
 International Journal of

Geo-Information

Article

A Combinatorial Reasoning Mechanism with
Topological and Metric Relations for Change
Detection in River Planforms: An Application to
GlobeLand30’s Water Bodies
Liang Leng 1,2, Guodong Yang 2 and Shengbo Chen 2,*

1 Applied Technology College, Jilin University, 5372 Nanhu Road, Changchun 130012, China;
lengliang@jlu.edu.cn

2 College of Geo-exploration Science and Technology, Jilin University, 938 Ximinzhu Street,
Changchun 130026, China; ygdjl@sina.com

* Correspondence: chensb@jlu.edu.cn; Tel.: +86-431-8850-2426

Academic Editors: Josef Strobl and Wolfgang Kainz
Received: 16 August 2016; Accepted: 6 January 2017; Published: 12 January 2017

Abstract: Changes in river plane shapes are called river planform changes (RPCs). Such changes
can impact sustainable human development (e.g., human habitations, industrial and agricultural
development, and national border security). RPCs can be identified through field surveys—a method
that is highly precise but time-consuming, or through remote sensing (RS) and geographic information
system (GIS), which are less precise but more efficient. Previous studies that have addressed RPCs
often used RS, GIS, or digital elevation models (DEMs) and focused on only one or a few rivers in
specific areas with the goal of identifying the reasons underlying these changes. In contrast, in this
paper, we developed a combinatorial reasoning mechanism based on topological and metric relations
that can be used to classify RPCs. This approach does not require DEMs and can eliminate most
false-change information caused by varying river water levels. First, we present GIS models of river
planforms based on their natural properties and, then, modify these models into simple GIS river
planform models (SGRPMs) using straight lines rather than common lines to facilitate computational
and human understanding. Second, we used double straight line 4-intersection models (DSL4IMs)
and intersection and difference models (IDMs) of the regions to represent the topological relations
between the SGRPMs and used double-start-point 8-distance models (DS8DMs) to express the metric
relations between the SGRPMs. Then, we combined topological and metric relations to analyse the
changes in the SGRPMs. Finally, to compensate for the complexity of common river planforms in
nature, we proposed three segmentation rules to turn common river planforms into SGRPMs and used
combinatorial reasoning mechanism tables (CRMTs) to describe the spatial relations among different
river planforms. Based on our method, users can describe common river planforms and their changes
in detail and confidently reject false changes. Future work should develop a method to automatically
or semi-automatically adjust the segmentation rules and the combinatorial reasoning mechanism.

Keywords: change detection; river planforms; combinatorial reasoning mechanism; topological
relation; metric relation

1. Introduction

Rivers are critical for human survival and sustainable development and provide indispensable
human resources, such as domestic water, agricultural water, industrial water, shipping, and alluvial
plains. However, changes in the river plane shape, called “river planform changes” (RPCs),
influence the sustainability of human life, industrial development, agricultural development and
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national border security. Both extrinsic and intrinsic human activities can affect RPCs. A thorough
understanding of a mechanism for detecting RPCs as a fundamental geographical process is critical for
predicting river changes that could influence human survival and sustainable development [1–5].

Using remote sensing (RS), geographic data can be rapidly acquired over large areas with
high resolution. Using geographic information system (GIS), people can rapidly display, process,
and analyse the high volumes of geographic data acquired through RS. Both RS and GIS are increasingly
being used to detect and analyse RPCs [6–15]. To better analyse RPCs, some auxiliary information such
as digital elevation models (DEMs), landscapes, and geometries have been applied to the analysis of
river planforms. Lau and Franklin (2013) exploited river segment geometries instead of the unreliable or
unavailable partial elevation data to generate the induced terrain and the complete river network [16].
Mantilla and Gupta (2005) proposed CUENCAS, which is based on DEMs, to understand river
networks [17]. Langhammer and Vilímek (2007) examined the effect of landscape changes caused
by floods on the RPCs of the Otava River basin using GIS, RS, and field work [18]. Wohlfart et al.
(2016) determined land cover characteristics and dynamics based on optical high-temporal-resolution
Moderate Resolution Imagine Spectroradiometer (MODIS) Normalised Differenced Vegetation Index
(NDVI) time series for the entire Yellow River Basin. The NDVI changes can be used to analyse
hydrological changes [19]. These previous studies—even with some auxiliary information—focused
only on the RPCs of a single river or on several rivers within a particular area, identified the changes,
analysed the underlying reasons, and described their impacts on humans or other objects. Their results
are important for human societies. However, these studies did not propose a method to analyse and
classify RPCs in volume by considering their characteristics over large areas or worldwide.

