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Abstract: Large quantities of location-sensing data are generated from location-based social network
services. These data are provided as point properties with location coordinates acquired from a global
positioning system or Wi-Fi signal. To show the point data on multi-scale map services, the data
should be represented by clusters following a grid-based clustering method, in which an appropriate
grid size should be determined. Currently, there are no criteria for determining the proper grid
size, and the modifiable areal unit problem has been formulated for the purpose of addressing this
issue. The method proposed in this paper is applies a hexagonal grid to geotagged Twitter point data,
considering the grid size in terms of both quantity and quality to minimize the limitations associated
with the modifiable areal unit problem. Quantitatively, we reduced the original Twitter point data
by an appropriate amount using Töpfer’s radical law. Qualitatively, we maintained the original
distribution characteristics using Moran’s I. Finally, we determined the appropriate sizes of clusters
from zoom levels 9–13 by analyzing the distribution of data on the graphs. Based on the visualized
clustering results, we confirm that the original distribution pattern is effectively maintained using the
proposed method.
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1. Introduction

Map generalization refers to the process of expressing point features as clusters by merging points
on a multi-scale map. Map generalization is typically considered in terms of both quantity and quality.
In quantitative terms, the point data must be reduced by the correct amount when zooming out on the
map whereas, qualitatively, the data should maintain its original distribution characteristics [1].

In this study, we consider the point clustering process from the perspective of a map point
feature-generalization process. In the map generalization field, studies on line generalization [2–7]
or polygon generalization [8–11] have been conducted for some time. However, studies on point
generalization have been minimally performed [1], because most web map components are linear
features, such as roads and streams, or polygonal features, such as buildings and parcels. Point features,
on the other hand, tend to be to be considered of minimal importance.

In this regard, Yu [1] focused on the distribution pattern of point features and found the
distribution characteristics of the original point data through quadrant analysis, nearest neighbor
analysis, and the K-function. Redundant point features were removed using a generalization threshold
that could maintain the original distribution pattern. A selection and elimination method was applied
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to the point data to generalize a small-scale map from a large-scale map. Thus, only the distribution
pattern of the point data was analyzed, whereas grids were not considered in the representations of
the point features, in contrast to the methodology proposed here.

With the development of the global positioning system, there has been a significant increase
in location-determination technologies and smart devices, as well as increased use of various
location-sensing data generated from location-based social network (LBSN) services, such as Twitter,
Facebook, and Instagram. Such location-sensing data are provided as points with single x, y
coordinates acquired from a global positioning system or Wi-Fi signal that describes the location
from which the data were generated. When visualizing these point data on multi-scale map services,
the readability of information by users decreases during map zoom-out actions because of the
overlapping data. Therefore, the point data should be represented by clusters to improve the legibility
and communicability of the information.

LBSN data are a relatively new form of data with unique characteristics compared to existing
general spatial point data, such as weather, pollution, and population data. LBSN data are likely to
be generated in populous areas or city centers where there is a high probability that many users are
gathered. Thus, these data tend to be more clustered in particular regions compared to other data and
accumulate considerably in real time. Therefore, a clustering methodology that is customized for these
data characteristics is required to represent these data in map services.

The k-means clustering and grid-based clustering algorithms are generally used to cluster point
data. Following the k-means method, researchers specify the number of clusters (k) in advance, and it
is, therefore, difficult to apply the method to non-convex shapes or very different size of clusters.
Following the grid-based clustering approach, an object space is created in a finite number of spaces
comprising a lattice structure, and all clustering processes are implemented within the structure;
this clustering method is independent of the number of data objects, depends only on the number of
cells, and uses the centroid of each tile [12]. However, the grid-based method cannot maintain the
original data distribution characteristics because it uses a predetermined grid size for each zoom level.

Therefore, in this paper, we propose a methodology that retains the distribution pattern of the
original data by varying the grid size based on the zoom level. To perform grid-based clustering of
LBSN data, a suitable grid size must be determined for each zoom level. However, no criteria have yet
been presented to determine the appropriate grid size. Moreover, because the size is dependent on the
data’s characteristics and purpose, the size determination inherently involves researcher subjectivity.
In such a case, the modifiable areal unit problem (MAUP) occurs with a high probability of affecting
the analysis result, as will be discussed in more detail in Section 2.

