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Abstract: We propose a new segmentation and grouping framework for road map inference from
GPS traces. We first present a progressive Density-Based Spatial Clustering of Application with
Noise (DBSCAN) algorithm with an orientation constraint to partition the whole point set of
the traces into clusters that represent road segments. A new point cluster grouping algorithm,
according to the topological relationship and spatial proximity of the point clusters to recover the
road network, is then developed. After generating the point clusters, the robust Locally-Weighted
Scatterplot Smooth (Lowess) method is used to extract their centerlines. We then propose to build
the topological relationship of the centerlines by a Hidden Markov Model (HMM)-based map
matching algorithm; and to assess whether the spatial proximity between point clusters by assuming
the distances from the points to the centerline comply with a Gaussian distribution. Finally, the point
clusters are grouped according to their topological relationship and spatial proximity to form strokes
for recovering the road map. Experimental results show that our algorithm is robust to noise and
varied sampling rates. The generated road maps show high geometric accuracy.

Keywords: map inference; DBSCAN; HMM map matching; 2D point cloud segmentation; point
cluster grouping

1. Introduction

A road network map is one of the most fundamental features of geospatial information, with a
variety of applications, such as public management, urban planning and navigation. It is, however,
challenging to promptly and consistently update existing road maps [1], especially in developing
countries, where road networks change rapidly. Conventional map updating techniques mainly
consist of ground-based and aerial surveys [2]. Ground-based surveys are limited to a long cycle
of information acquisition, whereas aerial surveys can obtain large-scale data about the Earth’s
surface in a short time. Although many types of algorithms have been proposed to extract road
networks from high-resolution satellite imagery [3,4], it is still difficult to generate large-scale road
networks with these algorithms, due to the complexity of road networks and occlusion caused by
trees and buildings.

In order to overcome the shortcomings of traditional road map mapping, User-Generated
Content (UGC) [5] is currently being used for road map generation in two ways: (1) collaborative
mapping programs, such as OpenStreetMap, which are highly dependent on manual work;
and (2) automatic road generation from Global Positioning System (GPS) trajectories [6], which is
referred to as map inference and is now a common and efficient method for updating road networks.
The GPS trajectories are collected by GPS-equipped vehicles, bicycles or pedestrians and can explicitly
represent the geometry and topology of the latest road networks.
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The purpose of map inference is the extraction of roads’ geometric positions, topological
connections, as well as some attribute information, such as lane counts [7] and road names [6]. Most
of the existing map inference methods are aimed at dealing with low-noise, densely-sampled and
uniformly-distributed GPS traces [1]. However, in many cases, GPS probes may reduce sampling
rates, due to energy and communication costs [8]. Normally, these types of data constitute the
main part of GPS traces. Thus, the inference of high-quality road maps from sparsely-sampled and
high-noise GPS traces is an important and challenging research topic.

In order to overcome the limitation of low GPS sampling rates, we propose a new segmentation
and grouping framework to generate road maps. The primary contributions of our method can be
summarised as follows:

• A flexible segmentation and grouping framework for map inference that is robust to noise and
the variable sampling rates of GPS traces.

• An extended progressive Density-Based Spatial Clustering of Application with Noise (DBSCAN)
algorithm with an orientation constraint for two-dimensional (2D) point cloud segmentation.

• A Hidden Markov Model (HMM)-based map matching algorithm for point cluster topological
relationship construction.

• A progressive point cluster grouping algorithm for road map recovery according to the stroke
principle [9].

The remainder of the paper is organised as follows: Section 2 presents a review of the related
work. Section 3 outlines the procedure of our map inference algorithm. Section 4 describes the
experiments on two GPS traces datasets. Section 5 evaluates the generated road maps; and Section 6
discusses the future work of our method.

2. Related Work

Current map inference methods can be roughly classified into four categories: clustering-based
methods, trace merging-based methods, Kernel Density Estimation (KDE)-based methods and
intersection linking-based approaches [10,11].

The clustering-based approaches begin with the determination of a series of cluster seeds by the location,
bearing and heading of the traces. Seeds are then linked to form the road segments according to the
raw traces. The existing typical methods include methods proposed by Edelkamp and Schrödl [12],
Schrödl et al. [7] and Agamennoni et al. [13,14]. These methods can infer road maps with high
geometric accuracy, i.e., detailed lane information and intersection models. However, these methods
are designed for densely-sampled GPS traces. The accurate geometric information can only be
inferred from fine-grained GPS traces. They are not robust to the noise of GPS traces.

Trace merging-based approaches involve the consolidation of trace segments based on their
geometric relations and shape similarity. The centerlines of roads are then generated by the merged
traces. Cao and Krumm [15] proposed an aggregation technique to pull together traces on the same
road. They associate two types of forces with each trace. The first force makes each trace attracted
or pulled by nearby traces, and the other one makes each trace constrained by the original position.
To refine the intersection of inferred road network, Wang et al. [16] presented a novel approach
for generating routable road maps from GPS traces based on the research of [15]. They introduced
circular boundaries to isolate points near intersections and used a k-means clustering method to refine
the intersections. Their methods perform well on densely-sampled GPS trace data, but are not robust
to noise. In order to improve the performance of the trace merging-based method, some mathematic
techniques are utilised. Niehoefer et al. [17] applied a filter mechanism to reduce the noise of GPS
traces captured by mobile phone. Chen et al. [18] theoretically guarantee the geometric accuracy
of the inferred road map based on the assumptions that the traces are densely sampled and stay
within the road surface. Wang et al. [1] applied Hausdorff distance to measure the distance between
GPS traces to filter noise. The trace merging approach is a type of line-based method [19], and its
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performance is highly dependent on the sampling rates. If two consecutive points of traces are far
from each other, especially when the vehicle turns at an intersection, the segments of GPS traces
cannot align with the roads. In this case, spurious road segments are produced.

The KDE-based methods treat the map inference as a digital image processing procedure. Raw
GPS traces are rasterised to a 2D grey image, and a global threshold is then enforced to filter the image.
Finally, skeletonisation approaches, such as the Voronoi diagram and morphological operations, are
applied to extract the centerlines of the road segments [20–22]. This type of method is sensitive to the
density distribution, and it is difficult to select an appropriate global threshold. In order to overcome
the limitation of KDE, Biagioni and Eriksson [23] proposed a progressive KDE-based method. They
developed a hybrid map inference pipeline, including the generation of an initial map by grey-scale
skeletonisation, pruning of the map with a Viterbi map matching algorithm and refinement of the
topology and geometry of the roads. Their method is robust to noise and disparity; however, since it
is a line-based approach, sparsely-sampled traces cannot be handled.