The era of big data has arrived (although no definition of big data has yet achieved consensus
among all researchers). However, big data’s characteristics—large volumes, high velocities,
wide variety, and huge value but low density—are widely believed to require reforms in data
processing [20–24]. Global land cover products are important for analysing global changes in a
less-costly and less time-consuming manner, and such products are being developed with increasingly
high resolutions. Meanwhile, the data volume continues to increase; when it reaches a certain level,
it will be classified as GIS big data. Therefore, it is necessary to develop a method to detect and analyse
various RPCs based on their common characteristics. The GlobeLand30 dataset, which is based on
the Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Huan Jing 1
(HJ-1) multispectral images published by China in 2014, includes the highest resolution global land
cover products available and was used to obtain the 2000 and 2010 global land cover products, which
include water bodies at a resolution of 30 m. These products are freely accessible and available for
non-commercial use. Thus, they can serve as a basis for analysing global changes [25,26]. Additionally,
GlobeLand30’s accuracy has been validated by many users, and it can be used in most regions of the
earth [27–30]. The 2000 and 2010 water bodies are suitable for obtaining massive initial RPCs through
overlay analysis in our study. However, river planforms are dynamic because the river levels change.
Thus, dynamic river planforms are temporary and should not be considered as true river planforms;
in other words, changes caused by non-normal river levels should be considered as false RPCs.
The common approach for detecting RPCs and distinguishing false RPCs is to use a LiDAR-based
high-precision DEM at different times; however, this approach is costly on a global scale [31–36].
Users can acquire direct RPCs based on RS and GIS data, such as GlobeLand30, but false RPCs are
difficult to distinguish automatically from these data because of the lack of DEMs in GlobeLand30.

Spatial relations include topological relations, metric relations, and order relations, and can
enhance analyses of both RPCs and false RPCs. Increasingly, studies investigating river planforms
have accounted for spatial relations (Peršić and Horvatić (2011) [37], Zhou et al. (2012) [38], Schilling
and Jacobson (2012) [39], Hudson et al. (2006) [40], Pan et al. (1999) [41], Hernández-Gracidas et al.
(2011) [42] and Buckingham and Whitney (2007) [43]). However, these studies considered only one
or a few rivers and, thus, did not express the spatial relations between common river planforms.
River planforms are normally expressed as lines or regions in GIS. Therefore, the spatial relations
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between the river planforms should be considered as spatial relations of lines and regions. Moreover,
river planforms must be expressed by lines and regions in organised forms that can be displayed
as models in GIS to facilitate human understanding and computer processing. In this paper,
considering river planform properties, we develop a reasoning mechanism that combines topological
and metric relations to detect and analyse massive amounts of RPCs and distinguish false RPCs.

The remainder of this paper is organised as follows: In Section 2, we discuss related works on the
spatial relations of lines or regions. In Section 3, we formalise the river planforms and build their GIS
models. In Section 4, we explain the combinatorial reasoning mechanism for RPCs. Finally, in Section 5,
we draw some conclusions and discuss future work.

2. Related Works

In this paper, we used a combinatorial reasoning mechanism with topological and metric relations
to analyse RPCs expressed as lines and regions; therefore, topological and metric relations and their
combinations of lines and regions are important in our study.

2.1. Topological Relations of Lines and Regions

Topological relations can be used to investigate and analyse spatial information between different
objects to find those that are invariant under topological transformations such as translation, scaling,
rotation and skew. Based purely on topological properties, Egenhofer and Franzosa (1991) proposed a
structure that defines the topological relations at a comparatively early time determined by two sets’
four-intersection models [44]. Topological relations are often used to query and analyse spatial relations
between simple objects [45,46], and numerous topological relation studies have been conducted to
analyse the spatial relations of lines or regions [47,48]. To easily analyse the topological relations
between simple objects, researchers have proposed some evolutive topological models based on
the four-intersection models. Wang et al. (2014) proposed the DTString topological relation model,
which presented the full details of the topological relation between two regions by using a boundary
string to resolve the problem that complicated spatial relations could not be differentiated using the
currently available models [49]. Gao et al. (2008) developed a model based on point-set topology to
demonstrate the topological relations between geometries and directed lines that could serve as a
foundation for describing the semantics of the lines compared to the features of the background [50].
However, this model was unable to differentiate insignificant details in the topological relations.
Long and Li (2013) developed a formal and complete classification for V9I relations between various
types of spatial entities, revealing that the V9I model is, in fact, more expressive than was previously
believed [51]. Ber and Napoli (2003) presented a new method that could handle qualitative spatial
representations and elucidate the reasons underlying the topological relations based on relation
lattices [52]. However, in these previous studies, topological relations served well to resolve the spatial
relations between simple regions and lines, but the riverbank lines were too complex to be analysed
using existing methods.

