
Article

An Automatic Matcher and Linker for
Transportation Datasets

Ali Masri 1,2,*,†, Karine Zeitouni 2,†, Zoubida Kedad 2,† and Bertrand Leroy 1

1 VEDECOM Institute, 77 Rue des Chantiers, 78000 Versailles, France; bertrand.leroy@vedecom.fr
2 DAVID Laboratory, University of Versailles Saint Quentin-En-Yvelines, 78000 Versailles, France;

karine.zeitouni@uvsq.fr (K.Z.); zoubida.kedad@uvsq.fr (Z.K.)
* Correspondence: ali.masri@vedecom.fr; Tel.: +33-660-483-209
† These authors contributed equally to this work.

Academic Editors: E. Lynn Usery, Dalia Varanka and Wolfgang Kainz
Received: 29 September 2016; Accepted: 15 January 2017; Published: 22 January 2017

Abstract: Multimodality requires the integration of heterogeneous transportation data to construct
a broad view of the transportation network. Many new transportation services are emerging while
being isolated from previously-existing networks. This leads them to publish their data sources to the
web, according to linked data principles, in order to gain visibility. Our interest is to use these data to
construct an extended transportation network that links these new services to existing ones. The main
problems we tackle in this article fall in the categories of automatic schema matching and data
interlinking. We propose an approach that uses web services as mediators to help in automatically
detecting geospatial properties and mapping them between two different schemas. On the other
hand, we propose a new interlinking approach that enables the user to define rich semantic links
between datasets in a flexible and customizable way.

Keywords: transportation data; data interlinking; automatic schema matching

1. Introduction

Multimodality requires the integration of heterogeneous transportation data to construct a broad
view of the transportation network. The transportation field is continuously evolving with new services
that are growing quickly to take part in passengers’ daily commute or travel, e.g., car pooling (https:
//www.blablacar.fr/), car sharing (https://www.deways.com/ or https://www.drivy.com/) and bike
sharing (https://www.velib.fr). The problem is that these services differ in data representation, and
there is no specific standard for them to follow. This results in people manually combining different
sub-trips from different sources (websites or applications) in order to create optimized trips that fit
their needs. Such a task requires users to be fully aware of the surrounding services in addition to a
complex task of finding links between one system and another. This raises the need for integrating
multiple transportation data in order to provide a global view of the network. Enabling such a solution
for each company requires identifying the nearby services and finding ways to integrate them, which is
a repetitive and tedious task, especially when done manually. This limits operators to isolated solutions,
which have to understand, translate and integrate every single relevant data source. Even though
this task is a complicated one, it becomes even more complex when considering the evolution of the
integrated data and the necessity of maintaining them and keeping them up to date. Some approaches
have moved into creating a public repository to integrate public transportation data (Google Transit
(http://maps.google.com/landing/transit/index.html), Syndicat des transports d’ile-de-France (STIF)
(http://www.stif.info)); however, they still do not take into consideration highly-evolving datasets,
such as car sharing, bike sharing, car pooling, etc. Such services are highly dynamic and do not always
have the notion of a fixed transportation stop.

ISPRS Int. J. Geo-Inf. 2017, 6, 29; doi:10.3390/ijgi6010029 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://www.blablacar.fr/
https://www.blablacar.fr/
https://www.deways.com/
https://www.drivy.com/
https://www.velib.fr
http://maps.google.com/landing/transit/index.html
http://www.stif.info
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 29 2 of 20

Our goal is to find a simple way for operators to identify nearby transportation services by
providing a connection portal enabling one to identify the connections between one transportation
data source to other sources. In this work, we approach this problem from two perspectives. The
first one is at the schema level, and it targets the automatic integration of datasets with different
schemas. The second one is at the instance level, and it targets the discovery of transportation relations
between different entities scattered between the datasets. We propose a homogeneous light-weight
representation of transportation connections (transfer points from one stop to another) and the means
to discover them in a flexible and customized manner. With this representation, we can link different
types of transportation services regardless of the mode or service they offer. All transportation systems
need to know is just how to handle these light connections and use them to connect with the outer
world, which is much simpler than handling heterogeneous data and maintaining them.

In this article, we tackle two main problems from both fields: automatic schema matching and
data interlinking.

1.1. Schema Matching

Automatic schema matching/mapping aims at proposing an automated way of discovering
matching rules between datasets. However, the domain of transportation has some specific
characteristics that existing approaches cannot handle. Transportation data contain geospatial
properties that are represented in various formats and structures. A simple example to be considered
is how an address can be modeled in different sources. Figure 1 shows three different representations
for the same real-world address.

Figure 1. Different address representations.

Figure 1a shows a model that combines the attributes Street1, Street2, Zip-code, City and a Country
to represent an address. Figure 1b shows the address as a combination of latitude and longitude
values, while the final Figure 1c shows a WKT (http://www.opengeospatial.org/standards/wkt-crs)
(well-known text) representation of the same entity.

In order to detect a mapping between different representations, existing approaches use individual
or combined matchers that work on schema and/or instance levels using various techniques,
e.g., linguistic, constraint-based, data-type based, etc. However, the mathematical-based operators
used to define the similarity between relations are not suitable alone to detect the complex relations
in transportation data. For instance, there is no way to find out that a combination of street1, street2,
zip-code, city and country is the same as a combination of latitude and longitude between two datasets
by using only some mathematical functions. This problem raises the question of how we can be
able to automatically identify and map different representations of geospatial characteristics between
two schemas.

The fact that each transportation dataset may contain different instances is a challenge since we
cannot rely on the basic instance matching techniques to know the schema mappings. Moreover,
relying only on other properties, such as column names or value types, may not be sufficient by
themselves. To tackle this problem, we introduce an instance-based approach to detect geospatial
properties for transportation points of transfers by the use of geospatial web services.

http://www.opengeospatial.org/standards/wkt-crs


ISPRS Int. J. Geo-Inf. 2017, 6, 29 3 of 20

1.2. Data Interlinking

Enabling a transportation integration solution requires access to transportation sources,
which can be obtained from open data [1,2], which is gaining a great deal of popularity, and
numerous transportation operators are using it to publish their data on the web in order to
increase their market visibility (http://opendata.paris.fr/page/home/, http://www.strasbourg.eu/
ma-situation/professionnel/open-data/donnees/mobilite-transport-open-data, http://www.uitp.
org/tags/open-data). Many solutions have benefited from this to provide rich data for smart city
applications. They use linked data techniques and data interlinking tools to provide extended
information relevant to both transportation and passenger profile queries [3,4]. These techniques
address equivalence detection between entities to establish links between data sources. This may
help in enriching data about entities. However, this is not always enough in transportation data.
Further complex relations are required to reflect the nature of transportation connections. Beyond
equivalence or sameAslinks, we are interested in finding connections between transportation data
sources based on the geospatial characteristics of the data, which capture the reachability between
different transportation networks. Furthermore, using the given tools, we face two main limitations.
The first is the restriction to a predefined set of functions for composing linking rules, due to the lack of
flexibility of existing systems in defining custom functions. For instance, to calculate information such
as the closeness of two transportation points of transfer (bus stop, train station, etc.), we cannot define
custom functions to calculate walking distances, driving distances, etc. The user is forced to dig into the
code (if available) and modify it directly. The second limitation is the representation of the generated
output. Supporting complex relations requires more complex output patterns. As an example, let us
suppose that a link is established between two transportation points of transfers. Existing tools can
provide the output (BusStop1 nextTo TrainStation132) which does not give information about the
occurrence of this relation. They are next to each others, but how close are they, and what are the modes
of transportation that we can use, etc.?