The purpose of this study is to determine the appropriate sizes of clusters for different zoom levels,
considering both quantitative and qualitative aspects while minimizing the MAUP effect. We propose
a methodology that determines the appropriate sizes of geotagged Twitter point data clusters from
one side length of the hexagons (h) in latticed grids that are established for this purpose. Following the
proposed methodology, the terms ‘cluster’ and ‘hexagon’ represent the same meaning in this study.
To consider the quantitative data characteristics, the proposed method determines the proper number
of clusters for different zoom levels by using Töpfer’s radical law, which is a mathematical model
for calculating the appropriate number of map objects. In addition, qualitative data characteristics
are considered using Moran’s I as a measure of spatial autocorrelation to identify the distribution
characteristics of the clustered data.

The remainder of this paper is organized as follows: Section 2 details the MAUP, and Section 3
describes the theoretical basis of the main methodologies—Töpfer’s radical law and Moran’s I—used
in this study; Section 4 discusses the technique used to determine the appropriate size of clusters
according to zoom-levels as well as the results when applied to a real dataset, and Section 5 derives
the conclusions and meaning of this study.



ISPRS Int. J. Geo-Inf. 2016, 5, 151 3 of 15

2. Modifiable Areal Unit Problem (MAUP)

The study presented in this paper focuses on the MAUP scale effect, whereby we analyze the
distribution characteristics resulting from changes in the grid sizes. In this regard, He et al. [13] used
the MAUP scale effect to search for the optimal scale that most closely represents the actual spatial
distribution pattern of plant communities. In addition, Viegas et al. [14] analyzed the MAUP scale
effect for variables relevant to minimizing the influence of the MAUP effect when creating a traffic
analysis zone, and Swift et al. [15] attempted to determine the impact of spatial aggregation and MAUP
on the correlation between potable water quality and stomach problems, developing nine different
spatial units to analyze both scale and zoning effects.

Such studies on the impacts of the MAUP operation mechanism on spatial and statistical analyses
have been conducted in various fields for some time. Nevertheless, the practice has not yet been
applied to LBSN data because, despite the steady progress of MAUP-related studies since the 1980s,
LBSN services were not created until the early 2000s, after the introduction of smart devices and social
media. Consequently, the significant contribution of this study is the investigation of the MAUP effect
on new types of data from the scale effect perspective. Furthermore, we reveal that the MAUP effect
should be considered when analyzing area-based location-sensing data.

To address the stated objective, original point data should be combined with polygons for analysis
based on spatial units that are defined by a particular characteristic, such as regional population
sizes or employment rates. Researchers must select a proper size and shape of the spatial units for
analysis, or create new spatial units by adjusting the existing units [16]. However, no specific criteria
for determining the appropriate size and shape of the spatial units exist.

The problem of constructing a new spatial unit is closely related to the issue of spatially-aggregating
small scales in relation to large scales. For instance, the same area can be divided in various ways
according to the aggregation scheme. That is, an area can be represented at different scales, and areas
consisting of different zones can be generated at the same scale [16].

This problem is referred to as MAUP. According to Openshaw, “The selection of areal units,
or zoning systems, cannot therefore be separate from, or independent of, the purpose and process of
a particular spatial analysis” [17]. MAUP shows that the choice of spatial unit influences the results.

MAUP arises because most spatial units are variable in arbitrary, limited states. Therefore, spatial
units can be aggregated or transformed to create different scales or zones [18]. That is, MAUP has
two perspectives: the scale effect and the zoning effect. With the scale effect, the result changes
when analysis is conducted for the different spatial scales. With the zoning effect, different results
are generated by regrouping the spatial units [19]. An example of the two MAUP effects is shown
in Figure 1. Figure 1a illustrates population numbers per spatial units, and Figure 1b illustrates the
number of unemployed people. Figure 1c,d both represent the MAUP effects on the unemployment
rate determination, in which the values at the same location differ because of the scale and zoning
effects, respectively. With the scale effect, the total number of spatial units is different and the size of
the spatial units is the same. On the other hand, with the zoning effect, the total number of spatial
units is the same, and the size of the spatial units is different.

The most critical reason for the occurrence of MAUP is the variance and covariance of variables
when spatial units are aggregated on account of the scale and zoning effects. That is, the variance of
the variables generally decreases when spatial units are aggregated because of the smoothing effect.
For example, numerical outliers tend to converge toward average values during aggregation because
they are combined with other spatial units [16].
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Figure 1. Example of the MAUP scale effect and zoning effect: (a) base population; (b) unemployed
count; (c) scale effect; and (d) zoning effect [20].