Intersection linking approaches consist of two main steps. The first step is to detect the
intersections of the road map. The second step is to link the intersections according to the raw traces.
Fathi and Krumm [24] designed a local shape descriptor to represent the GPS traces distribution
and trained a classifier on the descriptor to find the intersections from GPS traces. Karagiorgou and
Pfoser [25] proposed a similar algorithm. They used a speed threshold and changes in direction as
indicators to identify the intersections. These methods work well for road networks with simple
intersections and densely-sampled traces. However, they are also sensitive to the sampling rates of
GPS traces.

Most of the methods described above have utilised densely-sampled GPS traces, and some of
the methods considered noise and disparity [23]. In some cases, however, the collected GPS traces are
not dense enough for these algorithms. Although the total amount of the traces is huge, the sampling
rates for a single trace are sparse. The point-based KDE method [19] can deal with sparsely-sampled
GPS traces, but is sensitive to the disparities.

The above review reveals that a more generic algorithm for map inference needs to be developed.
The algorithm should have the ability to deal with both densely- and sparsely-sampled traces.
Recently, Qiu et al. [26] proposed a method to segment sparsely-sampled GPS traces to point clusters
for the generation of the centerlines of road segments. Based on this work, we propose a new
segmentation and grouping framework for map inference. To the best of our knowledge, this is the
first time that such a framework for map inference from GPS traces has been presented. The method
works well for both densely- and sparsely-sampled GPS traces.

3. Method

The dataset of GPS traces Tr for our method was collected by GPS-equipped vehicles:
Tr = {tri|i = 1, 2, . . . , N}, where N is the number of the traces. GPS trace tri is collected by a vehicle
in a specific time span and consists of a sequence of GPS points pi,r, with each point recording the
vehicle’s position at a specific time, denoted by tri = {pi,r|r = 1, 2, . . . , n}with pi,r = (loni,r, lati,r, ti,r),
where loni,r ∈ [−180, 180] and lati,r ∈ [−90, 90] are the longitude and latitude of the point; ti,r ∈ R+

is the time at which the point was collected; n is the number of points; and time ti,1 < ti,2 < . . . < ti,n.
With a large amount of GPS traces collected by vehicles over space and time, we can generate the
road network by the accumulated traces. In the experiment, the longitude and latitude of all points
are transformed to a projected coordinate system, denoted by (x, y).

Our method of map inference from GPS traces includes two components: point cloud
segmentation and point cluster grouping. For segmentation, we compute the orientation of the
points using two consecutive points as a vector. We then partition all of the GPS points into clusters
with an extended progressive DBSCAN algorithm with an orientation constraint, where each cluster
represents a short, nearly straight curve of road.
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In the grouping component, we generate the centerlines of the point clusters by the robust
Locally-Weighted Scatterplot Smooth (Lowess) [27] algorithm. An HMM-based map matching
algorithm [28] is then used to match raw GPS traces with the centerlines of the clusters to build the
topological relationship between clusters. The proximity between clusters is assessed by assuming
that the distances of the points to the centerline comply with a Gaussian distribution. Finally, we
group clusters according to the topological relationship and proximity to form the stroke for road
map recovery.

Before segmentation, traces are preprocessed. If the distance between two consecutive points in
a raw trace is greater than a threshold (i.e., 300 m), the trace is separated into two traces. If two points
are too far from each other, the line segment between these two points will not properly align with
the real road.

3.1. DBSCAN Algorithm with an Orientation Constraint

The DBSCAN algorithm [29] is a spatial clustering algorithm for points. It is designed to discover
clusters with arbitrary shapes by using a density constraint, which is estimated based on the number
of points in a specific area. The algorithm is robust to noise and does not require users’ assistance to
specify the number of clusters. In the classic DBSCAN algorithm, the ε− neighbourhood is employed
to represent the density, which is defined by Definition 1. The input of the DBSCAN algorithm
includes ε and MinPts, where ε is the search radius for finding neighbours of a point, and MinPts
is the threshold for determining whether a point is a core point (Definition 2) or not. The generation
of point cluster cm is an incremental procedure. First, a core point is found; and its neighbours are
used to initialize cm. Then, cm is expanded by adding neighbours of the core points in cm until no
point can be added.

Definition 1. ε− neighbourhood of point p, denoted by Np, is defined by Np = {q ∈ P|dis(p, q) ≤ ε},
where P is the set of points and dis(p, q) is the Euclidean distance of points p and q.

Definition 2. Core point. Point p is called a core point if its ε − neighbourhood Np contains at least
MinPts points (minimum number of points).

In the context of our point cloud segmentation, we intend to determine point clusters that
represent nearly straight curves. The range of the coordinates x and y values (x, y ∈ R) is
different from the range of points’ orientations ([0◦, 360◦] or [0, 2π]). Therefore, we redefine the
neighbourhood of a point with two components: search radius ε and difference of orientation α

between two points (Definition 3). We also redefine the core point by the density of the traces
(Definition 4.) The orientation starts from 0◦, which coincides with the x-axis, and increases in the
counter-clockwise direction.

Definition 3. ε, α − neighbourhood of point p, denoted by point set Np, is defined by Np = {q ∈
P|dis(p, q) ≤ ε ∧ di f f Ori(p, q) ≤ α}, where P is the set of points, dis(p, q) is the Euclidean distance of
points p and q and di f f Ori(p, q) is the difference in the orientations of points p and q.

Definition 4. Core point. Point p is called the core point if the point set of its ε, α− neighbourhood Np

belongs to no less than MinLns GPS traces (minimum number of GPS traces).

The procedure of our DBSCAN algorithm with an orientation constraint is shown as
Algorithm 1.

In the first stage, we use ε, α and MinLns to generate point clusters (Lines 1 to 15), where ε

and α are the search radius and the difference of orientations between points for determining the
neighbourhood, and MinLns is the number of GPS traces for determining if a point is a core point.
In the second stage, we use Principal Component Analysis (PCA) to generate a line segment to
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fit the point cluster and filter the point cluster by the length and orientation of the line segment
(Lines 16 to 21). If the length of the line segment is smaller than threshold MinLen (minimum length),
we discard the point cluster. If the orientation of the line segment (range of [0◦, 180◦]) does not meet
with the mean orientation of the points in the cluster (modulo 180◦), i.e., if the difference of the
orientations is larger than threshold MaxDoOs (maximum difference of orientations), then also we
discard the point cluster. Parameters MinLen and MaxDoOs are aimed at generating a relatively long
segment and also help to eliminate clusters generated by noise. The variable nStartId is the identity
for the first generated point cluster.