To resolve the topological relations between complicated objects, many researchers have studied
the topological relations between complicated objects based on the topological relations between
simple objects. Deng et al. (2007) proposed a multi-layered method that could describe and determine
the complicated topological relations between regions [53]. Schneider and Behr (2005) developed the
Proof-By-Constraint-And-Drawing technique, which engendered a variety of exclusive topological
relations between different types of complicated spatial data. They demonstrated this method by
deriving 43 topological relations between a complex region and a complex line [54]. Renz et al. (2000)
made it possible for users to group items by partially lowering the constraints about the shapes
of regions [55]. Du et al. (2010) proposed new methods to derive and model the dependences of
topological scale relations between multi-scale regions and lines. These dependences of scale were used
to derive the topological relations of the lines to differentiate the partitions [56]. Although complex
spatial relations between lines and regions can be expressed in terms of topological relations as in
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the methods developed in these previous studies, the topological relations between riverbank lines
remained difficult to describe using their unique planforms.

2.2. Metric Relations of Lines and Regions

Metric relations, often considered to be critical supplements of topological relations, can be
divided into direction and distance relations based on quantity or quality. Guo and Du (2009) presented
computational methods to derive topological relations from direction relations that could produce
topological information in cases where topological relations are not available. These methods were
expected to give relatively precise results [57]. Wang (2014) proposed a novel model called the Radial
model that could handle both qualitative and quantitative direction relations and was based on the
principle of rays transmitted as straight lines [58]. Deng and Li (2007) proposed a statistical modelling
method for the directional relations of spatial objects that could describe such a relation more accurately
than previous methods because it did not require approximating the objects [59]. Lin et al. (2013)
proposed an undirected straight line graph called a constrained Delaunay (CD) graph to represent
spatial adjacency and spatial neighbourhood relations with both obstacle and facilitator constraints in
the real world [60]. However, these studies are critical for analysing spatial relations between objects,
but considered only normal lines or regions and, thus, were not suitable for detecting RPCs.

2.3. Topological and Metric Combined Relations of Lines and Regions

To resolve the shortcomings of topological and metric relations, researchers have analysed
the combinational topological and metric relations between lines and regions. Du et al. (2012)
presented a generic application example using case-based reasoning (CBR) to cope with geographic
problems. To better understand spatial relations, a new element of the “Geographic Environment” was
incorporated into the standard CBR case representation model [61]. Nedas et al. (2007) extended the
nine-intersection model by focusing on the metric details of the relations between lines via the ratio
split and measures of closeness, which can help to obtain additional details about the comparative
geometry and positioning of objects [62]. Xu (2007) developed an approach using quantitative values
in which the metric and topological indices can both be used to better formalise the natural-language
spatial predicates compared to those obtained using the topological indices only [63]. Legleiter (2014)
presented geostatistical models that were sensitive to changes in terms of the shape, size and orientation
of the channel features instead of a simple translation of the morphology. These results highlight the
significance of considering the transverse and streamwise components jointly rather than singly [64].
These studies are more useful for detecting the changes of spatial objects than are separate topological
or metric relations. However, a targeted method for change detection in and analysis of common
river planforms has not been developed previously. Therefore, models of river planforms should be
constructed to detect RPCs using combined reasoning based on topological and metric relations.

3. River Planforms and Their GIS Models

River planforms on earth are so complicated and diversiform that each river has a unique planform.
However, commonalities exist among the different river planforms. To detect RPCs, river planforms
must be classified based on their common characteristics to build GIS models.

3.1. Two Typical Classifications of River Planforms

Brice (1983) and Fuller (2007) presented two typical classifications for river planforms.
Brice classified river planforms into sinuous canaliform, sinuous point bar, sinuous braided,
and nonsinuous braided types, as illustrated in Figure 1, whereas Fuller classified river planforms by
their degrees of sinuosity, braiding and anabranching, as illustrated in Figure 2 [65,66].
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Figure 1. River planform classification developed by Brice. (a) Nonsinuous braided; (b) sinuous 
braided; (c) sinuous point bar; (d) sinuous braided canaliform. 
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Figure 2. River planform classification based on the degrees of sinuosity, braiding and anabranching. 
(a) Different degrees of sinuousity, the degree of sinuousity of river planform 2 is higher than that of 
river planform 1; (b) different degrees of braiding, the degree of braiding of river planform 2 is 
higher than that of river planform 1; (c) different degrees of anabranching, the degree of 
anabranching of river planform 2 is higher than that of river planform 1. 

