activity on landscape are: (1) making an assumption that a certain type of landscape change is caused
by human activity and then analyzing the impact of humans based on the change of this type of
landscape. Siyuan et al. analyzed the effect of human activities on the landscape in the Yellow
River Basin based on local soil erosion [20]. Geri et al. assumed that human activity is the primary
driving force of landscape pattern change and studied the effects of human activity by analyzing
the heterogeneity of the Mediterranean landscape [21]. (2) The other is measuring human activity
using indicators, such as socio and economic indexes, then inferring human activity and the resulting
impact on the landscape. In order to assess the intensity of human activity, Lii et al. used road
density, the area ratio of human settlements, industrial land and farmland [22]. Guo et al. calculated
the human disturbance degree based on the proportion of construction, tourists, town and country
effects [23]. Gu et al. selected four variables (the ratio of native and non-native species, wetland uses,
surrounding landscape and wetland landscape characteristics) to represent human activity [24], while
Hoang et al. chose socio-economic factors, including engagement in tourism, ethnic group, poverty
rate, population growth and effect of preservation policy [25]. Zeng et al. and Garbarino et al. used
Euclidean distance-based factors, including distance from buildings, roads and tourism lodges, as
assessment indexes of human activity [26,27]. A few scholars also investigated the impact of landscape
pattern on human activity. Di Giulio et al. summarized related literature and concluded that the
landscapes meeting people’s biological and cultural needs tend to be human’s preference, while land
use types, such as roads with high traffic frequencies, have a barrier effect on humans [10].

The first approach can only show an overall trend, since human activity is not quantified. As for
the second approach, there are two problems: Firstly, the social and economic factors cannot reflect
human activity accurately and directly. For instance, the poverty ratio is related to human activity, but
the specific relationship between them is unknown. Secondly, the human activity indexes derived from
socio-economic factors are usually at the scale of the administrative unit, far coarser than the scale
of the land cover classification result; which hinders a deeper analysis on the coupling relationship
between human activity and landscape pattern. Therefore, finding an approach to directly monitor
human activity at a fine spatial scale is necessary. As location and wireless communication technologies
develop and gradually become ubiquitous, more and more sensors are being used in various walks of
life and are producing a large amount of data. This type of data collection process is called participatory
sensing by [28]. Participatory sensing data are of various forms, including GPS trajectory data [29,30],
cell phone positioning data [31,32], RFID data, etc., and provide an effective way to collect and
represent a long time series of real-time human activity.

The objective of this paper is to analyze the fine-grained interaction between human activity
and landscape pattern based on remote sensing images and GPS trajectory data. We hypothesize
that: (1) the impacts of landscape on human activities are influenced by a landscape composition
characterized by the composition percentage of land classes; (2) the impact of human activities on
the landscape varies from land class to land class and also changes with the intensity of activities.
Our major contribution is to propose using GPS trajectories to quantify human activity, to generate the
spatial distribution of human activity with the same resolution as the land cover result and to discover
the otherwise invisible fine-grained interaction characteristics.

The next section introduces the study area and experimental datasets and also presents the
workflow of the methodology and the detailed methods. Section 3 demonstrates and discusses the
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experimental results in the Lijiang River Basin, China. Section 4 concludes with the limitations of this
paper and points out future directions.

2. Materials and Methods

2.1. Study Area

The Lijiang River Basin is located in Guilin, China’s Guangxi Zhuang Autonomous Region,
covering the geographic extent 110°3'55"/-110°56'58"'E, 24°37'12/'-25°55"13""N (Figure 1). The beautiful
rivers and mountains in this basin constitute hundreds of miles of famous Lijiang River karst landscape.
The unique landform, water and cultural landscape provide rich resources for the rise and development
of the local tourism industry [33]. Over 30,000,000 tourists visited this region in 2014. The fast
development of the tourism industry greatly promoted the local economy and society during the
last two decades, but Lijiang River Basin has witnessed severe environmental issues, especially the
significant change of land cover and landscape pattern [34,35].
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Figure 1. Location of the study area.

2.2. Data Acquisition

Six datasets are used in this study: Landsat images, the ASTER DEM product, high spatial
resolution remote sensing images from Google Earth, land use and cover products, GPS trajectory data
and road vector data.