Algorithm 1: DBSCAN with an orientation constraint.
Input: RawPoints, ε, α, MinLns, MinLen, MaxDoOs, nStartId
Output: PointClusters, nId

1 ∀pi ∈ P set pi.classId = −1 and pi as unvisited;
2 initialize nId = nStartId;
3 for pi ∈ P do
4 initialize a queue Q = ∅;
5 if pi.classId == −1 ∧ pi is not visited then
6 push pi into Q;

7 while Q 6= ∅ do
8 pop pk from Q;
9 if pk is not visited then

10 find neighbours Npk of pk, where
Npk = {pj|dis(pk, pj) ≤ ε, di f f Ori(pk, pj) ≤ α, pj.classId == −1 or nId};

11 if Card(Npk ) < MinLns then
12 set pk as visited;

13 else
14 classify pk to class nId;
15 ∀pj ∈ Npk ∧ pj 6= pk push pj into Q, classify pj to class nId;

16 calculate the length LnId and OrinId ([0◦, 180◦]) of the cluster nId by PCA;
17 calculate the mean orientation mOrinId of all the points in cluster nId, modulo 180◦;
18 calculate the difference of these two orientations DoOs;
19 if LnId < MinLen or DoOs > MaxDoOs then
20 set the class Id of the point pi ∈ cluster nId as -1;
21 continue;

22 nId ++, nStartId = nId;

23 return nId and point clusters according to their classId;

Different parameters for finding neighbours result in different point clusters. Among parameters
ε, α and MinLns, the most sensitive is α. Figure 1 illustrates the sensitivity of α. Figure 1a is a point
set of raw GPS traces. We generate point clusters with α = 1◦ and α = 5◦. Figure 1b,c shows two
of the point clusters with α = 1◦ and α = 5◦, respectively. The two point clusters are then fit by line
segments computed with PCA (red lines in Figure 1). In the comparison of Figure 1b,c, we can observe
that the point cluster generated with a small α can be well represented by a line segment. However,
at the same time, a strong constraint (small α) leads to many points that cannot be clustered.

In order to balance this trade-off, we implement a progressive DBSCAN algorithm with an
orientation constraint to generate point clusters, which is shown as Algorithm 2. First, we generate
point clusters with a small α. We then enlarge α and use the points that are not classified as the
input to generate new clusters. This second step is repeated until the constraint α reaches the
predefined threshold.
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Figure 1. An illustration of the sensitivity of α. (a) Point set of raw GPS traces; (b) one of the generated
point clusters with α = 1◦; (c) one of the generated point clusters with α = 5◦.

Algorithm 2: Progressive DBSCAN with an orientation constraint.
Input: RawPoints, ε, α_Min, α_Max, MinLns, MinLen, MaxDoOs
Output: PointClusters

1 nStartId = 0;
2 ∀pi ∈ P set pi.classId = −1;
3 set α = α_Min;
4 while α ≤ α_Max do
5 ∀pi ∈ P reset pi as not visited;
6 ∀pi ∈ P ∧ pi.classId == −1, push pi into sub-RawPoints PS;
7 DBSCAN with Orientation Constraint {PS, ε, α, MinLns, MinLen, MaxDoOs, nStartId};
8 α = α + 1.0;

9 return point clusters according to their classId;

Our progressive DBSCAN algorithm with an orientation constraint needs three parameters for
cluster generation and two parameters for cluster filtering. In the cluster generation procedure, search
radius ε was fixed at 15 m. This value was estimated based on the lane width and number of the real
urban roads. The lane width in cities is about 3.75∼4.0 m, and we assume that the roads that the
vehicles visited contained at least 4 lanes. Parameter α was set in the range of [1◦, 30◦]. The lower
bound setting was based on the fact that the points close to each other in the same road have similar
orientations; and the upper bound setting took into account the noise and sampling rate of GPS traces.
The third parameter MinLns was set at 2, meaning that the actual road segment was not placed on
the areas that were visited by vehicles less than twice.

In cluster filtering, we assume that the length of the generated road segment is larger than the
width of the actual road (15 m). Therefore, we fixed MinLen to 15 m. Parameter MaxDoOs was
set to 5◦, according to the experimental tests.

3.2. Point Clusters Grouping

Road segments generated by our progressive DBSCAN algorithm with an orientation constraint
contain many short segments with similar orientations. To reduce redundancy, they need to be
grouped to form long curves. For each point cluster, we assume that the distances from the points to
the centerline of the cluster complied with Gaussian distribution G ∼ (µ, σ2), where µ = 0 represents
the centerline and σ is the standard deviation. Based on this assumption, we build the topological
relationship and assess the proximity between point clusters to group them.

In this section, we employ the robust Lowess algorithm to generate centerline li from point
cluster ci and use the Median Absolute Deviation (MAD) formula to estimate the corresponding σi
of the Gaussian distribution. We then apply an HMM-based map matching algorithm to match raw
GPS traces with generated centerlines to construct a topological relationship between point clusters.
Finally, we group point clusters in a progressive manner based on their spatial proximity.
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3.2.1. Centerline Generation from Point Cluster

There are many types of centerline generation algorithms for unorganised point clouds in the
computer science community [30]. The point clusters generated by our algorithm represent nearly
straight curves. The curve does not self-intersect, but is distorted by noise and outliers. Thus, we use
the robust Lowess method to generate the centerline of the point cluster. The method uses residual
analysis to overcome the problem caused by noise and outliers.

Figure 2a is a typical point cluster generated with our map inference method. In order to apply
the robust Lowess algorithm, we need to pre-process the point cluster. First, we rotate the points to
the new coordinate system computed by PCA. The abscissa is shown as the line in Figure 2a. We
then sort the points in ascending order according to their x values in the new coordinate system and
connect them to form an unsmooth curve, which is shown in Figure 2b. After these two steps, we can
use robust Lowess to generate a smooth curve, as shown in Figure 2c. Finally, we rotate the curve
back to the original coordinate system.
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Figure 2. Procedure of generating centerline from points by the robust Locally-Weighted Scatterplot
Smooth (Lowess) algorithm. (a) Points and the abscissa (x-axis) calculated by PCA; (b) points sorted
in ascending order according to their x values; (c) line generated by the robust Lowess algorithm.