3.2. GIS Models of River Planforms 

However, these two typical classification systems for river planforms are difficult to use to 
represent all river planforms on earth. Taking these typical classifications into account and 
considering the river planforms found in nature, we classified river planforms into simple 
nonsinuous (nonsinuous without braidings or anabranchings), nonsinuous braided, nonsinuous 
anabranched, simple sinuous (sinuous without braidings or anabranchings), sinuous braided, and 
sinuous anabranched planforms. In this paper, we used lines and regions to express the river 
planforms in GIS: Bank lines were expressed by lines, while braidings or anabranchings were 
expressed by regions. To perfect our classified river planforms, two special conditions must be 
considered: The first such condition is that it is difficult to distinguish between braidings and 
anabranchings, which are both expressed by regions in GIS. The second special condition is that 
when the width of a river is too small to be expressed by double lines or a branding on a specified 
scale in GIS, the river planform must be expressed by a single line. Based on the two typical river 
planform classifications and two special conditions presented above, river planforms can be 
expressed using five types of GIS models—single line, double line, double line with one internal 
region, double line with several internal regions, and three or more lines with several regions—as 
illustrated in Figure 3. Figure 3a shows a river planform with a width so small that it had to be 
expressed by a single line. Figure 3b presents simple nonsinuous and simple sinuous planforms 
expressed using a double-line model; Figure 3c depicts a model with double lines containing one 
region used to express nonsinuous and sinuous planforms with one central bar. Figure 3d shows 
nonsinuous and sinuous braided or anabranched planforms expressed as double lines with several 
regions. Finally, Figure 3e displays three or more lines with several regions used to depict 
complicated nonsinuous and sinuous braided or anabranched planforms. The lines consist of two 
endpoints (a start point [SP] and endpoint [EP]) and an interior, and the regions consist of a 
boundary (H-boundary) and an interior (H-interior). 

Figure 1. River planform classification developed by Brice. (a) Nonsinuous braided; (b) sinuous
braided; (c) sinuous point bar; (d) sinuous braided canaliform.
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Figure 2. River planform classification based on the degrees of sinuosity, braiding and anabranching.
(a) Different degrees of sinuousity, the degree of sinuousity of river planform 2 is higher than that of
river planform 1; (b) different degrees of braiding, the degree of braiding of river planform 2 is higher
than that of river planform 1; (c) different degrees of anabranching, the degree of anabranching of river
planform 2 is higher than that of river planform 1.

3.2. GIS Models of River Planforms

However, these two typical classification systems for river planforms are difficult to use
to represent all river planforms on earth. Taking these typical classifications into account and
considering the river planforms found in nature, we classified river planforms into simple nonsinuous
(nonsinuous without braidings or anabranchings), nonsinuous braided, nonsinuous anabranched,
simple sinuous (sinuous without braidings or anabranchings), sinuous braided, and sinuous
anabranched planforms. In this paper, we used lines and regions to express the river planforms
in GIS: Bank lines were expressed by lines, while braidings or anabranchings were expressed by
regions. To perfect our classified river planforms, two special conditions must be considered: The first
such condition is that it is difficult to distinguish between braidings and anabranchings, which are
both expressed by regions in GIS. The second special condition is that when the width of a river is too
small to be expressed by double lines or a branding on a specified scale in GIS, the river planform must
be expressed by a single line. Based on the two typical river planform classifications and two special
conditions presented above, river planforms can be expressed using five types of GIS models—single
line, double line, double line with one internal region, double line with several internal regions, and
three or more lines with several regions—as illustrated in Figure 3. Figure 3a shows a river planform
with a width so small that it had to be expressed by a single line. Figure 3b presents simple nonsinuous
and simple sinuous planforms expressed using a double-line model; Figure 3c depicts a model with
double lines containing one region used to express nonsinuous and sinuous planforms with one central
bar. Figure 3d shows nonsinuous and sinuous braided or anabranched planforms expressed as double
lines with several regions. Finally, Figure 3e displays three or more lines with several regions used
to depict complicated nonsinuous and sinuous braided or anabranched planforms. The lines consist
of two endpoints (a start point [SP] and endpoint [EP]) and an interior, and the regions consist of a
boundary (H-boundary) and an interior (H-interior).
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SSLMs—in other words, SSLMs are the simplest, and an SSLM should be considered as a special 
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RPCs can be expressed based on their spatial relations, but it is difficult to distinguish RPCs 
solely in terms of their topological or metric relations. In this paper, the spatial relations between 
river planforms or SGRPMs consist of topological and metric relations and their combinations to 
fully express RPCs. The spatial relations between SGRPMs constitute the foundation for the spatial 
relations between the river planforms, and complex river planforms are expressed by the 
combination of several SGRPMs. Based on the characteristics and GIS expressions of river 
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into several SGRPMs and, thus, more readily analyse the spatial relations between river planforms 
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regions model.