3. Methodology

The purpose of this study is to provide a methodology for determining the appropriate clustering
criteria of location-sensing point data using zoom levels to visualize the data on a multi-scale map
service. In this approach, we collect geotagged Twitter messages using the Twitter open application
programming interface (API). A distribution characteristic of the original Twitter point data is then
analyzed using quadrant analysis (QA) and nearest neighbor analysis (NNA). This result is later
utilized as a reference for evaluating Moran’s I calculations, as will be discussed in more detail in
Section 4.2. Then, the appropriate number of points for each zoom level is calculated using Töpfer’s
radical law. We consider the number of points as the appropriate number of clusters. Thereafter,
the ranges of the hexagonal side length h are calculated, and various sizes of hexagonal grids are, thus,
created. These grid data and geotagged Twitter point data are spatially joined by zoom levels. After that,
Moran’s I of the spatially-joined results is calculated to analyze the distribution characteristics for
each range. Finally, the appropriate value of h is determined by maintaining the original distribution
characteristics of the previously calculated Twitter point data. This process is shown in Figure 2.



ISPRS Int. J. Geo-Inf. 2016, 5, 151 5 of 15

ISPRS Int. J. Geo-Inf. 2016, 5, 151 4 of 15 

 

  
(c) (d) 

Figure 1. Example of the MAUP scale effect and zoning effect: (a) base population; (b) unemployed 

count; (c) scale effect; and (d) zoning effect [20].  

3. Methodology 

The purpose of this study is to provide a methodology for determining the appropriate 

clustering criteria of location-sensing point data using zoom levels to visualize the data on a multi-

scale map service. In this approach, we collect geotagged Twitter messages using the Twitter open 

application programming interface (API). A distribution characteristic of the original Twitter point 

data is then analyzed using quadrant analysis (QA) and nearest neighbor analysis (NNA). This result 

is later utilized as a reference for evaluating Moran’s I calculations, as will be discussed in more detail 

in Section 4.2. Then, the appropriate number of points for each zoom level is calculated using Töpfer’s 

radical law. We consider the number of points as the appropriate number of clusters. Thereafter, the 

ranges of the hexagonal side length h are calculated, and various sizes of hexagonal grids are, thus, 

created. These grid data and geotagged Twitter point data are spatially joined by zoom levels. After 

that, Moran’s I of the spatially-joined results is calculated to analyze the distribution characteristics for 

each range. Finally, the appropriate value of h is determined by maintaining the original distribution 

characteristics of the previously calculated Twitter point data. This process is shown in Figure 2. 

 

Figure 2. Flowchart of the process of determining the appropriate sizes of clusters. Figure 2. Flowchart of the process of determining the appropriate sizes of clusters.

3.1. Determining the Appropriate Number of Clusters Using Töpfer’s Radical Law

The selection and elimination operator of the map generalization field refers to the process used
to select and eliminate objects that require no expression on the map at a specific level. The most
important task is to determine how many objects will remain. When selecting and eliminating some of
the objects, we must consider the degree of importance of the objects, such as their geometry, semantics,
and distribution [21].

Determining the number of objects that will be selected and eliminated depends on the purpose
of the map, target scale level, and researcher intention. Töpfer’s radical law is used in this case because
it is the mathematical model that is used to calculate the number of objects or features to be selected
based on the source and derived scale. That is, it calculates how many objects should be remained
at smaller scales in the map generalization process. Töpfer’s radical law can be calculated using
Equation (1) [22]:

n f = na ×
√

Ma

M f
(1)

Here, n f is the number of clusters that can be shown at the derived scale, na is the number of
clusters shown from the source material, Ma is the scale denominator of the source map, and M f is the
scale denominator of the derived map for highly exaggerated expression [22].

In this study, we calculate the appropriate number of points for each zoom levels by applying
Töpfer’s radical law to geotagged Twitter point data. The calculation results indicate the number of
clusters to be represented for each zoom level, according to the following process. First, Twitter point
data are spatially joined with hexagonal grids for area-based analysis. The number of points included
in each grid is calculated. When counting the number of clusters using Töpfer’s radical law, the grids
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with a zero join count value are excluded, and only the grids that must be expressed by clustering
are counted.