This article is structured as follows: In Section 2, we present the background work and related
work to both the automatic schema matching and data interlinking domains. Our contributions are
then presented in Sections 3 and 4. Section 3 discusses our automatic schema-matching approach
for transportation datasets. Section 4 discusses our flexible and customizable way of generating
transportation connections for open data transportation datasets. Later, both approaches are put up to
test with a real case scenario represented in Section 5. Finally, we conclude our work and discuss some
perspectives in Section 6.

2. State of the Art

2.1. Automatic Schema Matching

Automatic schema matching is one of the approaches to solve schema heterogeneity. It provides
the means and the techniques necessary for uniform access to the data.

Based on [5–7], a mapping element is a five-uple: (id, e, e′, n, R) where:

• id is a unique identifier of the given mapping element
• e and e’ are the entities of the first schema/ontology, respectively
• n is a confidence measure holding the correspondence between the entities e and e’
• R is a relation (e.g., equivalence, more general, disjointedness, overlapping) holding between the

entities e and e’

The matching operation determines an alignment (a set of mapping elements) for a pair of
schemas, with additional optional parameters, such as: an input alignment, matching parameters
(weights, thresholds) and external resources (e.g., thesauri). See Figure 2.

http://opendata.paris.fr/page/home/
http://www.strasbourg.eu/ma-situation/professionnel/open-data/donnees/mobilite-transport-open-data
http://www.strasbourg.eu/ma-situation/professionnel/open-data/donnees/mobilite-transport-open-data
http://www.uitp.org/tags/open-data
http://www.uitp.org/tags/open-data


ISPRS Int. J. Geo-Inf. 2017, 6, 29 4 of 20

Figure 2. The matching operation.

The domain of automatic schema matching has been studied by several computer science
communities and used by many applications [8]. Many interesting surveys [7,9–13] and
benchmarks [14,15] were provided through the past few years. Here, we will state the latest approaches
regarding automatic schema matching in general and the approaches specific to geospatial data.

In [9], the authors indicate generic schema-matching approaches that do not take into account
geospatial data. They mainly use string-based techniques, such as N-grams in [16], sub-string
concatenations [17] or pattern based [18]. These techniques are not well suited to geospatial matching
since geospatial matching requires more than string similarities to be compared, and their attributes
cannot have their values described by patterns [19].

In the artificial intelligence domain, the SEMINTsystem [20] uses a neural network solution
to determine 1:1 mappings by learning attributes’ meta-data and data values. In [21], the authors
apply knowledge from domain ontology snippets and data frames to detect 1:n schema mappings.
These techniques do not suit geospatial data since patterns are not sufficient in detecting attributes.
Moreover, attributes can share similar meta-data or data value patterns while being completely
different, e.g., city and county.

In the geospatial domain, schema-matching approaches mainly rely on external knowledge, such
as domain ontologies and gazetteers or data instances to guide the matching task. Brauner et al. [22]
propose an instance-based approach to match export schemas of geographical database web services.
They assume the web services to be well described so that their input and output is known. A query
formulator queries the web services WS1 and WS2 based on a set of global instances defined based on
a global schema. The results are then compared to the global instances to find similarity between the
global schema and the web service schema. This approach is simple and effective in the case that the
databases share the same instances. Otherwise, it does not consider the possible different data type or
structural representation between the input schemas.

In [23], the authors propose to take advantage of geographic reference databases for matching
and visualizing thematic data by heterogeneous spatial references. They anchor different thematic
references to the same reference geo-dataset using the geographic references databases as background
knowledge resources. Then they derive equivalence or other relationships from the anchoring
relationships. This approach requires knowing the schemas in advance.

The authors in [24] proposed another matching approach that translates qualitative queries
in geospatial databases. They handle queries, such as left, right, near, above, etc. The queries are
translated into SQL and are evaluated with a trip advisor application called the Bremen Tourist Advisor.

Handling geospatial queries was also targeted by [25] in their system OnGIS, where they propose
broker techniques for answering user complex spatial queries.

In [26], the authors proposed an automatic matching technique for creating links between objects
within different datasets that model the same real-world phenomenon. They first match nodes based
on some distance metrics, then roads based on a shortest path algorithm.



ISPRS Int. J. Geo-Inf. 2017, 6, 29 5 of 20

The authors in [27] use an attribute relational graph to represent the pattern of geospatial objects.
Probabilistic relaxation is then used to find the optimal matching of the objects among different geodata
schemas. The limitation of such an approach is that it does not work in the case that two different
representation exist between the datasets. In addition, they use only attribute names and values for
the similarity measure, which is not accurate in all cases.

In [28], the authors propose a scalable instance matching approach named VMI. It automatically
generate links between ontology instances by building a set of inverted index-based rules to get the
primary matching candidates. User-customized property values are then used to further eliminate the
incorrect matchings. Finally, the similarities are computed as the integrated vector distances, and the
matching results are extracted.

The current trend in schema matching is now more focused on combining matchers instead of
creating new ones. Most of the recent approaches are focusing on the problem of large-scale schemas
and how to handle them efficiently. There is not much support for n:m alignments; otherwise, systems
mostly focus on 1:1 ones. Evaluations in [29,30] show that regarding matching geospatial datasets,
such as DBpediaand Geonames, the existing tools are efficient for simple geospatial representations,
such as (latitude, longitude), while failing with more complex ones.

The transportation domain requires richer and more suitable mappings that are more relevant to
its concepts. Geospatial patterns are still not found in the current systems, and the existing matchers
lack the ability to match some complex transportation schemas.

2.2. Data Interlinking

The goal of data interlinking is to discover entities representing the same object over distinct RDF
data sources in a semi-automatic fashion [31]. The goal is to link similar instances in order to connect
data sources. The survey presented in [32] describes data interlinking in more detail and highlights
the characteristics of the most popular approaches.

Transportation data interlinking could be used to discover relationships between transportation
entities. These relations describe how entities are semantically related to each other, e.g., near, reachable,
can be accessed on (time), etc. Providing these relations enables a better view of the data and enables
more accurate services. Existing tools detect equivalence relationships (sameAs) based on distance
similarity metrics (string, geographical, numeric, etc.).

