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Abstract: Automatic point-feature label placement (PFLP) is a fundamental task for map visualization.
As the dominant solutions to the PFLP problem, fixed-position and slider models have been widely
studied in previous research. However, the candidate labels generated with these models are set to
certain fixed positions or a specified track line for sliding. Thus, the whole surrounding space of a
point feature is not sufficiently used for labeling. Hence, this paper proposes a novel label model
based on the region of movability, which comes from plane collision detection theory. The model
defines a complete conflict-free search space for label placement. On the premise of no conflict with
the point, line, and area features, the proposed model utilizes the surrounding zone of the point
feature to generate candidate label positions. By combining with heuristic search method, the model
achieves high-quality label placement. In addition, the flexibility of the proposed model enables
placing arbitrarily shaped labels.
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1. Introduction

Labeling graphical objects is an important issue in several fields, including cartography,
geographic information systems, and information visualization. To preserve the quality of the
visual representation, a label should not overlap with other labels or features [1]. Accordingly,
two sub-problems, label number maximization and label size maximization, are defined [2]. Typically,
non-overlapping labeling is classified as NP-hard [3–5]. The label placement is usually divided into
three tasks: labeling points, labeling lines, and labeling areas. Because labeling points is a more
fundamental problem, point-feature label placement (PFLP) has been extensively studied in recent
years [6–9].

The PFLP requires a labeling model that defines candidate label positions, which directly affects
the implementation and quality of label algorithms. Two main models have been proposed in the
literature (see Figure 1): (i) the fixed-position model, where each point has a set of fixed label
candidates [10]; and (ii) the slider model, where the label can slide continuously in one or more
directions, under the constraint that its boundary touches the corresponding point [11]. These models
provide formalization for the labeling problem such that it can be solved computationally.
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Most previous work on map labeling concentrates on the fixed-position model, the most popular
of which is the four-position model [10,12]. With the finite label candidates for each point, PFLP
can be defined as a combinatorial optimization problem: assigning labels to candidate positions so
that all points are labeled without label-label or label-feature overlap. Accordingly, a wide variety of
combinatorial optimization approaches can be applied to solve the problem, such as greedy, gradient
descent, simulated annealing, integer programming, genetic algorithms, and tabu search [3,13–16].
Mauri et al. [17] proposed a 0–1 integer linear programming model combined with a Lagrangean
decomposition and relaxation for the PFLP. Alvim et al. [18] proposed a new point-feature labeling
algorithm based on the POPMUSIC (Partial Optimization Metaheuristic under Special Intensification
Conditions) frame. Rabello et al. [8] presented a clustering search metaheuristic as a new alternative
method to solve the point labeling problem.

For those labeling algorithms based on the fixed-position model, the framework for searching for
an approximate global optimal solution is feasible. With a specific objective function, the conflict-free
label number, cartographic preference, and some other label quality factors can be considered to obtain
a comprehensive, optimal result [3,19]. Nevertheless, the fixed-position model has some drawbacks for
labeling. Because the fixed potential label positions lack flexibility, when considering the conflicts with
point, line, and area features, the labeling result is greatly affected by this limitation. Thus, among all
of the existing studies based on the fixed-position model, mostly only-point labeling experiments have
been conducted. In practical map labeling, however, if the crucial information of a point, line or area
is overlapped, the entire visualization is worthless [20]. Furthermore, the fixed candidate positions
cannot cover the whole surrounding potential space for labeling. Then, the optimal conflict-free label
may be missed because it is probably not contained in the fixed-position set.

More natural than the fixed-position model are the slider models, which allow a continuous
movement of a label around its point feature [11,21,22]. Hirsch [23] defines repelling forces for
overlapping labels and uses the translation vectors iteratively to reposition the labels. Doddi [24]
presents a labeling model that allows each label to rotate around the point feature with the objective
of maximizing the label size. Another popular slider model is defined by van Kreveld et al. [11],
namely, the one-, two-, and four-slider model (shown in Figure 1). The following studies that apply
the sliding strategy are mostly based on this model. Strijk et al. [25] extends the model to practical
map labeling, which concerns line overlap, area overlap and variable label height. Poon et al. [26]
propose an approximation algorithm for weighted point label placement with the slider model.
Schwartges et al. [9] present an effective heuristic labeling algorithm with sliding labels for
interactive maps.