The general procedure of the robust Lowess method can be summarised as follows:

1. Apply a locally-weighted linear least-squares regression for each point to smooth the curve.
2. Calculate the residual for each point according to the smoothed curve.
3. Compute the value of MAD to remove outliers and update local weights. The residuals of the

outliers are more than 6-times that of the value of MAD.
4. Smooth the curve as described in Step 1, again using the new weights.
5. Repeat Steps 2 through 4 for a total of five iterations to obtain a smooth curve.

In the algorithm, the local linear regression for each point is performed on its k nearest
neighbours, which is computed by their x values in the rotated coordinate system. We need to
manually determine k for each cluster. Since the density (numbers of points in a fixed area) of raw
GPS points varies over space, we use the average number of the points contained in a specified span
dSpan to estimate k: k = dSpan/l × n, where l is the length of the line segment generated from the
point cluster with PCA and n is the number of the points in the cluster. We fixed the dSpan to 10 m
according to experimental tests.

For each point cluster ci = {pi,r|r = 1, 2, . . . , m}, we generate its centerline li: li = {vi,r′ |r′ =
1, 2, . . . , m′ ∧ m′ ≤ m}, where vi,r′ is the nodes that constitute the centerline. Due to outliers, the
number of nodes (m′) that constitute the centerline li is less than or equal to the number of points
(m) in cluster ci. We can then estimate the corresponding σi with the MAD formula, as shown
in Equation (1).
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σi = 1.4826×median|dis(pi,r, li)−median(dis(pi,r, li))| (1)

where dis(pi,r, li) = min{dis(pi,r, vi,r′)}, (r′ = 1, 2, . . . , m′) is the distance from point pi,r to centerline
li, dis(pi,r, vi,r′) is the Euclidean distance from point pi,r to node vi,r′ , and 1.4826 is the scaling factor
for normal distribution data. Although the distribution of point clusters does not strictly comply with
the Gaussian distribution, we can obtain a reasonable estimation with the MAD formula.

3.2.2. Topological Relationship Construction between Clusters

According to Newson and Krumm [28], matching of GPS traces to the actual road map
(i.e., map matching) is achieved through finding the most probable route that the vehicle visited based
on the location of the vehicle measured by GPS. They modelled the map matching problem as an
HMM, which is a Markov process with a set of hidden states and observations. Transitions from state
to state are defined by transition probabilities. Each state has a probability distribution called the
emission probability distribution over the possible observations. Given a sequence of observations, a
sequence of hidden states can be generated by maximizing the overall probability.

In the context of map matching, the hidden states are road segments; and observations are
the points measured by GPS. The transition probabilities provide the probabilities that the vehicle
transitions from one segment to another; and the emission probability for a state over an observation
denotes the probability that the vehicle actually visited the segment given the point (position of
vehicle) measured by GPS.

In the HMM-based map matching algorithm proposed by Krumm et al. [28,31], they projected
each point measured by GPS to its nearby road segments to generate a set of candidates for matching
and calculated the emission probability based on the distance from the point to the projected point
of each candidate. For a vehicle moving from one point to the next point (measured by GPS), a set
of possible transitions from one road segment to another could then be generated. The transition
probabilities for the segments are calculated according to the difference of two distances: (1) the
Euclidean distance of the two GPS points; and (2) the shortest path length of the two projected points
on road segments. Finally, they use the Viterbi algorithm to match the GPS trace generated by a
vehicle with the path that had the maximum probability among all possible paths. The algorithm
simultaneously considered the locations of GPS points and the topological relationship of the actual
road map. This method is robust to noise.

The proposed method matches the raw GPS traces with the centerlines generated by point
clusters to build the topological relationships between the point clusters. The hidden state is the
centerline, and the observation is the point measured by GPS. The matching result also can be used
to remove the redundant point clusters that are caused by noises.

The transition probabilities in our method provide the probability of a vehicle moving from one
centerline li (generated by ci) to another centerline lj (generated by cj). It is derived from the two
point clusters ci and cj, where ci = {pi,r|r = 1, 2, . . . , m}, cj = {pj,s|s = 1, 2, . . . , n} and m and
n are the sizes of the clusters. The sequences of the points are indicated by the raw GPS traces.
Intuitively, if there are mi,j (mi,j ≤ m) points in ci that have their next points contained in cj, we define
the transition probability for transitioning from state li to lj as Pr(li, lj) = mi,j/m. Based on this
definition, the sum of the non-zero transition probabilities Pr(li, lj) for transitioning from li to all of
the other possible lj is equal to 1; and we call the number of possible lj the out-degree d(li) of li.

In experiments with actual GPS data, we observed two facts for some centerlines:
(1) Pr(li, li)� Pr(li, lj), where i 6= j, which means that the transition probability for transitioning from
centerline li to itself is much bigger than transitioning from li to others; and (2) Pr(li, lj) � Pr(lr, ls),
where d(li) � d(lr) and i 6= j, r 6= s, which denotes that the transition probabilities for transitioning
from lower out-degree centerlines are much larger than the transition probabilities for transitioning
from higher out-degree centerlines. In order to avoid the preference for matching GPS traces with
low out-degree centerlines, we refined the transition probabilities Pr(li, lj) to be independent of the
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out-degree of centerlines by introducing a weight factor ω. The weight factor is derived from the
out-degree of centerlines. The results based on this setting are more reasonable. The refining steps
are as follows:

1. For a point cluster ci ∈ C, obtain the number m′ of the points included in ci that their successive
points are not included in ci.

2. For a point cluster cj ∈ C, obtain the number mi,j of the points included in ci that have their
successive points in cj (i 6= j).

3. Compute the transition probability for transitioning from centerline li to lj, Pr(li, lj) = mi,j/m′.
4. Repeat Steps 2 and 3, computing transition probabilities for transiting from the li to all

possible lj.
5. Define Pr(li, li) = max(Pr(li, lj)), (i 6= j).
6. Repeat Steps 1 to 5, computing the non-zero transition probabilities of all centerlines li ∈ L.
7. Find minimum out-degree dmin among all of the out-degrees of all centerlines li ∈ L.
8. Update transition probabilities as Pr(li, lj) = ωi × Pr(li, lj), where li ∈ L, lj ∈ L ωi is a weight

factor, and ωi = d(li)/dmin.