Many solutions have been provided to support data interlinking and publishing [33,34].
They provide the necessary tools to transform, link, publish and query data extracted from multiple
different sources with different formats. An example of a data publishing approach is GeomRDF [35].
It is a tool that helps users to convert spatial data from traditional GIS formats to the RDF model.
Regarding data interlinking, Silk [36] provides easy ways to add datasets, configure linking rules, use
reference links and output configuration to generate links between the datasets. Interlinking geospatial
data is done using some mathematical distance functions, e.g., Euclidean distance. LIMES [37] provides
better geographical distance functions than Silk (e.g., orthodromic, Hausdorff, Frechet, etc.), which
makes it more suitable for geospatial datasets. GNAT [38] works on music datasets and is based
on a similarity aggregation algorithm to detect relations based on resource’s neighbors in a graph.
ODD-Linker [39] proposed an extensible framework for interlinking relational data with high quality
links. Linking rules are expressed in the LinQLlanguage, which is later translated to SQL queries
to compare and identify links. RKB-CRS (co-reference resolution system) [40] is an architecture for
managing Uniform Resource Identifiers (URI)equivalences on the web of data by using consistent
reference services. RDF-AI [41] is a dataset matching and fusion architecture based on string similarity
using an external resource (WordNet).

Using the information provided in [32], we can summarize existing interlinking solutions with
their properties and compare them to our approach, as shown in Table 1.



ISPRS Int. J. Geo-Inf. 2017, 6, 29 6 of 20

Table 1. Interlinking tools. CRS, co-reference resolution system.

Techniques Output Domain

RKB-CRS [40] String owl:sameAs Publications
GNAT [38] String, similarity-propagation owl:sameAs Music

ODD-Linker [39] String link set Independent
RDF-AI [41] String, WordNet alignment format Independent

Silk [36] String, numerical, date owl:sameAs, user-specified Independent
LIMES [37] String, geographical, numerical, date owl:sameAs, user-specified Independent

Link++ User-defined User-defined Independent

The user defined links provided by existing approaches are actually sameAs links, which have
been renamed to suit the user preferences, unlike in our approach, where they have a complex structure
specified by the user.

Other approaches, such as BLOOMS [29] and STROMA [42], provide links with different
semantics as sameAs. BLOOMS uses Wikipedia as a background knowledge to detect semantic
relationships between linked open data classes. The derived semantic relations are owl:subClassOf
and owl:equivalentClass. STROMA extends the existing is-a and related correspondences provided by
generating part-of relationships.

Analyzing existing link discovery approaches shows that they are more suitable to equivalence
matching. They provide functions and aggregations to detect sameAs, part-of or subClassrelationships.
These approaches may be suitable in some cases for geospatial data (the GeoKnow project [43] and
LinkedGeoData [44]), but they are not sufficient for transportation data. Interlinking solutions must
take into account both the spatial and temporal characteristics of transportation data in addition to the
real-time state. Consider that we want to connect two transportation data sources with the intention
of discovering how we can reach one stop from another. Doing so with existing tools limits us to
equivalence detection due to the provided functions and output format. What is required is a more
representative and semantic way to connect these sources [45] showing how they can be connected
from a transportation point of view.

As a conclusion, the output of an interlinking process mainly focuses on detecting a set of
owl:sameAs links. However, we need to have more information in the generated links to enable
better post-processing and analysis and to reduce re-calculation costs (e.g., include information about
a connection status and the distance between two connected entities in transportation links).

3. An Automatic Matcher for Transportation Datasets

Transportation data instances always refer to real-world objects, e.g., bike stations, bus or train
stops, etc. These data are characterized by the description of an object’s geographical location,
represented by properties, such as coordinates, addresses, etc. The problem we are faced with is
the different representations of this information. We aim at investigating a way to automatically
identify and match geospatial information in transportation datasets despite their heterogeneity.

Geocoding services (https://developers.google.com/maps/documentation/geocoding/intr,
http://dev.virtualearth.net/REST/v1/Locations/, http://cloudmade.com/documentation/geocoding/,
http://www.mapquestapi.com/geocoding/, https://developer.yahoo.com/boss/placefinder/)
provide the means of transforming a description of a location (name of a place, coordinates, etc.) to
a location on the Earth’s surface via geocoding and reverse geocoding functions. They work as a search
engine where the output contains all possible information regarding the location of the queried data.

We believe that exploiting these services can guide the matching process in automatically
identifying the geospatial characteristics in the datasets. The idea in general is the following:
First we query a geocoding/reverse-geocoding web service with existing instances in order to find
matching rules between the queried instances and the web service response. The schema of the web
service must be known in advance, so a match between the queried instance and the web service



ISPRS Int. J. Geo-Inf. 2017, 6, 29 7 of 20

instance will give us some information on the schema of the queried instance. This enables us to detect
complex relations between two different representations by using the web service as a mediator. Data
sources are mapped to the mediator at first, then by previously-known information about the structure
of the mediator, we can detect the required matching rules. Due to the fact that we know how a web
service is defined, we can detect n to m relations between the schemas.

Our system consists of four components that include: web service selection and query formulation,
co-occurrence matrix construction and, finally, the matching rules generator. A preprocessing step
precedes our approach in order to unify the structure representations in each data source and to do
some filtering and/or modifications. Here, we use CSV format due to its simplicity. Moreover, since
some columns on their own cannot provide meaningful input for a web service query, preprocessing
can perform some random combination/split of columns as additional data that may improve the web
service query results, e.g., combine street name with city name to get more precise results from the
web service. The combination is done automatically and blindly without any prior information about
the dataset schema. We note that even when the format is the same, the representation may be totally
different. For example, both files are in CSV format, but each represents addresses differently. Figure 3
shows a global view of our system.

Figure 3. A system for the automatic detection of geospatial information.

3.1. Web Service-Based Query Formulation

A web service stands as a mediator that maps the data sources. We can identify more formats
and representations given a richer web service schema. Therefore, it is required to provide a web
service that contains enough representations of addresses to cover any possible encountered format.
In addition to the service definition, the knowledge of how the elements are mapped within the
web services must be defined. For example, if a web service contains longitude, latitude and a WKT
representation of an address, we must specify that a combination of latitude and longitude can be
represented in WKT and vice versa. These information are saved as “inner mapping rules” of a web
service that are used later in the matching task.

The objective of a query formulator is to query the selected web service with existing instances
aiming to get richer information. This step is done on each dataset separately. The query formulator
creates a query and sends it to the web service. Separate requests are issued for each column in a row
as shown in Figure 4 or by random split/combination of columns previously done in a preprocessing
phase, e.g., the fourth column in Figure 4 is the result of preprocessing the file by combining Columns 1
and 3. Note that Col1, Col2, Col3 represent any column names while v1, v2, v3 represent any possible



ISPRS Int. J. Geo-Inf. 2017, 6, 29 8 of 20

value. The web service results are grouped by the queried columns and stored in a repository for
later tasks.