The slider model drops the restriction that a label can only be placed at finite candidate positions.
Especially when dealing with the point, line, and area contexts, a conflict-free solution is more likely
to be obtained. However, limitations remain. Because the sliding of a label is restricted to a specified
track line, the whole potential labeling space besides the line is not utilized. Further, the framework of
the slider model is more applicable to label number maximization. For the optimization of the label
quality, which synthesizes all of the important quality criteria (such as label association, aesthetics, and
priority [27,28]), the combinatorial optimization strategy, which is widely used by the fixed-position
model, is preferred. Moreover, because the slider model is mostly applied to axis-parallel rectangular
labeling, an exploration of non-textual, arbitrarily shaped label placement has not been performed.
However, most information visualization techniques use non-textual visual attributes to represent
information [20].
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Against this background, this paper proposes a novel point-feature label model extending the
advantages of both the fixed-position model and the slider model. Based on the ‘region of movability’
from collision detection theory [29], the model allows a feasible generation of candidate label regions
and focuses on the discrete solution space for combinatorial optimization, similar to the fixed-position
model. Additionally, labels that have an arbitrary shape can also be managed. The labeling process
consists of three major steps: (1) obtain a continuous, conflict-free space by computing the label
movability region, then discretely generate a set of outstanding candidate label positions from this
search space; (2) quantitatively evaluate the label quality for each candidate label position in the set;
and (3) assign labels to the corresponding candidate positions with the approximations and heuristics
search methods to maximize the total labeling quality. Because each step can be implemented using
various approaches, a flexible framework is presented for solving the PFLP problem.

This paper is structured as follows. In Section 2, a detailed description about the region of
movability and the labeling processes is provided. Labeling experiments of the proposed model for
different cases are given in Section 3. Finally, the study presents a discussion of the results and a
summary of the conclusions.

2. Methodology

Collision detection, which includes possible collisions, the region of movability, and the initial
collision location issues, is widely studied in graphics, simulation, robot-motion planning, and
virtual reality technology [30,31]. Essentially, the placement of labels without overlapping other
point, line, and area visual features belongs to the category of collision avoidance in planar collision
detection. In this paper, according to the principle of the region of movability, the conflict-free
potential space is obtained as the basis for the further point-feature label placement concerning various
background features.

2.1. Region of Movability

The region of movability [29,32] in plane collision detection refers to the moving range for
an object on the plane for rigid-body displacement on the premise of avoiding collisions with
background obstacles. When applied to the label placement problem, the label itself is the ‘object on
the plane’, whereas the various features of the map are the ‘background obstacles’. Thus, the region of
movability defines a conflict-free space for labeling. This paper proposes an effective strategy based on
mathematical morphology and boundary combinations to obtain this region.

Region of movability problem. Let P = (p0, p1, ..., pm−1) be a polygon (p as its anchor point) in the
plane, and Q = (q0, q1, ..., qn−1) be the background polygon (line or point). Then, in what region can
the polygon P move arbitrarily without colliding with Q?

To solve this problem, we first consider the simplified case, where the background object Q is a
point, and then extend it to the full complexity concerning the line and polygon obstacles. The region
of movability for polygon P with respect to the simple point Q is determined in Lemma 1.

Lemma 1. Let P be a polygon in the plane and Q be the background point. P undergoes rigid-body displacement
from its anchor point p. Then, when p is located at point Q, the complementary set of polygon P′, which is
central and symmetric with polygon P about the point p, is the movability region of P, represented by Φ(p, P,
Qpoint) (see Figure 2).

As shown in Figure 2, if anchor point p of polygon P is located in the shaded region P′, then P
will necessarily collide with point Q. In contrast, if p is located in Φ(p, P, Qpoint), the complementary
set of P′, then P will be conflict-free. Thus, Lemma 1 describes only the movability region for the point
background object. When extended to line or polygon obstacles, the following further processing
should be performed.