Landsat images of the study area in 2009 and 2013 were downloaded from the USGS data archive.
The images in 2009 were collected by the Thematic Mapper (TM) on Landsat 5, while those in 2013
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were collected by the Operational Land Imager (OLI) on Landsat 8. The spatial resolution of both TM
and OLI images is 30 m. Four scenes of Landsat images (path: 124-125; row: 42-43) cover the study
area, and the mosaic images are shown in Figure 2 in the form of a false color composite. The weather
in the study area tends to be cloudy and foggy, which would not allow for a proper comparison.
Thus, the Landsat images acquired between late October and early December when few clouds are
visible are used, and the cloud-detecting algorithm proposed by [36] is applied to remove clouds
before land cover classification.

(b)

Figure 2. False color composite image of Lijiang River Basin: (a) 2009; (b) 2013.

The ASTER GDEM is produced based on the observation data of NASA’s new generation of
Earth observation satellites called Terra, which are available at the website of NASA's Jet Propulsion
Laboratory. The spatial resolution is 30 m. This dataset is used to compute the slope and aspect of the
ground surface to facilitate land cover classification. The elevation-related information together with
the spectral information can help improve the classification accuracy.

Google Earth is a virtual Earth product developed by Google Inc. and provides multi-temporal
high resolution remote sensing images of many important regions in the world. The spatial resolution
of images can be up to the meter level in some populated regions. These images are used as a land
cover reference due to their timely and detailed information.

The land use/cover products include land use/cover maps and the topographic maps of nature
reserves from the local tourism bureau and statistics bureau. Although these products are not collected
at the same time as Landsat images, they can be used as supplementary reference data after digitization
and geometric correction. Besides, our research group made several on-the-spot investigations of land
cover in the study area using GPS receivers and digital cameras and generated land use/cover data of
a part of the study area as ground truth data.

GPS trajectory data are a typical type of participatory sensing data. The trajectory data used in
this paper are collected by the National Commercial Vehicle Monitoring Platform (NCVMP) operated
by the Ministry of Transportation of China. In the NCVMDP, tourist shuttles and coaches are equipped
with GPS receivers and wireless communication equipment and send their real-time location and
motion parameters to a monitoring center while moving. GPS trajectory data across the country
are accumulated in this center. The sampling interval varies from 30 s—-5 min, and the positioning
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accuracy is from 5-10 m. Figure 3a shows the spatial distribution of raw vehicle tracking data in
the study area, which were collected in 2012. The tourist shuttles and coaches are two dominant
transportation tools within Guilin, since the number of private cars per capita in China and Guangxi
is extremely small [37,38], and, thus, can well reflect the activity of both local residents and outside
visitors. The dataset is composed of the following information: vehicle ID, province ID, latitude,
longitude, speed, direction, status and collection time. Part of the GPS tracking data is shown in
Table 1.

Legend
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Figure 3. Human activity analysis in Lijiang River Basin. (a) Raw GPS trajectories; (b) GPS trajectories
after preprocessing; (c) intensity distribution; (d) intensity grade.
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Table 1. Part of the GPS tracking data in Lijiang River Basin.

VehicleID  ProvinceID  Longitude Latitude Speed Direction Collection Time

MUI712230 450000 110.081383 25.454500 57 351 1 July 2012 10:24:55
MUI712230 450000 110.080466 25.459466 46 348 1 July 2012 10:25:35
MUI712230 450000 110.078700 25.463833 33 326 1 July 2012 10:26:15
MUI712230 450000 110.078133 25.464933 22 353 1 July 2012 10:26:55
MUI712230 450000 110.077450 25.469683 48 353 1July 2012 10:27:35
MUI712230 450000 110.075650 25.474800 54 346 1July 2012 10:28:15
MUI712230 450000 110.074383 25.480733 80 352 1 July 2012 10:28:48
MUI712230 450000 110.074216 25.481900 76 352 1 July 2012 10:28:54
MUE243722 450000 110.105316 25.353883 59 11 1 July 2012 08:20:58
MUE243722 450000 110.104600 25.355566 63 311 1 July 2012 08:21:11
MUE243722 450000 110.103216 25.356683 67 313 1 July 2012 08:21:21

Road vector data are from the 1:10,000 basic geographical database of Guilin City collected by the
Guangxi Bureau of Surveying, Mapping and Geoinformation. The vector road network is used to filter
out noisy GPS data.