3.3. Simple GIS Models of River Planforms

To perfect the GIS models of the river planforms, we used straight lines instead of common lines to
facilitate human understanding and computational analysis. This choice did not impact the topological
relations of the river planforms. Moreover, complicated nonsinuous and sinuous planforms expressed
by three or more lines with several regions can be subdivided into several other simpler GIS models,
such as the double-line model and the double-line one-region model. Hence, we did not include this
model in the simple GIS river planform models (SGRPMs). The SGRPMs, which comprise single
straight line (SSL) models (SSLMs), double straight line (DSL) models (DSLMs), DSL one-region models
(DSL-1RMs), and DSL several-regions models (DSL-SRMs), are illustrated in Figure 4. DSL-SRMs
could be considered as the most integrated models of SGRPMs (To express DSL-SRMs simply, we use
two regions that represent several regions belonging to them). When the regions change into one,
they become DSL-1RMs and when regions disappear, they become DSLMs—in other words, the DSLM
can be considered as a DSL with an empty set (for the disappeared region). When the river width
is too small to be depicted, DSLMs become SSLMs—in other words, SSLMs are the simplest, and an
SSLM should be considered as a special DSLM that consists of an SSL and an empty set (for another
SSL) with an empty set (for the disappeared region). Figure 4a–d show an SSLM, a DSLM, a DSL-1RM,
and DSL-SRM, respectively.
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Figure 4. Simple GIS river planform models. (a) Single straight line model (SSLM); (b) double straight
line model (DSLM); (c) double straight line one-region model (DSL-1RM); (d) double straight line
several-regions model (DSL-SRM).

4. Combinatorial Reasoning Mechanism for RPCs

RPCs can be expressed based on their spatial relations, but it is difficult to distinguish RPCs
solely in terms of their topological or metric relations. In this paper, the spatial relations between
river planforms or SGRPMs consist of topological and metric relations and their combinations to fully
express RPCs. The spatial relations between SGRPMs constitute the foundation for the spatial relations
between the river planforms, and complex river planforms are expressed by the combination of several
SGRPMs. Based on the characteristics and GIS expressions of river planforms, we have proposed
segmentation rules that can be used to divide an entire river planform into several SGRPMs and, thus,
more readily analyse the spatial relations between river planforms and describe the RPCs.
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4.1. Spatial Relations between SGRPMs

The spatial relation between an SSLM at Time 1 and a DSLM at Time 2 is different than that
between a DSLM at Time 1 and an SSLM at Time 2. However, the reasoning mechanisms, which are
based on the spatial relations involving the resulting changed river planforms, remain the same. Hence,
we considered these two types of spatial relations to be equivalent. Based on the analysis presented
above, we divided the spatial relations into several types, as shown in Table 1.

Table 1. Types of spatial relations between SGRPMs.

Time 1\Time 2 SSLM DSLM DSL-1RM DSL-SRM

SSLM Yes Yes Yes Yes
DSLM Yes Yes Yes

DSL-1RM Yes Yes
DSL-SRM Yes

Before analysing the topological relations between SGRPMs, those with a low probability and
that are unlikely to be representative must be excluded to make the remaining relations simple and
effective. Because river planforms are dynamic and bank lines are always continuous, the topological
relations between bank lines should be considered as topological relations between straight lines,
which can extend or shorten to some extent. In other words, the topological relations between bank
straight lines will not change if the lines change in length to a certain extent. We defined a true
topological relation between straight lines as one that does not change when the lines are extended
or shortened by an arbitrarily small amount. In contrast, relations that do change are called false
spatial relations. Figure 5a illustrates the topological relation between Straight line A at Time 1 and
Straight line α at Time 2 when Straight line A is shortened by an arbitrarily small amount, such as
ε1 and ε2, based on the two endpoints, and Straight line α changes by the same amount as Straight
line A (δ1 and δ2, respectively). Figure 5b–d illustrate the same situation as Figure 5a. Figure 5e
depicts the topological relation between Straight line A and Straight line α when Straight line A is
extended by an arbitrarily small amount based on the two endpoints, and Straight line α changes by
the same amount as Straight line A. Figure 5f–h show the same situation as Figure 5e. The topological
relations illustrated in Figure 5a,e are the same, and they remain the same after shortening or extending.
We call this type of topological relation the true topological relation between the SGRPMs. By the
same reasoning, we call the topological relations illustrated in Figure 5b,f true topological relations,
and Figure 5c,g are the same as Figure 5b,f. In contrast, although the topological relations illustrated
in Figure 5d,h are the same, because they differentiated into two different types of spatial relations
after shortening or extending, they present false topological relations between the SGRPMs, and,
in this paper, we eliminate them from the topological relations between SGRPMs. Moreover, Figure 5
illustrates only the topological relations between SSLs at different times. It is important to note that a
straight line can be considered a model of a bank line from the DSLM. However, topological relations
between two DSLs at different times must conform to the same rule, as addressed for SSLs above.
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shortened and extended by an arbitrarily small amount; (b,f) remain disjoint after being shortened and
extended by an arbitrarily small amount; (c,g) remain equal after being shortened and extended by
an arbitrarily small amount; and (d,h) have different topological relations after being shortened and
extended by an arbitrarily small amount: this represents a false topological relation in RPCs.