Lemma 2. Let P be a polygon in the plane and Q be the background line. P undergoes rigid-body displacement
from its anchor point p. P′ is the central symmetric polygon with P about point p. Then, when anchor point p
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moves along with line Q, the whole region that P′ has passed is known as the trace of P′, and its complementary
set is the region of movability for P, represented by φ(p, P, Qline) (see Figure 3).

Lemma 2 describes the generation of the movability region with a line obstacle, and is an extension
of Lemma 1. The basic idea is to consider the line as a set of points, which converts the movability
region problem with the line obstacle into a combination operation of movability regions with point
obstacles described in Lemma 1. The case where the obstacle Q is a polygon can be handled in the
same way. However, because the combination for the trace of P′ is not easy, the following theory and
method are used to form a complete solution for the region of movability problem.
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Definition 1 (Minkowski addition [33]). Let P′ and Q be two arbitrary sets in Rd space. The resultant set S
is obtained by positioning P′ at every point of Q, i.e., vectorially adding all of the points of P′ with those of Q.
This process can be denoted as:

S = P′ ⊕Q =
{

b + t : b ∈ P′, t ∈ Q
}

(1)

where “⊕” stands for the Minkowski addition, which initially applies the mathematical morphology
to the binary image expansion processing. When extended to vector graphics computation, the process
is defined as the sum of the regions that P′ has passed from its anchor point p in all areas of the set Q
(as shown in Figure 4). Ghosh et al. proposed a corresponding boundary addition theorem of polygons
to obtain the result for Minkowski addition [33,34]. The computational result is shown in Figure 4.

From Lemmas 1 and 2 and Definition 1, a complete solution is presented for the region of
movability problem with point, line or polygon obstacles in Inference 1. Thus, the conflict-free labeling
space can be obtained based on it.

Inference 1. Let P be a polygon in the plane and Q be its background point, line, or polygon. P undergoes
rigid-body displacement from its anchor point p, and P′ is the symmetric polygon of P with point p as the center.
Then, Φ(p, P, Q), the region of movability for P, can be expressed as the complementary set of P′ ⊕ Q (as shown
in Figure 4).
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2.2. Label Placement Process

The region of movability provides a good basis for label placement. As mentioned before, our
labeling strategy prefers to consider the PFLP as a problem of combinatorial optimization, which
require two components to be defined: a discrete search space and an objective function [28]. Then, the
problem can be solved using a variety of approximations and heuristics search approaches. Based on
this strategy, the labeling process can be divided into three essentially independent phases [35]:

(1) Generation of candidate positions: Given a point feature, obtain the conflict-free space (region of
movability) for the label. Then, refine this continuous search space to a number of discrete
candidate positions.

(2) Evaluation of candidate positions: Given a label, compute the score that indicates its quality with
respect to various evaluation factors.

(3) Selection of label positions: Given a set of candidate label positions for each point feature, select one
label position from each set to maximize the overall quality of the labeling, as measured in the
evaluation phase.

2.2.1. Generation of Candidate Positions

In the first phase of label placement, the conflict-free search space for each label is produced.
Then, a set of favorable candidate label positions are selected discretely based on this space. For the
convenience of the elaboration, this process is described only for axis-parallel rectangular labeling
because other arbitrarily shaped labels can be managed in a similar way.

More natural than the fixed-position model or slider model, the key point of our model is that the
surrounding zone of a point feature is utilized for label placement. As seen from Figure 5, the search
space of the three main labeling models is presented (defined by the location of the label’s midpoint).
For the fixed-position model with eight candidates, the search space is shown in Figure 5a with eight
points, and the rectangular line in Figure 5b represents the search space for the slider model. The
search space of our model is depicted in Figure 5c with a rounded rectangle. Thus, for any label in this
space, its distance to the point feature is less than the threshold value r, and does not overlap the point
feature. The search spaces of the fixed-position model and slider model are contained by the search
space of our model. The labeling result would benefit from the extended and complete search space.
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Figure 5. The search spaces schematic diagram of the three labeling models. (a) Fixed-position model
with eight candidates; (b) four-slider model; (c) the proposed model.