We use Equation (2) to determine the appropriate value of the hexagonal side length h. This is
because an overlapping component of the value can be generated when the h value range is not
specified, which can be continuously changed according to zoom levels:

hi+1 < hi < hi−1 (2)

Here, hi is one side length of the hexagonal grid at i level, hi+1 is one side length of the hexagonal
grid at i + 1 level, and hi−1 is one side length of the hexagonal grid at the i − 1 level.

3.2. Analysis of Spatial Pattern Characteristics with Moran’s I

According to Lee [23], spatial data containing location information cannot exist independent of
other spatial data. In accordance with Doreian [24], spatial dependencies and interactions in many
socioeconomic, population-based, and natural phenomena cannot be controlled when analyzing spatial
data with traditional linear analytical methods. Similar to Tobler’s first law of geography, “Everything
is related to everything else, but near things are more related than distant things” [25]. The spatial
autocorrelation is the spatial interaction between nearby spatial units [26], and Moran’s I is a measure
for this spatial autocorrelation. Moran’s I has a value in the range of approximately −1 to 1. A value
of 1 indicates a perfect correlation, a value of −1 indicates perfect dispersion, and a zero value indicates
a random spatial pattern. Moran’s I can be calculated as shown in Equation (3) [27]:

I =
n

∑i ∑j wij
×

∑i ∑j wij (xi − x)
(

xj − x
)

∑i (xi − x)2 (3)

Here, n is the number of spatial units indexed by i and j, wij is the element of a spatial weights
matrix, xi is the variable of interest, and x is the mean of x.

Moran’s I is used to compare and analyze the spatial distribution characteristics of polygons that
are spatially joined with points. For example, if the distribution characteristic of the original point
data is random, this random distribution should be maintained when representing the point data as
clusters. In addition, Moran’s I serves as an important index for deriving the appropriate cluster size.
This is because the degree of spatial autocorrelation calculated by Moran’s I can be a good reference
for measuring and minimizing the effect of MAUP [16].

4. Experimental Results and Discussion

4.1. Data Used

To assess the effectiveness of the proposed method, we conducted an experiment using
188,627 geotagged Twitter data points collected in Seoul, Korea, using Twitter’s open API. We considered
the hexagonal grids generated for each zoom level in Seoul as the unit of analysis. The hexagons were
used because, according to Christaller’s central place theory [28], hexagons enable more homogeneous
spatial division compared to circular or square grids; the distances between the centroids of the
hexagons are always the same, unlike the perpendicular distances between the centroids of rectangles.

The zoom levels were determined with reference to the scale of Google maps. Google Maps offers
a tile map with levels from 0 to 20. We determined the appropriate ranges for clustering from level 9,
where the entire city of Seoul can be viewed, to level 13, where individual buildings are shown as
a combined form (Table 1).
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Table 1. Scales of Google maps according to zoom levels.

Zoom
Level Scale (m) Appropriate

Expression Notes

0 20,088,000.56607700 Clustering Maximum zoom-out level.
1 10,044,000.28303850 Clustering The world is visible in a single frame.

. . . . . . . . . . . .
5 627,750.01768991 Clustering South Korea is visible in a single frame.

. . . . . . . . . . . .
9 39,234.37610562 Clustering Seoul is visible in a single frame.

10 19,617.18805281 Clustering Main roads are visible.
11 9808.59402640 Clustering Subway routes are visible.
12 4909.29701320 Clustering Land districts are visible.
13 2452.14850660 Clustering Individual buildings are shown in combined form.
14 1226.07425330 Clustering Large-scale buildings are almost visible.
15 613.03712665 Point Individual buildings are almost visible.
. . . . . . . . . . . .
19 38.31482042 Point Maximum zoom-in level.

For the application of Töpfer's radical law, level 19 (maximum zoom-in level) was used when
calculating the scale denominator of the source map (Ma). The scale denominator of the derived map
(M f ) was calculated using levels 9 to 13.

4.2. Identifying the Distribution Characteristics of the Original Data

Two methods were used to determine the distribution characteristics of the original Twitter
point data. Since the data essentially have point properties, we used QA and NNA. QA was used for
detecting the density of the point distribution, and NNA was used for analyzing the spatial relationship
between the points. We carefully considered maintaining the original distribution characteristics of the
raw data by analyzing their original distribution patterns.