4.1.1. Topological Relations between SGRPMs

Topological relations between SGRPMs should be expressed as topological relations between
DSLs and between their regions. We proposed a DSL 4-intersection model (DSL4IM) based on the
four possible intersections of the interiors (Ao, Bo) of the DSL at Time 1 with the corresponding
components of the DSL at Time 2 to express the topological relations between the two DSLs of SGRPMs
at different times. The DSL4IM, which expresses the topological relations between Straight line A
(right) and Straight line B (left) at Time 1 and Straight line α (right) and straight line β (left) at Time 2,
is characterised by a binary value (empty (0), non-empty (1)) of the set intersections of A’s interior and
B’s interior with α’s interior and β’s interior (Equation (1)). In particular, the DSL4IM between two
SSLMs can be considered as the intersections of A’s interior and one empty set with α’s interior and
one empty set:

I(A, B, α, β) =

(
A◦ ∩ α◦ A◦ ∩ β◦

B◦ ∩ α◦ B◦ ∩ β◦

)
. (1)

The topological relations between regions are important supplementary conditions when the
topological relations between two DSLs (or SSLs) are insufficient to distinguish between true and
false RPCs. We used the intersection and difference model (IDM) proposed by Deng et al. (2007) [53]
to express the topological relations between regions. This model can more accurately describe the
topological relations between a region and an empty set than can other models. The topological
relations between regions based on IDM can be represented by Equation (2):

ID(HI , H1) =

(
HI
◦ ∩ H1

◦ HI − H1

H1 − HI ∂HI ∩ ∂H1

)
, (2)

where Ho
I ∩Ho

1 and ∂HI ∩ ∂H1 represent the intersections between H′1s interior (Ho
I ) and H′1s interior

(Ho
1) and between H′1s boundary (∂HI) and H′1s boundary (∂H1), respectively; and HI−H1 and H1−HI

represent the differences between regions HI (bounded by A and B) and H1 (bounded by α and β).
We can describe these using one typical model when changes can be detected only by the topological
relations between two DSLs. Moreover, they can be fully described when the changes are not fixed by
using only the topological relations between two DSLs. However, the topological relations between
one or more pairs of regions should be expressed by one or more topological relation matrixes.

The topological relations between DSLs (or SSLs) and regions are not described in this paper
because they are complicated and unnecessary. Moreover, the topological relations between DSLs and
between regions are sufficient to depict RPCs.

Because the DSL-SRM is the most integrated model of SGRPMs, all the topological relations
between SGRPMs can be considered as between DSL-SRMs or changed DSL-SRMs. In this paper,
each topological relation between two DSL-SRMs is expressed by one DSL4IM (IM) and four IDMs of
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regions. To simplify understanding this concept, we describe one typical topological relation between
two DSL-SRMs and their matrixes (IM for DSL4IM; IDMa, IDMa, IDMc and IDMd for the IDM of regions;
IDMa in relation to HI and H1, IDMb in relation to HI and H2; IDMc in relation to HII and H1; and IDMd
in relation to HII and H2) are shown in Figure 6.
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Figure 6. The DSL4IM and IDM of one typical topological relation between two DSL-SRMs.

When the topological relations change between the DSL-1RM and the DSL-SRM, there will be one
IM and two IDMs (IDMa and IDMb); when the topological relations change between the DSL-1RM and
the DSL-1RM, there will be on IM and one IDM (IDMa); when the topological relations change between
the DSLM and the DSL-SRM, there will be one IM and two IDMs (IDMa and IDMb, expressing an empty
set with H1 and an empty set with H2); when between the SSLM and the DSL-SRM, there will be one IM
and two IDMs ((IDMa and IDMb, expressing an empty set with H1 and an empty set with H2), and so on.
Finally, the topological relations change between the SSLM and the SSLM, there will be only one DSL4IM.

4.1.2. Metric Relations between SGRPMs

We propose a double-start-point 8-distance model (DS8DM) that expresses the metric relations
between DSL A and B and between DSL α and β that is characterised by three distance values (0, 1, ∞):
between A’s SP and B’s SP and betweenα’s SP and β’s SP (Equation (3)):

D(A, B, α, β) =

(
D1 D2 D3 D4

DD1 DD2 DD3 DD4

)
(3)

where

D1 is the distance between A’s SP (SPA) and α’s SP (SPα);
D2 is the distance between A’s SP (SPA) and β’s SP (SPβ);
D3 is the distance between B’s SP (SPB) and α’s SP (SPα);
D4 is the distance between B’s SP (SPB) and β’s SP (SPβ);
DI is the distance between A’s SP (SPA) and B’s SP (SPB); and
DII is the distance between α’s SP (SPα) and β’s SP (SPβ):
DD1 = D1 + D2 −DII;
DD2 = D3 + D4 −DII;
DD3 = D1 + D3 −DI; and
DD4 = D2 + D4 −DI.