(i) Candidate Search Space Generation

According to the basic definition and geometrical computation of the region of movability given
in Section 2.1, the conflict-free search space for a rectangular label can be obtained. Specifically, the
rectangular label textbox is regarded as the polygon P in Inference 1, and the midpoint of the textbox
is selected as the anchor point p. Because the label textbox is symmetrical with point p, then P′ = P.
The regions of “immovability” for the basic point, line and area feature are shown in Table 1.

Table 1. Regions of “immovability” for the basic point, line, and area features.

Type Textbox Point Line Area

Figure
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(ii) Candidate Label Position Selection 

The candidate label region provides a full collection of conflict-free space for label placement. In 
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complementary set of these immovability regions. The detailed flow diagram of this process is shown
in Figure 6, in which (a) shows the schematic diagram of the point feature, label textbox size, and
the whole surrounding search space for labeling (as already described in Figure 5c). Then, a label
placement case is shown in (b), with the dot standing for the point feature to be labeled, whereas the
other points, lines, and areas are adjacent obstacle features. The corresponding region of immovability
is illustrated in (c), denoted by the shaded area. Finally, the whole conflict-free labeling space is
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(ii) Candidate Label Position Selection

The candidate label region provides a full collection of conflict-free space for label placement.
In this step, the continuous search space is refined to a certain number, n, of candidate label positions.
To select the n positions, the label location preference is considered, which comprises two major
factors: the label-feature distance and label direction preference. To combine these factors, the research
obtains all n nearest label positions from different directions in the candidate label region by choosing
discrete points on the label textbox as the reference for distance computation. Then, the obtained n
positions are selected as the candidate positions. As shown in Figure 7, the following detailed processes
are employed:

(1) Equally divide the outline of the label textbox with the horizontal and vertical intervals of w
and h to produce n discrete points as the reference points for distance computation, as shown in
Figure 7a.

(2) Choose point M as the reference point from n discrete points. Then, within the candidate label
region, find the position from which the point M is nearest to the point feature to be a candidate
label position, as shown in Figure 7b.
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(3) Repeat Step 2 to select all of the other reference points for the total n candidate label positions.
(When the map features are too crowded, then the candidate positions fail to be generated
because of the limited candidate label region; thus, the default positions in the fixed-position
model are used.)

  

 

 

Figure 6. The flow diagram of the candidate label region generation. (a) Point feature, label textbox, and
search space; (b) a label placement case; (c) the generated region of immovability; (d) the conflict-free
labeling space.
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Because the fixed-position model with four candidates is commonly used in previous research
for map labeling, as a comparison, when w and h are set equal to the width and height of the label
textbox, the four candidates generated by our model are shown in Figure 8. The four reference points
for the distance computation are depicted in Figure 8a. The generated four candidate label positions
for the non-obstacle case and with-obstacle case are presented in Figure 8b,c (the obstacle lines and
areas are indicated by the dotted lines in the figure). For the fixed-position model and slider model,
the conflict-free candidates in Figure 8c would be missed.
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2.2.2. Evaluation of the Candidate Positions

To compare various labeling solutions, a quantitative score is required to indicate the quality of
labeling. The criteria of labeling quality have been studied by cartographers, most notably by Imhof
and Yoeli [1,19,27]. Several basic factors are mostly concerned when labeling:

• Conflict or overlap between labels and graphical features.
• A priori preferences among a set of candidate label positions.
• Association between a label and its corresponding feature.

Based on these label quality criteria, various objective functions are used for combinatorial
optimization of labeling. The choice of objective function affects the aesthetics of the layout and the
efficiency of the search. In this paper, the objective function is defined as:

N

∑
i=1

(w1 · PosPre f erence (i) + w2 · PosCon f lict (i)) (2)

where N refers to the total point feature count, and i represents the label of the point feature i,
as 1 ≤ i ≤ N. The functions PosPreference() and PosConflict() quantify the preference and the conflict
factors of the label respectively, with w1 and w2 as the weights. If w1 = 0, then the preference of the
label position is not considered.