2.3. Workflow

The overall workflow is composed of three steps, as shown in Figure 4: landscape pattern
calculation, activity intensity calculation and interaction analysis. Four datasets (Landsat images,
ASTER GDEM, Google Earth images, land use/cover products) are used in the first step, and they are
split into two parts: one part for classification model training and another for validation. The land
use/cover result is generated through the object-oriented image classification method and further used
to derive landscape pattern status based on a group of selected landscape metrics. In the second step,
we first conduct map matching between raw GPS trajectories and road networks to filter out noisy
GPS points. We then use the kernel density estimation method to calculate the spatial distribution
of activity intensity and further obtain its grading map by an established grading standard. Finally,
based on the above three results, we conduct correlation analysis at both the landscape level and class
level to explore the interaction characteristics between these two components.

Landsat ASTER Google Earth || Land use/cover GPS Road
images GDEM Images products trajectories network data
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Figure 4. Flowchart of the interaction analysis between human activity and landscape.
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2.4. Landsat Image Classification

Remote sensing images of Lijiang River Basin are collected on two different paths of satellites,
which makes the image acquisition conditions (sunlight strength, image acquisition angle, etc.)
different. Using the same set of classification parameters to process images would lead to
inconsistencies; therefore, the image classification is conducted scene by scene, and then, the
classification results for each image are mosaicked. Land use/cover are divided into five types
(woodland, water, built-up land, farmland and others) according to the local situation and our
research needs. eCognition is used to implement the object-oriented classification [39] in which
the multi-resolution segmentation [40] is selected with Landsat images, the derived NDVI products
and DEM as input and the scale parameter set to 5. Before image classification, the high-resolution
satellite images on Google Earth, the land use/cover products from government agencies and field
surveying results are used as ground verification data for model training and validation. The overall
classification accuracy is 84.25% by comparing classification results to the validation dataset. Figure 5
shows the land use/cover classification result.
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Figure 5. Land use/cover in Lijiang River Basin: (a) 2009; (b) 2013.

2.5. Landscape Pattern Analysis

The landscape metric is a commonly-used landscape pattern analysis method based on categorical
maps, especially the land cover/use classification result derived through remote sensing images.
The basis or building blocks of categorical maps are patches whose internal heterogeneity is often
ignored. Landscape metrics are a set of important mathematical indicators to quantify spatial
characteristics and the distribution of patches. A large number of metrics have been proposed so far,
such as the size, perimeter and shape of patches or patch density calculated by the number of patches
per hectare. However, we choose only a few metrics, since some of them are correlated or have limited
ability in describing specific landscape patterns [41,42]. We select five groups of metrics based on
conceptual category: (1) area/density/edge metrics: patch density, edge density; (2) shape metrics:
shape index; (3) core area metrics: total core area and core area density; (4) aggregation metrics:
proximity index and contagion index; (5) diversity index: Shannon’s diversity index. Using the
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land cover/use classification result in Section 2.4, we apply the spatial analysis program Fragstats
4.1 [43] to compute the landscape metrics in Lijiang River Basin between 2009 and 2013, with an 8-cell
neighborhood rule. The landscape pattern analysis is performed at two scales: the landscape level
and the class level;, however, the metrics used for these two scales are slightly different due to the
applicability of the metrics. The output can either be a value for each metric or a continuous surface
grid when the metric is calculated for each pixel.

2.6. Human Activity Analysis

Noisy points exist in raw GPS trajectory data due to various kinds of factors impacting positioning
accuracy, such as the multiple-path effect and signal blocking. Before conducting activity analysis, we
use the map matching algorithm [44] to filter out the noisy points that do not match with road networks.