Moreover, the distance value (0) indicates that the distance is 0, the distance between an SP and
an empty set is defined as ∞, and the distance value (1) denotes that the distance is not 0 and ∞. Then,
the values representing the DS8DM can be described as follows:
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If the values of D1, D2, D3, and D4 are 0, then the two SPs are equal;
If the values of D1, D2, D3, and D4 are 1, then the two SPs are disjoint;
If the values of D1, D2, D3, and D4 are ∞, then at least one SP does not exist, and the values of

the corresponding elements such as DD1, DD2, DD3, and DD4 should not be calculated. That is, if the
value of D1 is ∞, DD1 and DD3 should not be calculated; instead, they should just be defined as ∞.

If the value of DD1 is 0, then SPA is between SPα and SPβ, or SPA equals SPα or SPβ. If the value
of DD1 is 1, then SPA is outside SPα and SPβ.

If the value of DD2 is 0, then SPB is between SPα and SPβ, and if the value of DD2 is 1, then SPB

is outside SPα and SPβ.
If the value of DD3 is 0, then SPα is between SPA and SPB, and if the value of DD3 is 1, then SPαis

outside SPA and SPB.
If the value of DD4 is 0, then SPβ is between SPA and SPB, and if the value of DD4 is 1, then SPβ

is outside SPA and SPB.
All the DS8DMs of SGRPMs can be classified into three types that describe SSLs at Time 1 and

SSLs at Time 2, SSLs at Time 1 and DSLs at Time 2, and DSLs at Time 1 and DSLs at Time 2. DS8DMs of
DSLs at Time 1 and DSLs at Time 2 can be considered the most integrated types, while the other
two types can be considered as DS8DMs of changed DSLs at Time 1 and changed DSLs at Time 2.
We express the DS8DMs by three typical situations: between two SSLs (Figure 7a), between one SSL
and one DSL (Figure 7b), and between two DSLs (Figure 7c).
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Figure 7. Three typical DS8DMs. (a) The DS8DM between two SSLs; (b) the DS8DM between one 
SSL and one DSL; (c) the DS8DM between two DSLs. 
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Figure 7. Three typical DS8DMs. (a) The DS8DM between two SSLs; (b) the DS8DM between one SSL
and one DSL; (c) the DS8DM between two DSLs.

For a thorough understanding of the metric relations between SGRPMs, we list all 21 DS8DMs in
Figure A1 in the Appendix A.

4.1.3. Combinatorial Reasoning Mechanism with Topological and Metric Relations between
the SGRPMs

Because of the limitations of expressing a change between SGRPMs using only topological or
metric relations, we propose a combinatorial reasoning mechanism involving both topological and
metric relations. This combination contains the matrixes of DSL4IMs and the IDM of regions and
DS8DMs. To express the combinatorial reasoning mechanism thoroughly, we propose four similar
situations between SGRPMs (which are easy to confuse) to explain how it works to distinguish
different changes. To distinguish between the first situation (Figure 8a) and the second situation
(Figure 8b), which have the same DSL4IMs and IDMs, the DS8DM is critical. To distinguish between
the second situation (Figure 8b) and the third situation (Figure 8c), which have the same DS8DM and
IDMs, the DSL4IM is critical. To distinguish between the third situation (Figure 8c) and the fourth
situation (Figure 8d), which have the same DSL4IM and IDMs, the DS8DMs are critical. Based on
these combinatorial reasoning matrixes, we can distinguish the different types of changes between the
SGRPMs except for changes between whole left migrations and whole right migrations, which result
in the same matrixes, as shown in Figure 9. However, these four similar situations do not comprise all
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the situations between whole left migrations and whole right migrations. Because IDMs are useless
in these situations, RPCs with the same bank line situations—as shown in Figure 9—are all true
changes, and they can be further differentiated based on context. Hence, using the combinatorial
reasoning mechanism we can eliminate most false changes caused by bank lines widening or narrowing
(Figure 8b is probably a false change caused by bank lines widening from Time 1 to Time 2).
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Figure 8. Four similar situations between two DSLMs. (a) The first situation; (b) the second situation; 
(c) the third situation; (d) the fourth situation. 
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Figure 8. Four similar situations between two DSLMs. (a) The first situation; (b) the second situation;
(c) the third situation; (d) the fourth situation.
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Figure 9. Four typical whole left migrations and whole right migrations. (a) Whole left migrations
and whole right migrations between two SSLMs; (b) whole left migrations and whole right migrations
between one SSLM and one DSLM; (c) whole left migrations and whole right migrations between two
DSLMs; (d) whole left migrations and whole right migrations between two DSL-1RMs.
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For a thorough understanding of the combinatorial reasoning mechanism, combined topological
and metric relations between SGRPMs are needed. In particular, those between DSL-SRMs are essential.
Considering that the IDMs between two regions are of eight types (disjoint, meet, overlap, cover,
contain, coveredby, containedby, and equal) [53], listing all the situations is too complex. Consequently,
Figure A2 in the Appendix A lists just 38 typical relations between two DSL-SRMs that express only
one typical topological relation between regions.