Figure 4. Querying web services to obtain instances with richer data.

3.2. Co-Occurrence Matrix Construction

Here, we use the web service results and the dataset instances in order to construct a co-occurrence
matrix. A co-occurrence matrix is a matrix of n *m rows, where n and m are the number of columns in
the dataset and the web service schema, respectively. Each entity in this matrix corresponds to the
number of times an element ai j appears at the same time in the column i of the dataset schema and the
column j of the web service result schema.

The element comparison is done via a similarity metric [46,47] in which each time a similarity
is detected, the corresponding value in the matrix is incremented by one. The higher the value is,
the higher the probability that these two columns map to each other. An example of what precedes is
shown in Figure 5 with the elements in red representing common occurrences. We see two schemas,
one representing a dataset schema and the second representing the web service schema. In the dataset
schema, a street is represented by its name and zip-code written in English words, while it is in the
web service schema represented by the set {Voie, CodeP and Ville} that stands for {Street, Postal code
and City} in French. The co-occurrence matrix lists the columns of both schemas as rows and columns
of the array, and each element in the matrix represents the number of times the same value appears
in row/column combination. For example, we see that the columns “Voie” and “Street Name” have
two values in common, which are “Rue Edme Bouchardon” and “Rue des Chantiers”. To calculate
the matrix, we first iterate over each row in the dataset and compare the value of each column with
the column values of each row in the web service results. If the similarity between the values exceeds
a threshold, the value at the specific row/column index in the matrix is incremented, e.g., if the value
at Street Name is similar to the value at Rue, then the cell corresponding to column Street Name and
row Rue is incremented.

Figure 5. Example of co-occurrence matrix calculation.



ISPRS Int. J. Geo-Inf. 2017, 6, 29 9 of 20

A co-occurrence matrix is created for each repository, where a repository represents the query
results of each column’s instance values. Since we have multiple co-occurrence matrices, we combine
them with one aggregated matrix in order to maximize the similarity. This matrix represents the
global view on how the columns of each dataset are related to the web service schema based on all of
the queries.

3.3. Matching Rules Generation

The calculated co-occurrence matrices capture the possible matching rules between the data
sources and the web service and in turn will help with generating the matching rules between
their schemas. Here, we iterate over each row and select the highest value. Then, we generate a
matching between the corresponding row/column if the number of co-occurrences is higher than some
pre-defined threshold.

After having the matching between each dataset and the web service, we use the web service
inner mappings to detect how elements from each dataset can be matched together. To illustrate, let us
consider two datasets, DS1, DS2, and a web service, WS. Suppose that DS1 contains the columns a1
and b1, the WS schema contains ws1,ws2 and ws3 and DS2 contains a2. Knowing that the column ws3
is the combination of ws1 and ws2, a1 and b1 map to ws1 and ws2, respectively, and a2 maps to ws3,
we can conclude that we can map DS1 elements to DS2 elements by the property “a1 combined with
b1 is equivalent to a2”. The global picture is shown in Figure 6.

Figure 6. Discovering matching rules between datasets using a web service as a mediator. DS, dataset;
WS, web service.

Summing up, the idea is to query each dataset element with a web service that has a known
schema and inner mapping rules. We then use the resulting instances to create co-occurrence matrices
for each dataset. The matrices are then used to define a matching between each dataset and the web
service schema until finally using the inner mapping rules of the web service to create matching rules
between the input datasets.

This process is done twice for both datasets. Using the matching rules from D1 to WS and from D2
to WS in addition to the inner mapping rules of WS, the process terminates by showing the matching
between D1 and D2.

4. Discovering Semantic Connections between Transportation Datasets

Discovering connections between transportation points of transfer cannot be done using existing
interlinking tools. A more complex connection generation process is needed to enable richer and more
flexible connection representation. We introduce Link++ (shown in Figure 7), a system that enables
flexible connection discovery and customized output definition using connection patterns, custom
functions and linking rules. Connection patterns are templates for connection generation used to
define both the content and format of a linking process output.

In general, the approach consists of two main phases:



ISPRS Int. J. Geo-Inf. 2017, 6, 29 10 of 20

• The definition phase, where users define the connection patterns, the required functions and
linking rules.

• The generation phase, where the definitions are taken and applied to the datasets. The rule is
applied to the entities, and when valid, a connection will be created and stored in a repository.

In a formal definition, a linking task T requires the following input for the process:

• Input data sources D1 and D2 representing the datasets to be linked
• O is the custom-defined connection pattern
• R is the linkage rule that defines when a connection must be generated
• F is a set of functions required for the linking task
• L is a set of pre-defined libraries implementing the dependencies of F

Figure 7. Link++: An approach for flexible and customizable connection generation.

The following sections explain in detail the tasks required for an interlinking process.

4.1. Specifying Custom Functions and External Libraries

Users are able to write any functions to be used in their linking rules or similarity calculations.
This ensures the flexibility of the approach and the ability to support any interlinking task. In addition,
external libraries are supported and can be used within functions’ implementations. These functions
may represent a linking rule, a similarity metric, a transformation/preprocessing operations or any
other function based on users’ needs. The functions are gathered in a JAVA file accompanied with the
used jar libraries.

4.2. Defining a Linking Rule

A linking rule specifies the conditions required to generate a connection between a given pair
of entities. The main goal is to apply this rule to each entity pair in order to seek for a match and
create the specified connection. Defining a rule requires a set of functions (similarity metrics and
preprocessing functions) previously defined by the user. Each rule is defined with a root node that is



ISPRS Int. J. Geo-Inf. 2017, 6, 29 11 of 20

either an aggregation or a comparison operator and sub-nodes specifying any other function chained
in a way to suit the linking task.

An aggregation operator combines the values of different operators/values by applying the
specified aggregation method, e.g., max, min, average, etc. It is defined by an aggregation function
and a threshold. Each function contains a set of parameters that can be specified from the given data
sources or directly by the user. The threshold defines whether the value of the operator must be
evaluated as true or false in the linking rule.

Since data sources can be represented in different ways, we can use the transformation operator
to modify how values are represented. To this end, we define a function that takes its parameters from
the data sources or from the composition of other transformation operators, e.g., lowercase, uppercase,
concatenation, round, ceiling, etc.

Finally, the comparison operator is used to define the similarity (or the relatedness) between two
properties of the given data sources. A comparison is valid between operators themselves or with
other transformation functions, and a threshold defines whether the value is accepted or not for the
rule to be valid, e.g., distance, equality, etc.

4.3. Configuring a Connection Pattern

The connections are the final outputs of the interlinking task, and it is important to be precise
when defining a connection pattern. A pattern specifies the format of the generated connections and
the required information they must contain. In other words, it represents a template that will be filled
when a connection is instantiated.