Human activity intensity is the amount of human activity per unit area per unit time. GPS
trajectory data can reflect fine-grained human activity well, and considering its characteristics, the
metric based on GPS trajectory data is defined as the number of trajectory points per unit area per
unit time. This metric is intrinsically the activity density of vehicles. Considering that the simple
density calculation method is sensitive to the analysis scale and ignores the impact of subject on the
surrounding area, we choose the kernel density calculation method [45,46]. The Gaussian kernel is
used to represent the uniform decay of human influence as the following formula:

where & is the bandwidth, 7 is the number of points within the bandwidth, x; is the location of point
objects and x is the location to calculate density. The bandwidth is set to 1000 m according to [47] in
which Kong et al. studied the spatial distribution characteristics of human-impacted landscape and
found the distance of significant impact on landscape to be between 1000 and 1200 m. The grid cell
size for the calculation is set to 30 m to let the calculation result be consistent with the land cover result.

2.7. Interaction Analysis between Human Activity and Landscape Pattern

In order to better explore the interaction and coupling mechanism between these two components,
we investigate the two effects separately based on the following observations: the difference in the
spatial distribution of human activity intensity at one time is mainly determined by the landscape,
and so, it can reflect the impact of the landscape pattern on human activity; yet, the evolution of the
landscape pattern with time in a region is mainly caused by human activity and can reflect the effect of
human activity on landscape. In order to understand the difference of density values in a semantic
context, we classify intensity values into five grades. The approach to choose threshold values is
as follows: first, intensity contour lines are generated based on the intensity image, and then, the
contours that best fit to the boundaries of the geographical functional regions of Guilin are selected
and their associated values used to establish the grading standard shown in Table 2. After grading,
the difference of human activity intensity matches with the difference of functional characteristics.
Correlation and evolution analysis is performed between human activity intensity (or intensity grade)
and the landscape pattern index to explore the fine-grained interaction between the two components.

Table 2. Grading standard of human activity intensity.

Grade Intensity Range Typical Covering Area
1 0-500 Nature dominant area
2 500-3000 Road dominant area
3 3000-10,000 Suburban area
4 10,000-20,000 City core belt
5 20,000—max City core area
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3. Results and Discussion

3.1. Landscape Pattern in the Lijiang River Basin

Table 3 shows the change of landscape indexes at the landscape level in Lijiang River Basin
from 2009-2013, including patch density (PD), edge density (ED), Shannon’s diversity index (SHDI),
contagion index (CONTAG), mean proximity index (PROX_MN), mean shape index (SHAPE_MN),
total core area (TCA) and disjunct core area density (DCAD). The PD goes up to 2.3316 from 1.7139, and
the ED also experiences a slight increase from 30.5714-34.3983. The CONTAG drops to 66.1679% from
66.3172%. The change of these indexes shows that the landscape becomes more and more fragmented
during the four years. On the other hand, the SHDI keeps stable, which indicates that the diversity of
landscape does not change too much, even though the landscape is experiencing fragmentation.

Table 3. Metrics at the landscape level in Lijiang River Basin between 2009 and 2013 (PD = patch
density, ED = edge density, SHDI = Shannon’s diversity index, CONTAG = contagion index,
PROX_MN = proximity index mean, SHAPE_MN = shape index mean, TCA = total core area,
DCAD = disjunct core area density).

Metrics Component Measured Units 2009 2013 Change (%)
PD Density n/100 ha 1.7139 2.3316 36.04
ED Edge m/ha 30.5714 34.3983 12.52
SHDI Diversity - 0.8684 0.8323 —4.16
CONTAG Aggregation Y% 66.3172 66.1679 -0.23
PROX_MN Proximity - 13,319.85 12,723.13 —4.5
SHAPE_MN shape - 1.6625 1.6324 —-1.81
TCA Core Area ha 441,158.04 418,996.26 -5.0
DCAD Core Area n/100 ha 1.0761 1.2264 14.0

Table 4 demonstrates the change of landscape indexes at the class level. The patch densities
of built-up land and farmland are larger than those of woodland and water in both 2009 and 2013,
indicating that the fragmentation degree of built-up land and farmland is more severe. Comparing the
differences of landscape indexes between 2009 and 2013, it can be found that NP (number of patches)
and PD are increasing for every land class.

Table 4. Metrics at the class level in Lijiang River Basin between 2009 and 2013.