As for the label position preference PosPreference(), an extension from the fixed-position model
can be implemented [36], as shown in Figure 9, in which the candidate label position is assigned to
eight sections with different preference ranks.
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For the convenience of the description for the labeling result, only the number of conflict-free
labels is considered in the next labeling experiments section. The preference is not taken in account,
thus w1 = 0; accordingly, w2 = 1 and the PosConflict() is defined as follows. As a result, the objective
function is set for the conflict-free label number maximization.

PosCon f lict (i) =

{
1 if label is conflict free with other labels and features
0 else.

(3)

2.2.3. Selection of Label Positions

With a set of generated candidate positions for each label and an overall objective function,
selecting positions for all the labels to maximize the globally objective function is a combinatorial
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optimization problem. Although many different approximations and heuristics have been proposed for
this problem, the method based on simulated annealing is preferred in this paper. As a high efficiency
and flexible optimization method, simulated annealing is widely used to solve large optimization
problems, including label placement [2,8,19,36,37]. The basic processes of simulated annealing are as
follows [3]:

1. For each point feature, place its label randomly in any of the candidate positions.
2. Initialize the temperature T to a high initial value To.
3. Repeat the following steps until the temperature T falls below a given threshold value Tc:

(a) Decrease the temperature T according to an annealing schedule.
(b) Randomly pick a label and move it to a new randomly chosen candidate position.
(c) Compute ∆E, the change of the objective function caused by moving the label.
(d) If the new labeling is worse, undo the label repositioning with the probability

P = 1.0− e−∆E/T .

The implementation of standard simulated annealing requires four components: initial
configuration, objective function, configuration changes, and an annealing schedule [3]. And various
parameters are used to control the annealing process, such as the initial temperature To, threshold
temperature Tc, temperature cooling rate A, reposition times M for each annealing stage, and maximum
accepted times K for an immediate temperature decrease. In our labeling process, these parameters are
set similar to the values used in previous research [3,8]. The parameter values are shown in Table 2
(where N is the number of point features).

Table 2. Parameter values for the labeling experiments.

Parameter Definition Value

To Initial temperature for simulated annealing 20
Tc Threshold temperature for simulated annealing 0.01
A Temperature cooling rate for simulated annealing 0.975
M Reposition times for each annealing stage 20 × N
K Maximum accepted times for an immediately annealing 5 × N

With the abovementioned three essentially independent phases described in Section 2.2, the whole
procedure of the region of movability based point-feature labeling is as in Algorithm 1.



ISPRS Int. J. Geo-Inf. 2016, 5, 159 10 of 19

Algorithm 1 Region of movability based point-feature labeling

Input:
U: the point features to be labeled (with corresponding label width and height)
O: the point obstacles
L: the line obstacles
P: the polygon obstacles

Start:
(1) repeat
(2) Select a point u from U, and get its textbox polygon t according to the width and height
(3) Calculate the original search space g for the point u according to t and label-feature distance

threshold value r
(4) Get the obstacles from O, L and P which occlude the labeling region g
(5) Based on these obstacles, calculate the region of movability s for point u with Minkowski

addition
(6) Get the reference point set V of the textbox t
(7) repeat
(8) Select a reference point v from V
(9) Find the candidate label position c within the region s, which makes the distance between

reference point v and point u shortest
(10) Add c to the candidate label position set Cu for point u
(11) until the candidate label position is created for every reference point from V
(12) Add Cu to the candidate label position sets C
(13) until the candidate label position set is created for every point in U
(14) initialize randomly choose label position from C for each point to initialize the labeling solution z
(15) repeat
(16) Improve the solution z with simulated annealing process
(17) until the temperature for simulated annealing falls below a given threshold value
(18) Create the labeling result layer R according to the solution z
Output:

R: the labeling result layer

3. Experiments

The described region of movability-based labeling model is implemented in C# and runs on a
PC with an Intel Core i5 3.2 GHz CPU and 4 GBs of RAM. To verify the effectiveness of the proposed
labeling model, some comparative experiments with the fixed-position model and slider model are
conducted. For the slider model, the four-slider model [22] is applied in the experiments. As for the
fixed-position model, the four-position model is used since it is the most popular labeling model in
previous researches. The four-position model is also combined with simulated annealing with the
same parameter values described in Section 2.2.3 for comparison.