The emission probability for a particular point pt measured by GPS at time t associated with
a nearby centerline li, denoted by Pr(li|pt), gives the likelihood that pt was observed from li.
It indicates the probability that the vehicle visited the centerline li at time t given the measurement
pt. We calculate the emission probability based on the assumption that the distance distribution of
points to the centerline complies with Gaussian distribution G ∼ (µ, σ2). For each point of raw GPS
traces, the probabilities are estimated with Equation (2):

Pr(li|pt) =
1√
2πσ

e−0.5
(

dis(pt ,li)
σ

)2

(2)

where dis(pt, li) = min{dis(pt, vi,r′)|vi,r′ ∈ li} is the distance from point pt to centerline li.
Variance σ is estimated in the centerline generation procedure. After computing σi for each

point cluster ci, we use max
i

σi as σ to estimate the emission probabilities. In practice, we find

up to 10 matched centerline candidates for each point. If the dis(pt, li) is greater than 6 × σ, the
emission probability is close to 0, and we do not consider li as a candidate for matching with pt.
The emission probability Pr(li|pt) of point pt is normalised by scaling to [0, 1].

After initializing the transition probabilities and emission probabilities, we use the Viterbi
map matching algorithm [28,32] to match raw GPS traces with generated centerlines to find the
most probabilistic path that vehicles visited. The path with the highest probability indicates the
connectivity between clusters. Clusters that do not match with any raw trace are treated as noise.

3.2.3. Point Cluster Grouping

A set of routes O = {oi|i = 1, 2, . . . , N} is obtained by matching raw GPS traces with centerlines,
where N is the number of routes, which corresponds to the number of traces. Each route oi is
produced by matching a trace tri = {pi,r|r = 1, 2, . . . , n} with centerlines. Thus, oi consists of a
set of centerlines, oi = {li1 , li2 , . . . , lin}, where lir is matched with point pi,r of trace tri. Since we know
a vehicle moves from point pi,r to the next point, pi,r+1, we can infer that centerlines lir and lir+1 are
topologically connected. In the next step, we employ the geometric positions of these two centerlines
to determine if they can be grouped.

The concept of a stroke is that a curve can be drawn in one smooth movement [9]. It is
derived from the principle of good continuation, which indicates that elements that follow similar
directions tend to be grouped together. Using the stroke concept, we group point clusters to generate
smooth curves to the farthest possible extent. For two point clusters ci and cj that produce two
topologically-connected curves li and lj, respectively, we temporarily group ci and cj to obtain a new
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point cluster cg and generate a new centerline lg by cg. If lg is spatially near to li and lj, we make
the grouping permanent; otherwise, we retain ci and cj. Based on this idea, we propose a new point
cluster grouping algorithm, as demonstrated in Algorithm 3.

Algorithm 3: Point clusters grouping algorithm.
Input: TwoPointClusters ci, and cj, β
Output: NewPointClusters

1 calculate the difference of mean orientations DoOs by points in ci and cj;
2 if DoOs > β then
3 return the two clusters ci and cj;

4 generate the centerlines li and lj for point cluster ci and cj by robust Lowess;
5 estimate the errors σi and σj by MAD for ci and cj;
6 generate a new centerline lg by cg = ci ∪ cj;
7 ∀vi,r′ ∈ li find the dis(vi,r′ , lg) = min{dis(vi,r′ , vg,t)|vg,t ∈ lg} as the distance set Dis(li, lg);
8 ∀vj,s′ ∈ lj find the dis(vj,s′ , lg) = min{dis(vj,s′ , vg,t)|vg,t ∈ lg} as the distance set Dis(lj, lg);
9 sort distances in Dis(li, lg) and Dis(lj, lg) as Diss(li, lg) and Diss(lj, lg) in descending order;

10 compute the mean distance of the distances from the beginning to the α-quantile in the set
Diss(li, lg) and Diss(lj, lg) as disα(li, lg) and disα(lj, lg);

11 if disα(li, lg)+disα(lj, lg) > 6× (σi + σj) then
12 return the two clusters ci and cj;

13 else
14 return the new grouped cluster cg;

First, we use the difference of the mean orientations of two point clusters ci and cj to determine
if centerlines li and lj produced by ci and cj connect smoothly to each other (Lines 1 to 3). According
to Jiang et al. [33], the threshold of the deflection angle for generating a stroke from road segments
with a range of [30◦, 75◦] produces stable outcomes. The deflection angle is the angle between two
connected road segments.

In our method, we intend to generate a longer nearly straight curve, lg, from point cluster cg

produced by grouping point clusters ci and cj. Similar to the idea of stroke generation, if the difference
of the mean orientations of ci and cj is larger than a predefined threshold β, we assume ci and cj
cannot be grouped. We set β to 60◦ based on the experimental testing. However, in order to group
point clusters with smaller differences of orientations well ahead of the point clusters with larger
differences of orientations, we employ a progressive method: we apply Algorithm 3 to the set of
point cluster C that begins with a small β (i.e., 10◦) and iteratively run Algorithm 3 by increasing β in
a step size (i.e., 10◦) until it reaches 60◦.

If the difference of mean orientations of ci and cj is smaller than β, we use the geometric position
of points in ci and cj to determine if the two point clusters can be grouped or not. Figure 3 provides
an illustration of the grouping of two point clusters. The black dashed lines in Figure 3 give the buffer
regions for li and lj with radii of 6σi and 6σj, respectively. By assuming that ci and cj can be grouped,
we obtain the point cluster cg and generate centerline lg as the red solid line in Figure 3. If lg is in the
union of the buffer regions of li and lj, we can make the grouping of ci and cj permanent. According
to Equation (1), σi and σj are estimated based on ci, li and cj, lj. We implement the grouping of ci and
cj by using the distances from the points of li and lj to the points of lg as a metric. The procedure is
shown as Lines 4 to 14 in Algorithm 3.