PD ED DCAD

Land Class Year NP (n) PROX_MN SHAPE_MN TCA (ha)

(n/100 ha) (m/ha) (n/100 ha)
dland 2009 2118 0.2665 17.5358  71,861.5667 1.6327 377,188.3 0.3969
woodan 2013 2272 0.2859 20.6407  99,686.3262 1.6605 378,656.3 0.4601
. 2009 637 0.0802 2.8799 50.5259 2.2662 1232.1 0.018
water 2013 723 0.091 2.9725 42,5183 2.2502 1000.08 0.0185
builup land 2009 2400 0.302 7.1102 374.464 1.5994 7419.15 0.1505
P 2013 3603 0.4534 11.1942 693.0281 1.6454 10,914.3 0.2137
earmland 2009 4316 0.5432 27.1928 6529.0928 1.9223 51,542.28 0.4166
armian 2013 6181 0.7779 28.4589 1079.4364 1.8994 27,726.57 0.4902
N 2009 4148 0.522 5.7532 21.6444 1.3513 3776.22 0.0941
others 2013 5748 0.7234 6.8593 5.9835 1.2482 699.03 0.0439

3.2. Human Activity Distribution

Figure 3b shows GPS trajectory data after preprocessing. The intensity image of human activity is
calculated using the formula in Section 2.6, and the result is shown in Figure 3c. The highest intensity
value is 70,494. Different colors are used to display the strength of human activity. Red regions
represent strong human activity; yellow represents medium strength; while green shows weak human
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activity. Figure 3d shows the spatial distribution of human activity for different intensity grades. It can
be seen that the human activity of Grade 1 mainly appears in the remote natural areas; the Grade 2
region spreads along major roads; the Grade 3 region is the suburban area; and the Grade 4 and Grade 5
regions are a belt region around downtown and the downtown area, respectively. The covering area
percentages of human activity from Grades 1-5 are 83.6%, 13.9%, 1.6%, 0.6% and 0.3% respectively.
It can be concluded that the highly intensive human activities are distributed in a relatively small
portion of the basin.

3.3. Interaction Analysis Result between Human Activity and Landscape Pattern

Figure 6a,b illustrates the percentage of land (PLAND) for different intensity grades of human
activity for each landscape element in 2009 and 2013, respectively. Overall, the change trend of PLAND
with intensity grade in 2009 is very similar to that in 2013 for every land class. In addition, the
composition percentage of the five land classes for different intensity grades is also similar in the two
time periods. The above phenomena manifest that the relationship between landscape and human
activity in Lijiang River Basin is time independent.
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Figure 6. Land percentage for different intensity grades of human activity: (a) 2009; (b) 2013.

Figure 6 also illustrates the dominant land class in regions with different grades of human activity.
The most important land class in the Grade 1 region is woodland accounting for nearly 80% of total
area, which indicates that very few people live in woodlands. There are very little built-up land and
water in this region, the percentage of which is less than 2%. In the Grade 2 region, the percentage
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of woodland significantly drops down to about 36% compared to that in the nature dominant area.
The farmland and built-up land account for about 40% and 12%, respectively. The PLAND for each
land class is relatively balanced, which is likely because there are many roads and scenic spots in
this region. In the Grade 4 and Grade 5 regions characterized by intensive human activities, the
PLAND of built-up land increases to around 70%, and the areas of woodland, water and farmland
are close. These two regions together are the urban area of Guilin, indicating that the dominant land
class is built-up land. Overall, the dominant land class gradually changes from woodland to built-up
land from the Grade 1 region with the weakest human activity to the Grade 5 region with the most
intensive activity.

By analyzing the change of human activity intensity with PLAND, we find that the effects of
woodland, water, built-up land and farmland on human activity show an obvious monotonic pattern.
The intensity of human activity significantly increases as the PLAND of built-up land and water grows,
and it also increases as the PLAND of water goes up, but the growth rates are slower. In other words,
the people in Lijiang River Basin prefer to live in the regions with more built-up land and water, but
the need for built-up land is larger than water. A contrary trend is found for woodland compared
to built-up land and water: as the woodland percentage decreases, the intensity of human activity
significantly increases. This indicates that woodland restrains human activity. The above results
reinforce two previous research findings in a more precise way: water is a key factor evoking interest,
calm and positive feelings and, therefore, has a high aesthetic preference [48]. In contrast, dense forests
are less preferred [49]. It can be inferred that the most attractive landscape element composition is a
high portion of built-up land and a certain amount of woodland and water.