QA divides the entire region into grid cells and calculates the number of points included in each
grid cell, and then the hypothesis is tested using the variance mean ratio (VMR). The QA result shows
that the VMR is 27.80712 when the grid size is 50 m, indicating that the distribution of the points is
highly clustered.

NNA was used to measure the distance between the two nearest points on the geographical area
and to describe the distribution patterns. The ratio of the distance from the expected average nearest
neighbor to the observed average nearest neighbor is R. The calculation result for the point patterns
shows that R is 0.216184, meaning that its distribution is significantly statistically clustered. The results
of the two analyses show that the original distribution characteristics are highly clustered.

4.3. Determining the Appropriate Cluster Size according to Zoom Levels

Determining the appropriate sizes of clusters from the proper number of clusters calculated by
Töpfer’s radical law is not a simple matter of substitution. Since the lattices should serve as a cluster,
the lattices that need no representation must be excluded. Specifically, the process of determining the
appropriate sizes of clusters involves six steps, as shown in Figure 3: (1) calculating the appropriate
number of clusters from level 9 to level 13 using Töpfer’s radical law; (2) calculating the size of clusters
that corresponds to the calculated number of clusters, and generating hexagonal grids in accordance
with the calculated size; (3) spatially joining the hexagons and geotagged Twitter data; (4) calculating
the number of hexagonal grids spatially joined with the exception of the grids with a zero join count;
(5) repeating the above steps until the excluded calculation result matches the appropriate number of
clusters; and (6) determining the appropriate size of clusters (h), that corresponds to the result when
calculating the proper number of clusters.
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The calculation results of the appropriate number of clusters, the total number of clusters,
the number of clusters with a zero join count, and one of the side lengths of the hexagonal grids
are shown in Table 2.

Table 2. Result of appropriate cluster number and size.

Zoom Level 9 10 11 12 13

(a) Appropriate number of clusters 1 5895 8336 11,789 16,664 23,578
(b) Total number of clusters 2 8640 13,690 22,523 40,209 81,153
(c) Number of clusters with a zero join count 3 2746 5354 10,734 23,546 57,577
(d) Actual number of clusters 4 5894 8336 11,789 16,663 23,576
(e) h (m) 5 167.9840 132.9000 103.2334 76.9700 54.0100

1 Calculation result of Töpfer’s radical law; 2 Total number of clusters when (e) h is the corresponding value;
3 Not counted as a cluster; 4 Actual number of clusters extracted in this study ((b) and (c)). The values have
a margin of error of ±2 compared with (a); 5 One of the side lengths of the hexagonal grid when (d) the actual
number of clusters is the corresponding value.

In the first process for determining the most appropriate size of the clusters for each zoom level,
we calculated the range of the cluster size using Equation (2). We divided the range into ten levels
with identical ratios for each zoom level and calculated Moran’s I for each value in the range. Thus,
each ratio differs for each zoom level.

When calculating Moran’s I, a spatial continuity relationship method was used. The spatial weight
matrix was used with a simple binary weighting method, yielding a value of 1 for a pair of adjacent
spatial units, and a value of 0 otherwise, where each value was row-standardized. The calculation
results of Moran’s I are shown in Tables 3–7, respectively and Figures 4–8, respectively. According to
the results, all of the Moran’s I values are greater than zero, which indicates that all of the distributions
are clustered with a 99% significance probability.
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To be more specific, the values decrease until the third point and increase significantly at the
sixth point in level 9. The value then decreases again at the seventh point with a similar proportion.
The remaining values continuously increase (Table 3, Figure 4). The result of level 10 is similar to that
of level 9. In level 10, the values increase until the fourth point, then decrease until the sixth point,
and increase significantly at the seventh point. The value then decreases again at the eighth point with
a similar proportion, and the remaining values increase continuously, similar to those at level 9 (Table 4,
Figure 5). In level 11, the value increases sharply at the third point, then repeatedly decreases and
increases, with a significant decrease at the seventh point. The value then increases significantly again
with a similar proportion and increases gradually (Table 5, Figure 6). The result of level 11 is similar
to that of level 13. In level 12, the values increase until the seventh point and then decrease slightly.
They then repeatedly increase and decrease (Table 6, Figure 7). In level 13, the values continuously
increase until the fifth point and then decrease significantly at the sixth point, increasing significantly
again at the seventh point. The remaining values then repeatedly increase and decrease (Table 7,
Figure 8).