For each node vi,r′ ∈ li, we find the nearest node vg,t ∈ lg according to their Euclidean
distance dis(vi,r′ , vg,t) as the distance dis(vi,r′ , lg) from node vi,r′ to the centerline lg. A distance
set Dis(li, lg) = {dis(vi,r′ , lg)|r′ = 1, 2, . . . , m′} can then be obtained by computing distances from all
nodes of li to centerline lg, where m′ is the number of nodes in li. We sort the distances in Dis(li, lg) as
Diss(li, lg) in descending order and obtain the mean distance from the beginning to the α-quantile
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in Diss(li, lg) as the α-quantile mean distance disα(li, lg) from centerline li to lg. The α-quantile
mean distance disα(lj, lg) from lj to lg can also be obtained by the same procedure. Finally, if the
sum of the two α-quantile mean distances is smaller than or equal to 6 × (σi + σj), we group the
two point clusters ci and cj to obtain cg. The α-quantile mean distance represents the deviation
from the two original centerlines to the new centerline that produced by the two grouped clusters.
disα(li, lg) + disα(lj, lg) ≤ 6 × (σi + σj) means the new centerline is in the union of the two buffer
regions of li and lj. According to the experimental testing, we set the α to a small value (i.e., 0.02).

Figure 3. Illustration of point cluster grouping. Black solid lines are li and lj that are generated from
point clusters ci and cj; black dashed lines indicate the 6σ buffer regions; and red solid line lg is
generated by cg, which is produced by grouping ci and cj.

Another issue is that the sampling rates of the raw GPS traces are not consistent. Two
topologically-connected clusters may not be spatially near to each other. We define the distance
between two clusters as in Equation (3). If the distance between two clusters dis(ci, cj) is greater
than a threshold (i.e., 100 m), they cannot be grouped. In the experiment of sparsely-sampled
GPS traces, we found that the most probabilistic path could not discover the relationship between
two adjacent clusters. Thus, as a final step of cluster grouping, we find the clusters for grouping
according to the distance between them. If the distance between two clusters is less than or equal to
a threshold (i.e., 100 m), we apply the grouping algorithm with an angle threshold β equal to 60◦ to
these two clusters.

dis(ci, cj) = min
pi,r∈ci

( min
pj,s∈cj

dis(pi,r, pj,s)) (3)

4. Experiments

We used two datasets to test our algorithm. The dataset collected in Chicago, USA (Dataset 1),
consists of densely-sampled traces; and the other dataset collected in Wuhan, China (Dataset 2),
consists of sparsely-sampled traces. The characteristics of the two datasets are described below:

1. The Chicago dataset was GPS traces from a bus serving the University of Illinois at Chicago
campus [23]. The dataset covered an area of 3.8 km × 2.4 km, with the sampling rates varying
from 1 s to 29 s (with a mean of 3.61 s and standard deviation of 3.67 s). The distances between
two consecutive points ranged from 19.97 m to 96.6 m (with a mean of 24.4 m and standard
deviation of 3.31 m). There were about 118,000 points.

2. The Wuhan dataset was GPS traces collected by taxis. The dataset covered an area of
4.8 km × 5.5 km, with the sampling rates varying from 1 s to 81 s (with a mean of 37.42 s
and standard deviation of 17.66 s). The distances between two consecutive points ranged
from 0 m to 496.255 m (with a mean of 218.84 m and standard deviation of 140.38 m). There
were about 350,000 points.

Figure 4a shows the raw GPS traces of the Chicago dataset displayed as points. We applied our
progressive DBSCAN algorithm with an orientation constraint to the dataset and obtained the 2D
GPS points segmentation results, as shown Figure 4b. A total of 1099 point clusters were obtained,
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and those that were spatially adjacent to each other are shown in different colours. In Figure 4b, we
can visually detect that the clusters in the rectangle could be grouped to produce a nearly straight
curve, due to their similar orientations and spatial adjacency. The reason for generating clusters with
similar orientations are the following: (1) we applied the segmentation algorithm beginning with a
strong constraint (α for finding neighbours of a point is 1◦); and (2) orientations computed by two
consecutive points were inaccurate due to the noise of GPS points and the sampling rate.

We then matched raw GPS traces with the centerlines that were generated by the point clusters
to construct the topological relationship between clusters. Clusters that were topologically connected
were grouped according to their geometric position. As the final step of point clusters’ progressive
grouping procedure, we also used the HMM-based map matching method to filter the clusters. If the
centerline li was matched with only two (or less) raw GPS traces, we regarded li to be generated by
noise and removed the corresponding point cluster ci.

Figure 4c shows the point cluster grouping results. Fifty-five clusters were obtained.
A comparison of Figure 4b,c shows that the point clusters in the rectangle have been grouped by
our algorithm. In fact, spatially-adjacent clusters with similar orientations were grouped properly.

As a final step, we used the robust Lowess algorithm to generate centerlines from the grouped
point clusters. The inferred road map (blue lines) was overlapped with the ground truth map (light
yellow lines) in Figure 4d. According to Figure 4d, the inferred road segments in the rectangle did
not represent the ground truth map well: the roads were not frequently visited by the GPS-equipped
vehicles; therefore, there was a lack of sufficient points to recover the roads with our algorithm.
In the ellipse shown in Figure 4d, some spurious road segments were generated. As can be observed
in Figure 4a, GPS points in this area were noisy, and the accumulation of the noise produced the
spurious road segments.

(a) (b)

(c) (d)

Figure 4. Experiment result of the Chicago dataset. (a) Raw GPS traces of the Chicago dataset
displayed as points; (b) point clusters generated by the progressive Density-Based Spatial Clustering
of Application with Noise (DBSCAN) algorithm with an orientation constraint; (c) point clusters after
progressive grouping; (d) the generated road map (blue lines) overlapped with the ground truth map
(yellow lines) of Chicago.

We applied the same procedure to the Wuhan dataset. Figure 5a shows the preprocessed
GPS traces (grey lines) overlapped with the corresponding points (black points). According to this
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figure, the sparsely-sampled GPS traces could not align well with the real position of the vehicles,
especially for the traces near the road network’s intersections. We then used our segmentation
algorithm to generate point clusters, as shown as Figure 5b. Due to the inaccuracy of the GPS points’
orientations, 4970 clusters were generated. After grouping, the 216 clusters shown in Figure 5c were
obtained. Finally, we generated the centerlines of the road network with the robust Lowess algorithm.
The centerlines are shown as blue lines in Figure 5d, and the yellow lines represent the ground truth
map. Figure 5d indicates that some road segments (e.g., road segments in the rectangular area) could
not be recovered due to an insufficient number of GPS points.