A connection pattern is composed of a set of properties, where each property is defined by a
function that calculates it. Function parameters can be the inputs from the data sources or predefined
by the rule composer. A connection pattern is freely chosen by a user according to the interlinking task
and the post-processing needs. The formal definition of a connection pattern O is as follows:

Definition 1. Let D1 and D2 be two data sources. Given V any data type and F a set of custom functions
required to generate the patterns, Pr is a set of properties where each property is represented by a property name
n, a value v and a corresponding function f , which calculates the property value during the generation process.

Pr = {(n, v, f )|n ∈ String, v ∈ V f ∈ F} (1)

A connection pattern is formalized as:

O = (d1, d2, pr)|d1 ∈ D1, d2 ∈ D2, pr ⊆ Pr (2)

We will give a demonstration case with a real scenario of defining both the linking rule and the
connection pattern in Section 5.

Once the configuration step is completed, the connection discovery is performed as described in
the sequel.

4.4. Connection Discovery Algorithm

Algorithm 1 represents the pseudo-code of the implemented linking process.
The algorithm iterates over each pair of entities in the two data sources and evaluates the linking

rule between them. Based on the rule evaluation, the algorithm decides if a connection must be created
or not. If a rule is triggered, a new connection is generated by evaluating the connection pattern and
applying the corresponding function of each property. The values are calculated by the specified
functions in the output pattern, and their parameters are filled from the currently-compared entities.
Here, we instantiate the connection and fill in its information from the return values of the functions.
The connection is stored in a specified repository, and the algorithm continues on the remaining pairs
until all are treated.



ISPRS Int. J. Geo-Inf. 2017, 6, 29 12 of 20

Algorithm 1: Connection discovery algorithm.
Data: D1, D2, O, R, F
Result: Discover the list of connections and add them to the connections store
/* iterate over the elements of D1 */
foreach e1 in D1 do

/* iterate over the elements of D2 */
foreach e2 in D2 do

/* evaluate the linking rule */
if evaluateRule(e1, e2, R) is true then

/* if the rule holds, create new connection based on the output
pattern */

c← createConnection(e1, e2, O);
/* calculate the value of each property in the pattern based on the

specified function */
foreach p in c.properties do

f← F.getFunction(p.getFunction);
value← f.calculate(p.getProperties);
c.addProperty(p.name, value);

end
/* the connection is instantiated and ready to be added to the

connection store */
add c to connections store;

end
end

end

In the worst cases, the time complexity of the algorithm is O(n * m), where n and m are the sizes
of the input datasets. The storage complexity (in terms of data pages) is the same as a nested loop join
in databases that is equal to the size of the smallest dataset + one page, which usually fits in memory.
This complexity may be reduced by using some pre-filtering techniques that the system may offer in
a future version; for instance, using a spatial index to replace the inner loop by a search in an index
(which reduces the cost to log(n)). Then, the specific rules and function defined by the user will be
applied in a refinement phase automatically by the system.

Both the connection pattern and the linking rule files are described in XML files that conform
a data type definition (DTD) ; custom functions are written using JAVA (users can write any JAVA
file and use the defined methods in his/her connection pattern or rule), and the output is generated
in RDF. An example with real linked datasets is presented in the evaluation section; it illustrates the
configuration process and shows an instance of the XML files (output pattern and rule).

We have implemented our approach, and an executable version of the system can be found
online via the link https://github.com/alimasri/link-plus-plus.git; in addition to a video tutorial on:
https://youtu.be/u2gr7Wa4eT4.

5. Evaluation

We evaluate both of our two approaches using two datasets representing transportation companies
in the Paris area, SNCF and Autolib, a railway company and a car sharing service, respectively.

The main idea is to provide missing connections between stops belonging to different
transportation modes and see how this would improve users’ trip planning. We first show how
we automatically discover the geospatial properties between the two datasets and then how we can
use this information to link them using the proposed interlinking approach.

https://github.com/alimasri/link-plus-plus.git
https://youtu.be/u2gr7Wa4eT4


ISPRS Int. J. Geo-Inf. 2017, 6, 29 13 of 20

The input data are collected from the open data portals for SNCF (http://gtfs.s3.amazonaws.
com/transilien-archiver_20160202_0115.zip) and Autolib (http://opendata.paris.fr/explore/dataset/
stations_et_espaces_autolib_de_la_metropole_parisienne/) in CSV representations. The number of
instances in each of the SNCF and Autolib datasets is 1067 and 869, respectively. Figure 8 shows the
original schema of the datasets.

Figure 8. The original schemas of SNCF and Autolib datasets.

5.1. Automatic Schema Matching

We will describe the process of automatically detecting the geospatial properties of both datasets
according to the steps shown in Section 3.

In a preprocessing phase, we split columns containing special characters (commas, semi-colons)
into two or more columns named by the original column’s name with an incremented value
concatenated to its end. Therefore here Autolib’s column “Cordonnees geo” is split into two columns
“Cordonnees geo 0” and “Cordonnees geo 1”.

For the web service selection, we chose Google’s geocoding web service (https://developers.
google.com/maps/documentation/geocoding) with one function on top implemented by us to filter
out the results in a simple schema that consists of three columns: formatted-address (representing
a textual address representation), lng (longitude) and lat (latitude).

The query formulator queries the web service with each column’s value for all of the existing
rows, then groups the results by column names and saves them into a repository. The total number of
issued queries is 20,185 divided into 8536 and 11,649 for SNCF and Autolib, respectively.

One co-occurrence matrix is constructed for each column ignoring columns that gave no results
from the web service. The used similarity metric is the Levenshtein distance in order to show how
a simple similarity metric can give us good results. However, more complex metrics can be used to
increase the precision of the similarity calculation. An aggregation matrix is then created by calculating
the mean value of all co-occurrence matrices’ values. The resulting matrices for SNCF and Autolib are
shown in Tables 2 and 3.

http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
https://developers.google.com/maps/documentation/geocoding
https://developers.google.com/maps/documentation/geocoding


ISPRS Int. J. Geo-Inf. 2017, 6, 29 14 of 20

Table 2. SNCF’s co-occurrence matrix.

Formatted_Address Lat Lng

stop_id 0 35.750 39.625
stop_code 0 0 0
stop_name 11.875 0 0
stop_desc 1.375 0 0
stop_lat 0 296.875 5.375
stop_lon 0 0.625 14.375

location_type 0 0 0
parent_station 0 0 0

Table 3. Autolib’s co-occurrence matrix.

Formatted_Address Lat Lng

ID 0 12.364 0.364
Identifiant Autolib’ 18.818 0 0

Rue 2.545 0 0
Code postal 0 0 0

Ville 27.636 0 0
Coordonnees geo_0 0 5876.818 523.909
Coordonnees geo_1 0 545.636 916.636

Emplacement 0 0 0
Autolib’ 1397 0 0

Tiers 0 0 0
Abri 0 0 0

In order to generate the matching rules, we iterate over each row, get the maximum value and
assign a matching between the corresponding row/column pair. Using Tables 2 and 3, we obtain the
following matching rules between each of them and the web service; for SNCF: (stop-id, lng), (stop-name,
formatted-address), (stop-desc, formatted-address), (stop-lat, lat) and (stop-lon, lng); for Autolib:
(ID, lat), (Identifiant Autolib’, formatted-address), (Rue, formatted-address), (Ville, formatted-address),
(Cordonnees geo-0, lat), (Cordonnees geo-1, lng) and (Autolib’, formatted-address). The execution
time took around 3.5 min on the given datasets, including a one-second cool-down per each ten queries
to comply with the restrictions of the web service.