Labeling experiments are performed for several typical datasets. The labeling datasets are
divided into three groups: (i) labeling with only point features; (ii) labeling with point, line and area
features; and (iii) placement of arbitrarily shaped labels. Detailed information about these instances
is shown in Table 3. The corresponding labeling results are presented in the following section. For
a better comparison of the labeling results, the removal of conflicting labels is not included in the
labeling experiments.

Table 3. Information of the instances for labeling experiments.

Instance Labeling Type Map Feature Number of Points

RandomRect
Labeling with point Point

500
RandomMap 500

VariableDensity 1000

RoadResident Labeling with point, line, and area Point, line, area 558

WeatherMap Placement of arbitrarily shaped
labels Point, line, area 32
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3.1. Labeling with Only Point Features

For most previous studies, labeling experiments that only concern the point features have
been conducted. The datasets for labeling experiments with only point features are from previous
representative research [2,38], namely, the RandomRect, RandomMap, and VariableDensity instances.
And they are available at the labeling website [39]. The first instance in RandomRect, RandomMap, and
VariableDensity with 500, 500, and 1000 points, respectively, are chosen for the labeling comparisons.
The labeling results are presented in Figures 10–12, and the conflicting labels are lighter in color and
marked by dotted rectangles.

The RandomRect is formed by n points uniformly distributed in a square of size 25n × 25n,
with the length of both edges independently created under normal distribution [2]. The labeling results
for the chosen RandomRect instance are shown in Figure 10. For these three labeling models, the
four-position model and the four-slider model generate 339 and 380 conflict-free labels. Our labeling
model achieves a result with 450 conflict-free labels, with an improvement of 111 and 70 conflict-free
labels compared with the former models, respectively.

The RandomMap is generated in a similar way as the RandomRect, but with more realistic
label sizes to imitate a real map [2]. The corresponding labeling results for the chosen instance are
depicted in Figure 11. As can be seen from this figure, there are 224 conflict-free labels produced by
the four-position model, and 205 conflict-free labels by the four-slider model. For our model, the result
achieves 358 conflict-free labels, with 134 and 153 more compared with the four-position model and
four-slider model, respectively.

The VariableDensity is formed by the points distributed uniformly on a rectangle of
size 792 × 612 with equal label size of 30 × 7 [2]. The labeling results for this instance are shown in
Figure 12. The four-position model, four-slider model, and our model get 833, 925, and 960 conflict-free
labels, respectively.

The labeling results and the running time for these three instances are given in Table 4.
With only the point obstacles considered, the region of movability-based labeling model guarantees
a better labeling result and achieves an efficient improvement compared with the former models.
The four-slider model gets better results for the RandomRect and VariableDensity than the four-position
model, as it takes advantage of a flexible sliding for a label. However, the result for the RandomMap
with four-slider model is a little worse than the four-position model. That is because the RandomMap
contains too high a density of points and labels, and does not leave much space for sliding. So, if the
slider model gets little benefit from the sliding labels, the fixed-position model may get a better result
with the combinatorial optimization strategy.
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Figure 10. Labeling result for the RandomRect instance with 500 points. (a) Four-position model:
339 conflict-free labels; (b) four-slider model: 380 conflict-free labels; (c) the proposed model:
450 conflict-free labels.
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Figure 12. Labeling result for the VariableDensity instance with 1000 points. (a) Four-position
model: 833 conflict-free labels; (b) four-slider model: 925 conflict-free labels; (c) the proposed model:
960 conflict-free labels.

Table 4. The labeling results and running time for the three models.