We analyzed the impact of human activity on landscape based on the change of the landscape
element in the same region. Figure 7a shows the change of PLAND of woodland during the four years
from 2009-2013. It can be seen that in the region with the intensity value between zero and 7000, which
is the nature dominant areas and the outskirts of Guilin, the PLAND of woodland increases as time
goes by, and the amount of the increment grows as the activity intensity increases. This indicates that
this region has witnessed afforestation during this time period. In addition, the PLAND of woodland
increases in the region with an intensity value between 20,000 and 50,000, but decreases in the region
with an intensity value over 50,000. It can be concluded that the greening rate increases in most urban
areas, but drops down in crowed areas where human activity is most intensive.

Figure 7b shows the change of water during the same time period. We can find that the total area
of water decreases in four years, and the regions where water area is decreasing are mainly those with
strong human activity (the intensity value is over 20,000). In the regions with less intensive human
activity, the area of water keeps stable, indicating that the shrinking of water happens mainly within
the urban area and is probably caused by human activity.

Figure 7c demonstrates the change of built-up land during four years. Overall, the built-up land
shows a growth trend. In the regions with weak human activity, the increment of built-up land is
obvious, and the amount of increment rises as the activity intensity increases. The PLAND of built-up
land does not change much in the regions with an intensity value over 30,000. The large gap between
20,000 and 30,000 reflects that the regions where the built-up land significantly increases are not the
most developed areas of the city, but the fast developing outskirts of the city.

Figure 7d shows the change of farmland. Overall, the total area of farmland decreases from
2009-2013, and the regions where the decrement happens are mainly suburban areas. Looking at the
increment of woodland in the same region, it can be inferred that the Grain for Green policy, a program
undertaken by China’s government for converting the sloped cropland to forest or grassland in order
to tackle deforestation, has an effect in Lijiang River Basin, which is among the first regions to stipulate
this program [50].

Figure 7e shows the change of other types of land. Overall, the percentage of other land shows a
decreasing trend, especially in the nature dominant area and the suburban area. The area keeps stable
in other regions.
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Figure 7. Change of land percentage with human activity intensity between 2009 and 2013.
(a) Woodland; (b) water; (c) built-up land; (d) farmland; (e) others.

PD is also selected as a metric for further analyzing the relationship between human activity
and landscape. Figure 8 shows the change of PD with human activity density. It can be seen that as
the intensity of human activity increases from the nature dominant area (Grade 1 area) to the road
dominant area and suburban area (Grade 2 and Grade 3 areas), to the city core belt (Grade 4 area),
the PD increases as well; in other words, the landscape becomes more and more fragmented, and the
degree of fragmentation grows while the activity intensity increases. However, in the city core area
whose intensity grade is 5, although the human activity intensity increases, the PD drops down, which
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is contrary to the overall change trend. It can be inferred that the effect of human activity on landscape
within the urban area is influenced by city planning rules or regulations, and the human activity is
more regular than that in other areas. In addition, the comparison results of PD between 2009 and 2013
show that the human activity in the non-urban area is becoming more fragmented, while that in the
urban area is becoming more regular as time goes by.

8 -

7 4
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3 4 m 2013

(sarepoay) 1 J2d saqumu) Qrsusp yred
o~
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Intensity grade of human activity

Figure 8. Change of patch density with human activity intensity at the landscape level.

Compared to the landscape-level result, the result at the class level provides an insight into the
relationship between human activity and the degree of fragmentation of each land class, as shown
in Figure 9. It can be seen that the PD of woodland, water and other land classes (mainly grassland
and shrub in the study area) increases with activity intensity. On the contrary, the PD of built-up land
and farmland decreases with the growth of activity intensity. The former three land classes are human
activity-influenced natural land, while the latter two land classes are man-built land. Therefore, we can
infer that overall, human activity causes the natural land to become fragmented while transforming it,
but making the man-built land more regular. However, in urban areas, woodland and other land classes
are becoming more clustered, which shows a contrary change trend with the overall trend. This further
enriches the research results on landscape at a finer scale: human activity generally imposes opposite
impacts on natural land and man-built land, but its impacts on natural and man-built land are the
same (clustered and regular) within urban areas due to the city and landscape planning regulations.
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Figure 9. Change of patch density with human activity intensity at the class level: (a) 2009; (b) 2013.