(a) (b)

(c) (d)

Figure 5. Experiment result of Wuhan dataset. (a) Raw GPS traces overlapped with the GPS points
collected in Wuhan; (b) point clusters generated by the progressive DBSCAN algorithm with an
orientation constraint; (c) point clusters after progressive grouping; (d) the generated road map (blue
lines) overlapped with the ground truth map (yellow lines) of Wuhan.

We compare our map inference method with four typical methods, including a hybrid map
inference pipeline [23], a clustering-based method [12], a KDE-based method [20] and a trace
merging-based method [15] using the Wuhan dataset. The results are shown in Figure 6. Figure 6a
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shows the roads generated by Edelkamp and Schrödl’s method. Their method cannot generate road
centerlines for these traces. The reason is that the points’ orientations of sparsely-sampled GPS traces
are inaccurate, and hence, the cluster seeds cannot be grouped together. We used 3000 traces for
the method (the total number of the traces in Wuhan dataset is 12,832). According to Figure 6a,
the 3000 traces cover the road network on the ground truth map. Figure 6b shows the road network
generated by Biagioni and Eriksson’s method. We applied the full number of traces to this method.
However, the algorithm failed at the step of collapsing nodes into intersections. We then applied the
method to 3000 traces, as in Figure 6b. Due to the sparse sampling rate, many roads could not be
recovered by the algorithm. Figure 6c shows the road network generated by Davies’ method with
the full number of traces in the Wuhan dataset. The method is robust to the sampling rate, and we
compare our method to this method in the next section. We also evaluated Cao and Krumm’s method
using the Wuhan dataset. However, due to the sparse sampling rate, the algorithm did not converge,
and adjacent traces were not merged.

Thus far, we have only compared the inferred road centerlines to the ground truth maps to
qualitatively evaluate our map inference algorithm. In the next section, we present a quantitative
evaluation for the geometric accuracy of our map inference algorithm.

(a) (b) (c)

Figure 6. Inferred road networks overlapped with the ground truth map of the Wuhan dataset.
(a) Road network generated by Edelkamp and Schrödl’s method; (b) road network generated by
Biagioni and Eriksson’s method; (c) road network generated by Davies’ method.

5. Evaluation

Several quantitative evaluation methods for the accuracy of the geometry and topology of
inferred road maps have recently been proposed. Liu et al. [19] performed their quantitative
evaluation by measuring the recall and precision of the roads on the inferred map (M) with respect
to the roads on the ground truth map (Truth). The recall denoted the fraction of roads on the ground
truth map that were retrieved, and the precision was the fraction of roads on the inferred map that
were relevant. They used distance and orientation as constraints to match the roads of the two
maps with each other by nearest distance and to determine the true positive length tp = M ∩ Truth
by the matched proportion. The recall, precision and F-measure were then calculated as follows:
recall = tp/||Truth||, precision = tp/||M||, and F−measure = (2× precision× recall)/(precision + recall),
where ||.|| measures the total length of the road segments in the corresponding set. Their method
evaluated the geometric accuracy of the inferred map.

Biagioni and Eriksson [23] introduced a new method to measure the geometric and topological
similarities of the inferred and ground truth maps at the same time. They resampled the two types
of maps and placed holes on the ground truth map and marbles on the inferred map. They then
matched marbles with holes by the distances between them and counted the unmatched marbles and
empty holes. The accuracy of the inferred map with respect to the ground truth map was quantified
by the spurious marbles and empty holes.



ISPRS Int. J. Geo-Inf. 2016, 5, 130 15 of 20

Karagiorgou and Pfoser [25] used the shortest path to measure the similarity of the inferred
and ground truth maps. They simultaneously placed origins and destinations on the two maps and
computed the shortest path between them to obtain two sets of shortest paths. They applied discrete
Fréchet distance and average vertical distance to compare the similarity of the two sets of shortest
paths to quantitatively measure the inferred map. Their method focuses on the connectivity of the
road segments.

Ahmed et al. [11] proposed a path-based distance measure for road map comparison. They used
the distances between two paths (i.e., maps) that were calculated based on the Hausdorff distance
to measure the distances between two road networks. Their method took into account the structural
and spatial properties of the road map.

We use the method proposed by Liu et al. [19] to evaluate the geometric accuracy of the inferred
road maps. The details of the geometry evaluation method can be described as follows:

1. Place points on the roads of the ground truth and inferred maps with equal intervals (i.e., 1 m).
2. Compute the orientations of all points by their connections (modulo 180◦).
3. Match the sampled points on the inferred map with the ground truth map by nearest distance

matching under the constraint of the orientation. The difference of orientations of two points
that are matched with each other is no more than 60◦.

4. Use different distance thresholds to determine the best match proportion.

The ground truth map (yellow lines) and inferred map (blue lines) of the Chicago dataset were
overlapped, as shown in Figure 7. Figure 7a presents the road map generated by Biagioni and
Eriksson’s algorithm [23]. We manually selected the roads of the ground truth map that were actually
visited by vehicles according to the raw GPS traces. Each road was represented by one centerline,
since their algorithm did not separate the centerlines with opposite directions for a bidirectional road.
Figure 7b is the road map generated by our method. As shown in detail, we generated two centerlines
for the opposite directions of a bidirectional road. The corresponding roads of the ground truth map
also had two centerlines.

(a) (b)

Figure 7. Comparison of Biagioni and Eriksson’s method and our method on the Chicago dataset.
(a) Generated road map (blue lines) with Biagioni and Eriksson’s method and the road network
actually visited by vehicles (yellow lines); (b) generated road map (blue lines) with the proposed
method and the road network actually visited by vehicles (yellow lines).

The total length of the roads on the ground truth map in Figure 7a,b are 32.89 km and 41.1 km,
respectively. The total length of the inferred road map in Figure 7a (Biagioni and Eriksson’s method)
and Figure 7b (our method) was 24.50 km and 30.9 km, respectively. In Figure 7b, we infer two
centerlines for the bi-directional roads, which are also represented by two centerlines on the ground
truth map. However, all of the roads in Figure 7a are represented by single centerlines. This is the
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reason that the total length of the roads on the ground truth map and inferred road map in Figure 7b
is longer than the roads in Figure 7a. We evaluate the two inferred road maps by different matching
thresholds of distance, where the results are shown in Tables 1 and 2. In Tables 1 and 2, the length
of well-matched roads is the total length of roads on the ground truth map (or the inferred map)
that were matched with roads on the inferred map (or the ground truth map), given the matching
threshold of distance.