4.2. Segmentation Rules for River Planforms

Common river planforms are always too complicated to be expressed by a single SGRPM.
Hence, it is necessary to segment common river planforms into several SGRPMs. We proposed
three segmentation rules for segmenting a common river planform into several SGRPMs, which are
described as follows.

Segmentation Rule 1: If a river planform changes from an SSLM to a DSLM, or vice versa, it will
be segmented by segmentation line 1, which passes through the change point O (Figure 10a); thus,
the river planform will be segmented into a DSLM and an SSLM.

Segmentation Rule 2: If the bank lines of a river planform change from double line to three or
more lines, or vice versa, it will be segmented by segmentation line 2, which passes through the change
point P, an arbitrary internal point Q for the right line and an arbitrary internal point R for the left line
(Figure 10b); thus, the river planform will be segmented into DSLMs, DSL-1RMs, and DSL-SRMs.

Segmentation Rule 3: If a river planform at Time 1 intersects with a river planform at Time 2
and two or more intersection points exist between any of the bank lines, it will be segmented by
segmentation line 3, which passes through an arbitrary point between the neighbouring intersection
points of the bank lines such as U and V or S and T (Figure 10c); thus, the river planforms at Time 1
and Time 2 will be segmented into two or more DSLMs, DSL-1RMs, and DSL-SRMs. These three
segmentation rules must be considered together; therefore, if a river planform satisfies all three rules,
it must be segmented by all three.
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planform into several parts that can be simplified to SGRPMs as illustrated in Figure 11. H୍ − H୚୍୍୍ 
are regions of the river planform at Time 1, and points A, B, C, D, E, and F are the SPs or EPs at Time 
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Figure 10. Segmentation rules for river planforms. (a) Segmentation Rule 1 from SSLMs to DSLMs;
(b) Segmentation Rule 2 from double line to three or more lines; (c) Segmentation Rule 3 based on the
two neighbour intersections.

Based on these segmentation rules, we used six segmentation lines to segment a practical river
planform into several parts that can be simplified to SGRPMs as illustrated in Figure 11. HI −HVIII are
regions of the river planform at Time 1, and points A, B, C, D, E, and F are the SPs or EPs at Time 1.
H1 −H9 are regions of the river planform at Time 2, and points α, β, γ, δ, ε, and ζ are the SPs or EPs at
Time 2.
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4.3. A Combinatorial Reasoning Mechanism Table of River Planforms

Because of the complexity of the river planforms, based on the combinatorial reasoning mechanism
between the SGRPMs and segmentation rules, we present a combinatorial reasoning mechanism table
(CRMT) to describe the combinatorial reasoning mechanism for RPCs in detail. The CRMT consists
of several DSL4IMs, IDMs of regions, and DS8DMs of the corresponding SGRPMs, as illustrated in
Table 2. Considering the context, people using the CRMT can express all RPCs—including whole right
migrations and whole left migration that have the same combined topological and metric matrixes by
the context. Moreover, the change processes that are important for analysing river planforms can be
analysed by the CRMT. To simply and clearly describe the IDMs and DSL4IMs, we used subscripts to
represent the corresponding relations and distinguish between the matrixes with the same values, i.e.,(

0 1
1 0

)
∼ H6 −HIII−VI,VIII represents the IDMs between H6 and HIII to HVI and HVIII, which can

all be described by the same matrix

(
0 1
1 0

)
. We used the corresponding points to distinguish

between different DSL4IMs and DS8DMs; for instance,

(
0 0
1 0

)
∼ F, C− δ,γ from Segments L4–L5

represents the DSL4IMs between the river planforms at Time 1 and Time 2, in which the bank lines

contain points F and C. Here, δ,γ should be represented by

(
0 0
1 0

)
, and its corresponding DS8DMs

should be represented by

(
1 1
1 0

1 1
0 1

)
.
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Table 2. The combinatorial reasoning mechanism table.

Num Segments DSL4IMs IDMs DS8DMs

1 St–L1
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5. Conclusions and Future Work

This paper proposes a combinatorial reasoning mechanism that utilises topological and metric
relations to describe the spatial relations between river planforms for detecting RPCs and to distinguish
between true and false RPCs. Five types of GIS models are developed based on natural river planforms
and two typical river planform classifications. Four types of SGRPMs are presented based on GIS
models of the river planforms to describe the topological relations between them. The DSL4IMs are
provided to describe the topological relations between straight lines, the IDMs of regions are developed
to express the topological relations between regions, and the DS8DMs are proposed to determine the
metric relations between straight lines. Three segmentation rules are developed to segment the river
planforms into the SGRPMs. A practical river planform is analysed by the CRMT, which can describe
the combinatorial reasoning mechanism of whole river planforms.
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The proposed reasoning mechanism can be used to detect RPCs, identify false changes and
describe the change processes for massive river planforms. Developing a method to automatically or
semi-automatically adjust the reasoning mechanism should be the focus of future research.
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