Instance
Four-Position Model Four-Slider Model The Proposed Model

Labels Time(s) Labels Times(s) Labels Times(s)

RandomRect 339 9.22 380 5.28 450 17.35
RandomMap 224 11.93 205 4.81 358 21.39
VariableDensity 833 16.91 925 8.55 960 30.66

As the geometric computation is involved, our model runs longer than the four-position model
and four-slider model. Nevertheless, the loss in efficiency is acceptable since the main concern of the
proposed model is the labeling quality for the map production.

3.2. Labeling with Point, Line, and Area Features

The above labeling experiments assume that the point set to be labeled is free of context, thus
no features other than the points and labels need to be shown. However, in practical map labeling,
the crucial lines and areas are essential and should be conflict-free, too. Therefore, labeling a case
with practical point, line, and area features is investigated. The dataset RoadResident is used for
this experiment. It is formed of practical road lines, resident areas, and random generated points.
The labeling results for this instance are presented in Figure 13. The conflicting labels are lighter in
color and are marked by dotted rectangles, and the conflict-free labels are in Chinese and marked by
the rectangles with solid lines.

On the premise of no conflict with points, lines, or areas, the four-position model and four-slider
model get 209 and 290 conflict-free labels. And the proposed model achieves 351 conflict-free labels,
which has 142 and 61 more labels than the former models. The corresponding detailed comparisons
within the rectangular regions are depicted in Figure 14. As can be seen from this figure, the blank
space of map is sufficiently utilized based on the region of movability, while for many points to be
labeled, the candidates from the fixed-position model or the sliding tracks from the slider model are
conflicting with the map context.
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Figure 13. Labeling result for the RoadResident instance with 558 points. And the Chinese words are
the geographic names to be labeled with no conflict. (a) Four-position model: 209 conflict-free labels;
(b) four-slider model: 290 conflict-free labels; (c) the proposed model: 351 conflict-free labels.

In addition, some representative labeling cases of the proposed model are illustrated in Figure 15,
which are difficult to be managed by the fixed-position model and slider model, because the obtained
labels are not at certain fixed positions or restricted to a sliding track line. Thus, based on the region of
movability, a conflict-free label can be placed once there is a blank space in the surrounding zone of
point feature.

Even with the region of movability-based model, there are still 207 labels conflicting because of
the crowded obstacles. For most of these labels, there is not any space in the surrounding zone for
labeling, therefore a conflict-free label position is impossible to be obtained. Some conflicting labeling
cases with the proposed model are shown in Figure 16.
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李家坊村: Lijiafang Village 教礼村: Jiaoli Village 昆五村: KunwuVillage 晨光村: ChenguangVillage 
梅州村: Meizhou Village 梨集村: Liji Village 龙村: Long Village 内新村: Neixin Village 
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3.3. Placement of Arbitrarily Shaped Labels

So far, only rectangular shaped labeling has been discussed. The proposed model can be extended
to place arbitrarily shaped labels. The WeatherMap instance is used in this labeling experiment, which
shows the weather conditions of the provincial capitals in China. As seen from the labeling result in
Figure 17, most of the arbitrarily shaped weather symbols are successfully assigned to points on the
premise of being conflict-free with the map context features. Some of the labels in this figure cannot be
easily handled with the fixed-position model or slider model.
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Figure 17. The labeling of weather condition symbols for the provincial capitals in China. And some
representative labeling cases are presented.

4. Conclusions

The labeling model based on the region of movability provides a novel strategy for label placement.
The model sufficiently utilizes the blank zone of the map and extends the search space, of which the
candidate labels are at some fixed positions or sliding along a specified track. With this improvement,
the labeling experiments demonstrate the good performance of the region of movability-based model.
Especially when considering conflict-free with complicated context features, the proposed model
successfully completes the placement of labels that are difficult to be dealt with in the fixed-position
and slider models. Moreover, arbitrarily shaped labels can be handled under this strategy.

In this paper, only point-feature labeling is considered. Thus, an extension to line and area feature
labeling may be conducted in further research. Even with the proposed model, the placement of
conflict-free labels is sometimes impossible if the nearby labels or obstacle features are too crowded.
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Hence, a removal strategy for these labels without enough labeling space should be explored.
The results provide several directions for future work.
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