Table 1. Matching results of Biagioni and Eriksson’s method on the Chicago dataset.

Matching Threshold
of Distance (m)

Length of
Well-matched Roads (km) Recall Precision F-measure

5 15.11 0.459 0.617 0.526
10 20.22 0.615 0.826 0.705
15 22.71 0.690 0.927 0.791
20 23.57 0.717 0.962 0.821
50 24.01 0.730 0.980 0.837

Table 2. Matching results of our method on the Chicago dataset.

Matching Threshold
of Distance (m)

Length of
Well-matched Roads (km) Recall Precision F-measure

5 27.93 0.679 0.902 0.775
10 29.96 0.728 0.968 0.831
15 30.09 0.732 0.972 0.835
20 30.13 0.733 0.974 0.836
50 30.19 0.734 0.975 0.838

Figure 8 presents the plots of the recall, precision and F-measure of the two methods. Figure 8a
shows that the values of the recall, precision and F-measure criteria of Biagioni and Eriksson’s
method [23] increase as the matching threshold increase from 5 m to 20 m and became constant
after the threshold reached 20 m. Figure 8b demonstrates that the values of these three criteria
did not change much with our method after reaching the matching threshold of 10 m. The values
of the criteria of our method were larger than the values of Biagioni and Eriksson’s method when
the matching threshold was smaller than 20 m. These results indicate that the road map inferred
by our method has better accuracy in terms of the geometry. In addition, Biagioni and Eriksson
demonstrated using the same dataset [23] that, in terms of geometry, their method outperformed the
existing map inference methods, i.e., clustering-based methods, trace merging-based methods and
KDE-based methods.
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Figure 8. F-measure of Biagioni and Eriksson’s method and our method. (a) Recall, precision and
F-measure of Biagioni and Eriksson’s method for Dataset 1; (b) recall, precision and F-measure of our
method for Dataset 1.
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The ground truth and inferred maps for Dataset 2 (Wuhan dataset) are displayed in Figure 5d.
We separated the centerlines with opposite directions for bidirectional roads; however, the ground
truth map only had one centerline for each road segment. Thus, all sampled points of the ground
truth map could be matched with two points of the inferred roads. The total length of roads on
the ground truth map in Figure 5d is 117.67 km, and the total length of the roads inferred by our
method was 148.38 km. The matching results are shown in Table 3. The length of well-matched
roads represents the total length of roads on the ground truth map that matched with roads on
the inferred map, given the matching threshold of distance. The length of the correctly inferred
roads is the total length of roads on the inferred map that matched with roads on the ground truth
map, given the matching threshold of distance. Since the total length of roads on the inferred
road map was larger than the total length of roads on the ground truth map, we modified the
standard formula of recall and precision as follows: recall = ||well matched roads||/||Truth||,
and precision = ||correctly in f erred roads||/||M||. Table 4 shows the matching results of the road
network generated by Davies’ method (Figure 6c). The total length of the inferred roads in Figure 6c
is 97.97 km.

Table 3. Matching results of our method for the Wuhan dataset.

Matching
Threshold of

of Distance (m)

Length of
Well-Matched

Roads (km)

Length of
Correctly Inferred

Roads (km)
Recall Precision F-measure

5 56.14 72.78 0.477 0.490 0.484
10 77.61 117.48 0.660 0.792 0.720
15 82.74 135.00 0.703 0.910 0.793
20 84.37 140.75 0.717 0.949 0.817
50 85.52 145.26 0.727 0.979 0.834

Table 4. Matching results of Davies’ method for the Wuhan dataset.

Matching Threshold of
of Distance (m)

Length of Well-Matched
Roads (km) Recall Precision F-measure

5 29.51 0.251 0.301 0.274
10 48.87 0.415 0.499 0.453
15 62.06 0.527 0.633 0.576
20 70.05 0.595 0.715 0.65
50 89.92 0.764 0.918 0.834
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Figure 9. Comparison of our method and Davies’ method for the Wuhan dataset. (a) Recall, precision
and F-measure of our method for the Wuhan dataset; (b) recall, precision and F-measure of Davies’
method for the Wuhan dataset.
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Figure 9 displays the graphical plots of recall, precision and F-measure for the sparsely-sampled
Wuhan dataset (Dataset 2). Figure 9a is the plot of our method; and Figure 9b is the plot of Davies’
method. According to Figure 9a, the precision is greater than 0.9, when the matching threshold of
distance is larger than 15 m. Therefore, we conclude that our method can infer a road map from
sparsely-sampled GPS traces with high geometric accuracy. When the threshold is equal to 5 m, the
precision is found to be less than 0.5, because we generated two centerlines for the bidirectional roads
and the ground truth map only used one centerline to represent bidirectional roads. On comparing
Figure 9a,b, we conclude that the road network generated by our method has a better geometric
accuracy than the road network inferred by Davies’ method.

6. Conclusions

We have proposed a new segmentation and grouping framework for road map inference from
GPS traces. The key aspect is the partitioning of the whole points of the GPS traces into clusters
that represent nearly straight curves to recover the road map. In summary, our method has the
capability to deal with both densely- and sparsely-sampled GPS traces. According to the experimental
and evaluation results, we can conclude that our method performs well in terms of the geometric
accuracy. The framework we proposed is open and flexible. We can develop a more sophisticated 2D
point cloud segmentation algorithm to replace the current one, thereby further improving the overall
performance of the proposed method. We can also use other types of skeletonisation algorithms that
are more robust to noise to generate the centerlines of the point clusters.

In this research, we used two consecutive points to estimate the orientations of points. However,
noise and sparse sampling considerably affect the accuracy of orientation estimation. In future work,
we plan to integrate the connection between points and the point cloud distribution to estimate
orientations to improve the performance of our algorithm. The method is designed to generate nearly
straight curves to recover the road network. However, not all roads are straight. In future work,
we will simulate curves with a sequence of line segments to infer winding roads from GPS traces.
In addition, we need to process the intersections of the centerlines to generate the graph model of the
road network.
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DBSCAN: Density-Based Spatial Clustering of Application with Noise
Lowess: Locally-Weighted Scatterplot Smooth
HMM: Hidden Markov Model
UGC: User-Generated Content
GPS: Global Positioning System
2D: Two-Dimensional
KDE: Kernel Density Estimation
PCA: Principal Component Analysis
MAD: Median Absolute Deviation
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