Analyzing the results for SNCF, our system correctly obtained matching of the latitude and
longitude properties. Moreover, since the stop-name and stop-dec are normally names of the
corresponding area, they were detected as geospatial properties, as well. Regarding the stop id,
this false positive matching rule can be solved by combining the results with some constraint-based
approaches. Regarding Autolib, the matching rules detected correct relations between rue and
formatted-address and the same for the latitude and longitude with cordonnees geo 0 and 1. The false
positive matches were: (ville, formatted-address), (ID, lat), (Identifiant Autolib’, formatted-address)
and, finally, (Autolib’, formatted-address). The false negatives’ matching rules can also be discarded
using constraint-based approaches, for example by removing matching from repeated column values
or id columns, etc.

The results show a 100% precision and 80% recall for SNCF and 100% precision 42% and recall
for Autolib. Matching results could be improved in different ways: (i) choosing richer web services;
(ii) refining the preprocessing of the output; or (iii) using alternative similarity metrics. Combining both
matching rules, we can deduce the following valid rules between SNCF and Autolib: “Cordonnees
geo” from Autolib maps to the combination of (stop-lat,stop-lon) in SCNF; “Rue” from Autolib maps
to “stop-desc” in SNCF.

We tested the algorithm on other datasets to validate it. The chosen datasets are hospital locations
in the U.K. and points of interests (POI)in Paris, in addition to the previous train and car stations. The



ISPRS Int. J. Geo-Inf. 2017, 6, 29 15 of 20

idea here is that this approach can help in checking if the datasets contain geospatial information in
addition to the ability to identify them and the relation to other datasets. This can be used in uses cases
such as finding the nearest hospital from an accident location or finding some POIs near a hotel, etc.
The results are shown in Table 4.

Table 4. Evaluation of the matching algorithm.

Precision Recall F-Measure

SNCF 1 1 0.8 0.88
Autolib 2 1 0.42 0.59

Hospitals 3 1 0.8 0.88
POI 4 1 1 1

1 http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip; 2 http://opendata.paris.fr/explore/
dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/; 3 https://data.gov.uk/dataset/hospitals;
4 http://opendata.paris.fr/explore/dataset/zones-touristiques-internationales/export/.

5.2. Link Discovery

After the detection of the geospatial properties, the following process is to find the transportation
connections between both datasets. In transportation networks, a connection can be described as
an accessible path from one transportation point of transfer to another. A point of transfer is any stop
that allows users to change a transportation unit or mode. A connection contains properties describing
both the departure and arrival stops in addition to other properties. We define a transportation
connection as one of the following two types:

• Timetable connection that has specific departure and arrival times. This type of connection will be
referred to as a scheduled connection. It has the following properties: departure-time, arrival-time,
departure-stop and arrival-stop.

• Other connections that have no schedule information and for which availability is not restricted
by timing constraints. We will refer to these connections as unscheduled connections. They have
the following properties: departure-stop, arrival-stop and distance.

5.2.1. Data Preparation

In this phase, the goal is to represent the timetable information in a format compatible with our
definition of connection. Instead of designing a network by a series of stops or other representations,
we want to represent it by a series of connections between stops. Since SNCF is a public transportation
company with data described in timetables, the task here is to extract scheduled connections from the
given data. To this end, we have proposed an algorithm that transforms timetable data from GTFS
files into scheduled connections. The algorithm iterates over the timetable information for each stop
and creates a connection that starts from a departure stop at a departure time and ends with an arrival
stop with the specified time. The process is repeated to a predefined date range to limit the number of
connections created.

In case of Autolib, we do not have timetable information, so we need a way to discover the
connections between its stops. Using our approach, we can match Autolib’s dataset with itself
(in order to know when a Autolib station is reachable from an another) to discover these unscheduled
connections between. Since the configuration task is common and independent, the following section
describes how to use our approach to discover the unscheduled connections for Autolib-Autolib and
Autolib-SNCF.

5.2.2. Discovering New Connections

Two tasks are required one for Autolib-Autolib connections and one for Autolib-SNCF
connections. In this example, unscheduled connections are driving or walking connections between
Autolib-VELIBand Autolib-SNCF, respectively. We use our approach to search for connections that

http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
https://data.gov.uk/dataset/hospitals
http://opendata.paris.fr/explore/dataset/zones-touristiques-internationales/export/.


ISPRS Int. J. Geo-Inf. 2017, 6, 29 16 of 20

match a predefined criteria. Since our approach works on RDF data, we have used the DataLift [34]
platform to transform both SNCF stops and VELIB CSV files into RDF turtle formats. In the sequel, we
describe in detail all of the required tasks to achieve our goal.

• Defining custom functions: Our system is flexible as it allows users to create any custom function to
be used in the linking task. Users can use external dependencies, as well. In our example, we define
the functions getWalkingDistance, getWalkingTime, getDrivingDistance and getDrivingTime. In
a real scenario, we get this information from a web service, such as Google’s distance matrix
API (https://developers.google.com/maps/documentation/distance-matrix/), However, due to
the query limit, we have chosen to implement them by local functions based on mathematical
calculations (http://www.movable-type.co.uk/scripts/latlong.html).

• Define the linking rules: Recall that the linking rule describes the condition that triggers the
creation of a connection. Two rules are required, one for Autolib-Autolib and the other for
Autolib-SNCF. For the first one, the condition of the defined rule is the following: “If a driving
path exists within 200 km (the time before the battery is totally discharged), create a connection”.
For Autolib-SNCF connections, the rule is: “If a walking path exists from one stop to another
within one kilometer, create a connection”. Rules are written in XML format, and the functions that
calculate the walking distance and time are referenced from the custom functions file. We note that
the parameters “200 km” and “1 km” are given by the user who is responsible for the configuration.
We set these parameters as the maximum feasible scope for a person to ride the car or walk from
one station to another. Figure 9 shows an example of how a rule can be defined.

Figure 9. An example of rule definition in XML.

• Defining the connection pattern: We define the output generated by the system at each valid rule.
We have chosen the following properties to be represented in a connection pattern: source-id,
target-id, walking/driving distance and walking/driving time. This pattern is the same for both
tasks, and an example is shown in Figure 10.

Figure 10. An example of a connection pattern in XML.