4. Conclusions

The advent of remote sensing technology characterized by airborne and satellite-based Earth
observation platforms provides an effective way to continuously monitor the change process of
landscape; meanwhile, participatory sensing data generated by humans have become a direct way of
collecting human activity at high spatial and temporal resolution. Inspired by the cross and integration
of geographic processes, ecological processes and emerging subjects envisioned by [51,52], this paper
proposes the idea of the integrated use of remote sensing and participatory sensing data to analyze
the interaction between human activity and landscape pattern at a fine-grained scale. The Lijiang
River Basin in China’s Guilin City is selected as the study area. Experimental results show that human
activity and landscape pattern are mutual impact factors in Lijiang River Basin. The research findings
are two-fold: (1) as for the impact of landscape on human activity, by analyzing the change of human
activity with the change of land percentage for each land class, we find that built-up land and water
boost human activity, and humans are clustered in the regions with a large portion of built-up land
and water; on the contrary, woodlands restrain human activity; (2) as for the impact of human activity
on landscape, its impact on landscape differs from land class to land class. Overall, human activities
tend to cause natural land, such as woodland and water, to become scattered and fragmented, and the
degree of fragmentation increases with the growth of activity intensity, while they make man-built
land, such as built-up land and farmland, clustered and regular. Nevertheless, the human activity
within the urban area is opposite from that outside the urban area: the human activity in the suburban
area is relatively unconstrained, while that within cities is standardized and regular.

Although this work has made progress in applying emerging technologies to landscape research,
we need to note the following aspects: (1) compared to the socioeconomic indexes in the existing
literature, the trajectory intensity is a more direct and accurate indicator of human activity and makes
the interaction analysis between human activity and landscape at the same spatial scale become
possible. However, similar to other indexes, the trajectory intensity is not a comprehensive indicator
yet, and it represents the mobility information. The analysis results in this paper reveal the interaction
characteristics between the two components from the perspective of mobility. (2) Different from the
bus schedules, the GPS trajectory data contain the whole journey information and can help derive the
spatial distribution of human activity in continuous space. However, the rate of occupied seats is not
taken into account due to data access difficulties. Though the trips taken by the bus are not equal to the
number of bus rides, these two numbers can be deemed linearly related in the study area, because the
tourist shuttles and coaches are two dominant transportation tools and are crowed most of the time.
Therefore, the analysis result can still give an insight into the relationship between human activity and
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landscape. The use of more data, such as ticket statistics or mobile phone positioning data, if possible,
would be helpful for a more detailed analysis.

More research work needs to be conducted for identifying a more comprehensive and deeper
understanding of the human-landscape interaction, including the following:

(1) Participatory sensing data are field-based, while remote sensing images are raster-based.
These two datasets represent information in two completely different forms, which brings
difficulties to the integrated analysis of data. How to build a model or devise a method to
compare, overlay and fuse these two types of data would be a key problem to solve.

(2) Every type of participatory sensing data is collected or created by a certain group of people
and, thus, represents the activity of part of the entire population. In order to allow the analysis
result based on participatory sensing data be more representative, more sources or forms of
participatory sensing data need to be used. Therefore, the fusion analysis of multiple sources of
data needs to be considered.

(38) This study explores the interaction between human activity and landscape pattern from the
point of view of intensity and ignores the type difference of the population. In fact, personal
experience and the utility function also play a role in the effect of the landscape on humans.
For example, favorite sites attract visitors because of the restorative effect caused by feelings, such
as calm, happiness and being away from everyday life [53,54], but for local people, the visual
characteristics of the landscapes are not as important as their functions [10]. Therefore, how the
type of population influences the interaction between human and landscape would be focused
on in the future.
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