In this experiment, the value of Moran’s I generally repeatedly increased and decreased for each
zoom level. According to previous studies [16,26,29], as the sizes of the spatial units increase, the value
of Moran’s I tends to fall. However, this is not an absolute truth; moreover, it cannot be applied to all
data types. Actually, according to Fotheringham’s study [30], as the size of the spatial units increase,
Moran’s I also increases and then decreases at some point. In the same study, the value of Moran’s I
continuously increases with the increasing size of the units.
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Table 3. Result of Moran’s I calculation according to cluster size at level 9.

h (m) 167.9840 171.5718 175.1596 178.7475 182.3353 185.9231 189.5109 193.0987 196.6865 200.2744

Moran’s I 0.337049 0.334224 0.331395 0.334840 0.338697 0.351418 0.338591 0.339324 0.350894 0.351200
z-score 53.64593 52.115810 50.609894 50.156455 49.703846 50.569599 47.833196 47.054872 47.819729 47.035779
p-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

It −0.002825 −0.002829 0.003445 0.003857 0.012721 −0.012827 0.000733 0.01157 0.000306 0.009968

Table 4. Result of Moran’s I calculation according to cluster size at level 10.

h (m) 132.9000 136.0895 139.2789 142.4684 145.6578 148.8473 152.0367 155.2262 158.4156 161.6051

Moran’s I 0.281202 0.288941 0.296517 0.303417 0.303221 0.300809 0.318932 0.303526 0.311796 0.314042
z-score 56.536202 56.659378 56.866631 56.858117 55.635019 54.050734 56.070798 52.278083 52.609823 52.044655
p-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

It 0.007739 0.7576 0.006900 −0.000196 −0.002412 0.018123 −0.015406 0.008270 0.002246 0.029579

Table 5. Result of Moran’s I calculation according to cluster size at level 11.

h (m) 103.2334 105.9304 108.6273 111.3243 114.0213 116.7182 119.4152 122.1121 124.8091 127.5061

Moran’s I 0.236686 0.236975 0.260558 0.257863 0.261015 0.265357 0.242549 0.265454 0.264395 0.270114
z-score 61.184932 59.722087 63.934237 61.792192 61.08905 60.708873 54.238518 58.025927 56.608123 56.578701
p-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

It 0.000289 0.023583 −0.002695 0.003152 0.004342 −0.022808 0.022905 −0.001059 0.005719 0.005655

Table 6. Result of Moran’s I Calculation According to Cluster Size at Level 12.

h (m) 76.9700 79.3576 81.7452 84.1327 86.5203 88.9079 91.2955 93.6831 96.0707 98.4582

Moran’s I 0.183978 0.197222 0.198712 0.202499 0.213252 0.221284 0.22293 0.220356 0.225596 0.227506
z-score 63.854972 66.348136 64.883856 64.275191 65.787751 66.407434 65.166372 62.794734 62.676514 61.659155
p-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

It 0.013244 0.0490 0.003787 0.010753 0.008032 0.001646 −0.002574 0.005240 0.001910 0.006392

Table 7. Result of Moran’s I calculation according to cluster size at level 13.

h (m) 54.0100 56.0973 58.1845 60.2718 62.3591 64.4464 66.5336 68.6209 70.7082 72.7955

Moran’s I 0.147479 0.150775 0.154105 0.159615 0.171634 0.162377 0.177599 0.176084 0.171696 0.172464
z-score 72.919046 71.831729 70.772101 70.751218 73.520598 67.300236 71.142506 68.548431 64.878744 63.318254
p-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

It 0.003296 0.003330 0.005510 0.012019 −0.009257 0.015222 −0.001515 −0.004388 0.000768 0.009556
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Figure 5. Changes of Moran’s I according to the cluster size at level 10.
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Figure 7. Changes of Moran’s I according to the cluster size at level 12.
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Figure 8. Changes of Moran’s I according to the cluster size at level 13.