Executing these tasks with the above configuration enabled us to enrich the network with
discovering 535,966 internal connections between Autolib car stations and 272 new connections

https://developers.google.com/maps/documentation/distance-matrix/
http://www.movable-type.co.uk/scripts/latlong.html


ISPRS Int. J. Geo-Inf. 2017, 6, 29 17 of 20

between the two different transportation modes SNCF and Autolib. We will illustrate hereafter how to
use these connections to calculate the earliest arrival time (EAT).

5.2.3. Calculating Routes Using Discovered Connections

EAT is the earliest time we can reach all stops in a transportation network given a departure stop
and time. We have chosen this approach to get a broad view on how the newly-introduced connections
can massively affect a large network. We have used the connection scan algorithm (CSA) [48] as an
EAT implementation, since it matches with our notion of connection. In short, CSA works by receiving
a stream of connections ordered by departure time and chooses the fastest way to reach one stop
from another. Due to the fact that the connections are pre-sorted and can be accessed one by one in
a single iteration, CSA is faster and more scalable than other existing algorithms. However, it has
some limitations in our case. Firstly, it only supports timetable networks, which makes it unable to
compute trips, including other services. Secondly, it does not support unscheduled connections. It only
supports one footpath transition between two points of transfers. It is therefore not possible to combine
scheduled connections, unscheduled connections and footpaths to create a more optimized trip.

CSA handles only public transportation networks with footpaths. In order to support
multimodality, we have introduced unscheduled connections beside the ones based on timetables.
We have also enabled multiple unscheduled connections between multiple points of transfer.
The unscheduled connections are created when a connection is reached. For each iteration, all of the
available unscheduled connections from an arrival stop are checked to create scheduled connections by
setting the departure time to be equal to the arrival time at the station; to this is added the minimum
transfer duration and the arrival time for the unscheduled connection.

We fed our new algorithm with both scheduled and unscheduled connections and tested the
estimated arrival time for each stop. To check the effects of introducing generated connections, we
have calculated the estimated arrival times with and without them, and we have compared the results.
Figure 11 represents the estimated arrival time for every stop starting from the SNCF departure stop
DUA8711617. The intuition is that the lower the value, the earlier a passenger can reach a stop point
starting from a departure station.

Figure 11. The estimated arrival time for each stop with and without our created connections.

Analyzing Figure 11 shows that using the generated connections and integrating them in the
transportation network can reduce the estimated arrival time. Therefore, introducing these connections
decreases the waiting time for passengers and results in more optimized trips. We can now consider
new types of mobility that were not previously taken into account (bike sharing, car sharing, etc.).
This can be used to fit to passengers profiles by combining the appropriate connections while planning
trips. Passengers will be able to define connection types, modes and find the best trip type.

Compared to the existing link discovery frameworks, our approach succeeded in discovering
links with richer representations and extendable properties that can be used for numerous tasks
(EAT in our example).



ISPRS Int. J. Geo-Inf. 2017, 6, 29 18 of 20

6. Conclusions

The diversity of transportation systems and services raises the need for a broader integrated
view of the transportation network. This in turn can provide multimodality that greatly improves
passenger’s experience with more optimized and customizable trips.

In this paper, we proposed an approach to automatically detect geospatial data between
transportation data sources in addition to a way to provide rich semantic connections between their
entities. This enables a better way for transportation systems to access information about new services
and integrate them with their own network.

We evaluated our approach with a scenario of integrating a car sharing and a train station
company in France. The result shows that the approach was able to detect the geospatial entities
and find relations between the dataset schemas. Moreover, using the rich generated links between
the datasets, the integration of the new mode of transportation improved the earliest arrival time at
each stop.

In the future, we want to adapt the approach to handle the dynamicity of the connections. This will
make us able to maintain the status of existing connections and handle new services, such as dynamic
ride-sharing, car sharing, etc. The problem here is how to track connections’ evolution in real time.
How can we make use of external events that may affect their use, etc.? Furthermore, some speed
optimization is to be considered for both the automatic matching and interlinking approaches. We will
target data sampling to reduce the web service calls and a smarter query formulator to more efficiently
get relevant results from the web service. Integrating geospatial querying solutions shown in [25] may
help with increasing the accuracy of the query formulator. The use of a web service to bridge the gap
between different dataset representations could apply to other domains as long as web services are
provided for these datasets.

Author Contributions: Ali Masri conceived, designed and performed the experiments, and wrote the paper;
Zoubida Kedad and Karine Zeitouni supervised the work, reviewed the writing and verified the experiments;
Bertrand Leroy contributed to the supervision of the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gurstein, M.B. Open data: Empowering the empowered or effective data use for everyone? First Monday
2011, doi:10.5210/fm.v16i2.3316.

2. Bizer, C.; Heath, T.; Berners-Lee, T. Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 2009, 5, 1–22.
3. Plu, J.; Scharffe, F. Publishing and linking transport data on the web: Extended version. In Proceedings of

the First International Workshop on Open Data, Nantes, France, 25 May 2012; pp. 62–69.
4. Consoli, S.; Mongiovì, M.; Recupero, D.R.; Peroni, S.; Gangemi, A.; Nuzzolese, A.G.; Presutti, V. Producing

linked data for smart cities: The case of Catania. Big Data Res. 2016, doi:10.1016/j.bdr.2016.10.001.
5. Euzenat, J. An API for ontology alignment. In The Semantic Web–ISWC 2004; Springer: Berlin/Heidelberg,

Germany, 2004; pp. 698–712.
6. Euzenat, J.; Shvaiko, P. Ontology Matching; Springer: Berlin/Heidelberg, Germany, 2007.
7. Shvaiko, P.; Euzenat, J. A survey of schema-based matching approaches. In Journal on Data Semantics IV;

Springer: Berlin/Heidelberg, Germany, 2005; pp. 146–171.
8. Segev, A.; Kantola, J.; Jung, C.; Lee, J. Analyzing multilingual knowledge innovation in patents.

Expert Syst. Appl. 2013, 40, 7010–7023.
9. Rahm, E.; Bernstein, P.A. A survey of approaches to automatic schema matching. VLDB J. 2001, 10, 334–350.
10. Kalfoglou, Y.; Schorlemmer, M. Ontology mapping: The state of the art. Knowl. Eng. Rev. 2003, 18, 1–31.
11. Wache, H.; Voegele, T.; Visser, U.; Stuckenschmidt, H.; Schuster, G.; Neumann, H.; Hübner, S. Ontology-based

integration of information-a survey of existing approaches. In IJCAI-01 Workshop: Ontologies and Information
Sharing; Citeseer: Princeton, NJ, USA, 2001; pp. 108–117.

12. Bernstein, P.A.; Madhavan, J.; Rahm, E. Generic schema matching, ten years later. Proc. VLDB Endow. 2011,
4, 695–701.



ISPRS Int. J. Geo-Inf. 2017, 6, 29 19 of 20

13. Shvaiko, P.; Euzenat, J. Ontology matching: State of the art and future challenges. IEEE Trans. Knowl.
Data Eng. 2013, 25, 158–176.