In the Section 4.1, we showed that the distribution of the original Twitter point data is highly
clustered. Accordingly, we determined the sizes of clusters needed to maintain as closely as possible
the clustered distribution patterns during clustering for each zoom level. As the value of Moran’s I
increases, the spatial distribution of the data becomes more clustered, and the spatial autocorrelation
is strong. The effect of MAUP can be minimized by clustering when the degree of the spatial
autocorrelation is high. With the minimized MAUP, the spatial units with similar characteristics
are contiguously gathered, which is the desired outcome of the clustering process. We considered the
value of Moran’s I and its variance, especially the singular point at which the value is significantly
increased or decreased, for determining the appropriate cluster size. In particular, the first difference
of the value of Moran’s I (It = It+1 − It) for each zoom level determined the singular point that
represented an appropriate value of h. Break points occur wherever the value of It is negative,
and the maximum absolute value among break points was set as the singular point. This process was
implemented because the desired value was that which occurred before the relatively high decrease of
the Moran’s I in its increasing and decreasing pattern. The continual increase after the singular point
can be considered structural because Moran’s I tends to increase when the value of h increases.

In the experimental results, the value of Moran’s I shows a tendency to increase when the value of
h increases, as was shown in Fotheringham and Wong’s study [30]. Levels 9 and 10, have three break
points. The break points in level 9 occurred where h is 167.9840 m, 171.5718 m, and 185.9231 m, and the
break points in level 10 occurred where h is 142.4684 m, 145.6578 m, and 152.0367 m. Among these
points, the singular point is the one with the maximum absolute value of It, and it is observed where
the values increase sharply and decrease immediately after the singular point. We considered the
value at this particular point as the appropriate size of h because this point implies that the degree
of spatial autocorrelation is especially high at that distribution within the general increasing range.
Therefore, the appropriate size of h at level 9 is 185.9231 m, where Moran’s I is 0.351418, and the
appropriate size of h at level 10 is 152.0367 m, where Moran’s I is 0.318932 (Tables 3 and 4, respectively;
Figures 4 and 5, respectively).

Levels 11 and 13, also have three break points. The break points in level 11 occurred where
h is 108.6273 m, 116.7182 m, and 122.1121 m, and the break points in level 13 occurred where h is
62.3591 m, 66.5336 m, and 68.6209 m. Among these values, the singular point is observed immediately
before the value decreases sharply. Accordingly, we considered the value at this particular point as
the appropriate size of h. Therefore, the appropriate size of h at level 11 is 116.7182 m, where Moran’s
I is 0.265357, and the appropriate size of h at level 13 is 62.35914 m, where Moran’s I is 0.171634
(Tables 5 and 7, respectively; Figures 6 and 8, respectively).

In level 12, the pattern of the values generally increases, and only one break point was observed,
where h is 91.2955 m, and we considered this value as the singular point. Therefore, the appropriate
size of h at level 12 is 91.2955 m, where Moran’s I is 0.22293 (Table 6, Figure 7).

The result of clustering for the derived proper h is shown in Figure 9, in which the value increases
as the color darkens. The clustering results from Figure 9b to Figure 9f show that the clustered
distribution pattern of the original data (Figure 9a) is well preserved during clustering for each of
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the zoom levels. Therefore, we conclude that our method is effective for maintaining the original
distribution characteristics, which conveys the same visual insight as that of the original distribution.
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5. Conclusions

When representing point data extracted from LBSN services on multi-scale maps, the data must be
expressed using clusters to appropriately convey the relevant information. The number of visualized
clusters should be reduced to be appropriate, and the original distribution characteristics should be
maintained. However, no set criteria exist for this purpose; moreover, MAUP occurs according to the
size of the grids during grid-based clustering.

Therefore, in this study, we proposed a method of determining the appropriate sizes of clusters for
each zoom level when visualizing point data acquired from LBSN services on a map, considering both
quantitative and qualitative aspects. We used geotagged Twitter point data and hexagonal grid data
generated for different zoom levels. For this purpose, we analyzed the distribution characteristics of
the original data, which showed a clustered distribution. We used Töpfer’s radical law to calculate the
appropriate number of clusters for the zoom levels. The appropriate size of clusters that could maintain
the original distribution pattern and minimize the effect of MAUP was determined using Moran’s I.
From these calculation results, the first and most significant difference of the value of Moran’s I was
used as the location at which, the appropriate size of the hexagonal grid could be determined for each
of the zoom levels. Lastly, the distribution patterns were visualized for each zoom level on the map.

The significant contribution of our study is reveling that the MAUP effect should be considered
when analyzing area-based location-sensing data. In addition, we determined that the statistical result
depends on the choice of the spatial units. Our method may be used as a criterion for determining
the appropriate size of clusters for which the MAUP effect can be minimized when representing
location-sensing data on a map. Although geotagged Twitter data were used in this study, the proposed
methodology can be applied to other types of location-sensing point data.
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