14. Daskalaki, E.; Flouris, G.; Fundulaki, I.; Saveta, T. Instance matching benchmarks in the era of Linked Data.
Web Semant. Sci. Serv. Agents World Wide Web 2016, 39, 1–14.

15. Zaiss, K.; Conrad, S.; Vater, S. A benchmark for testing instance-based ontology matching methods.
In Proceedings of the 17th International Conference Knowledge Engineering and Knowledge Management,
Lisbon, Portugal, 11–15 October 2010.

16. Dai, B.T.; Koudas, N.; Srivastava, D.; Tung, A.K.; Venkatasubramanian, S. Validating multi-column schema
matchings by type. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering,
Cancun, Mexico, 7–12 April 2008.

17. Warren, R.H.; Tompa, F.W. Multi-column substring matching for database schema translation. In Proceedings
of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, 12–15 September 2006.

18. Bohannon, P.; Elnahrawy, E.; Fan, W.; Flaster, M. Putting context into schema matching. In Proceedings of
the 32nd International Conference on Very Large Data Bases, Seoul, Korea, 12–15 September 2006.

19. Partyka, J.; Parveen, P.; Khan, L.; Thuraisingham, B.; Shekhar, S. Enhanced geographically typed semantic
schema matching. Web Semant. Sci. Serv. Agents World Wide Web 2011, 9, 52–70.

20. Li, W.S.; Clifton, C. SEMINT: A tool for identifying attribute correspondences in heterogeneous databases
using neural networks. Data Knowl. Eng. 2000, 33, 49–84.

21. Embley, D.W.; Xu, L.; Ding, Y. Automatic direct and indirect schema mapping: Experiences and lessons
learned. ACM SIGMOD Rec. 2004, 33, 14–19.

22. Brauner, D.F.; Intrator, C.; Freitas, J.C.; Casanova, M.A. An instance-based approach for matching export
schemas of geographical database web services. In Proceedings of the IX Brazilian Symposium on
Geoinformatics, São Paulo, Brazil, 25–28 November 2007.

23. Feliachia, A.; Abadieb, N.; Hamdic, F. Matching and Visualizing Thematic Linked Data: An Approach Based on
Geographic Reference Data; IOS Press: Amsterdam, The Netherlands, 2014.

24. Al-Salman, R.; Dylla, F.; Fogliaroni, P. Matching geo-spatial information by qualitative spatial relations.
In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered
Geographic Information, Redondo Beach, CA, USA, 7–9 November 2012.

25. Smid, M.; Kremen, P. OnGIS: Semantic Query Broker for Heterogeneous Geospatial Data Sources. Open J.
Semant. Web (OJSW) 2016, 3, 32–50.

26. Lüscher, P.; Burghardt, D.; Weibel, R. Matching road data of scales with an order of magnitude difference.
In Proceedings of the XXIII International Cartographic Conference, Moscow, Russia, 4–10 August 2007.

27. Yi, S.; Huang, B.; Wang, C. Pattern matching for heterogeneous geodata sources using attributed relational
graph and probabilistic relaxation. Photogramm. Eng. Remote Sens. 2007, 73, 663–670.

28. Li, J.; Wang, Z.; Zhang, X.; Tang, J. Large scale instance matching via multiple indexes and candidate
selection. Knowl.-Based Syst. 2013, 50, 112–120.

29. Jain, P.; Hitzler, P.; Sheth, A.P.; Verma, K.; Yeh, P.Z. Ontology alignment for linked open data. In The Semantic
Web–ISWC 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 402–417.

30. Ferrara, A.; Nikolov, A.; Noessner, J.; Scharffe, F. Evaluation of instance matching tools: The experience of
OAEI. Web Semant. Sci. Serv. Agents World Wide Web 2013, 21, 49–60.

31. Isele, R.; Bizer, C. Active learning of expressive linkage rules using genetic programming. Web Semant. Sci.
Serv. Agents World Wide Web 2013, 23, 2–15.

32. Scharffe, F.; Euzenat, J. MeLinDa: An interlinking framework for the web of data. Artif. Intell. 2011,
arXiv:1107.4502.

33. Le Grange, J.J.; Lehmann, J.; Athanasiou, S.; Garcia-Rojas, A.; Giannopoulos, G.; Hladky, D.; Isele, R.;
Ngomo, A.C.N.; Sherif, M.A.; Stadler, C.; et al. The GeoKnow Generator: Managing Geospatial Data in the
Linked Data Web. In Proceedings of the Linking Geospatial Data, London, UK, 5–6 March 2014.

34. Scharffe, F.; Atemezing, G.; Troncy, R.; Gandon, F.; Villata, S.; Bucher, B.; Hamdi, F.; Bihanic, L.; Képéklian, G.;
Cotton, F.; et al. Enabling linked data publication with the Datalift platform. In Proceedings of the AAAI
Workshop on Semantic Cities, Toronto, ON, Canada, 22–23 July 2012.

35. Hamdi, F.; Abadie, N.; Bucher, B.; Feliachi, A. Geomrdf: A geodata converter with a fine-grained structured
representation of geometry in the web. Int. Workshop Geospat. Linked Data arXiv 2015, arXiv:1503.04864.



ISPRS Int. J. Geo-Inf. 2017, 6, 29 20 of 20

36. Volz, J.; Bizer, C.; Gaedke, M.; Kobilarov, G. Silk-A Link Discovery Framework for the Web of Data.
Linked Data Web 2009, doi:10.1038/npg.els.0000915.

37. Ngomo, A.C.N.; Auer, S. Limes-a time-efficient approach for large-scale link discovery on the web of
data. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain,
16–22 July 2011.

38. Raimond, Y.; Sutton, C.; Sandler, M.B. Automatic interlinking of music datasets on the Semantic Web.
In Proceedings of the Linked Data on the Web (LDOW 2008), Beijing, China, 22 April 2008.

39. Hassanzadeh, O.; Lim, L.; Kementsietsidis, A.; Wang, M. A declarative framework for semantic link
discovery over relational data. In Proceedings of the 18th International Conference on World Wide Web,
Madrid, Spain, 20–24 April 2009.

40. Jaffri, A.; Glaser, H.; Millard, I. Managing URI synonymity to enable consistent reference on the Semantic
Web. In Proceedings of the IRSW2008—Identity and Reference on the Semantic Web, Tenerife, Spain,
2 June 2008.

41. Scharffe, F.; Liu, Y.; Zhou, C. Rdf-ai: An architecture for rdf datasets matching, fusion and interlink.
In Proceedings of the IJCAI 2009 Workshop on Identity, Reference, and Knowledge Representation (IR-KR),
Pasadena, CA, USA, 11 July 2009.

42. Arnold, P.; Rahm, E. Enriching ontology mappings with semantic relations. Data Knowl. Eng. 2014, 93, 1–18.
43. Athanasiou, S.; Hladky, D.; Giannopoulos, G.; Garcia Rojas, A.; Lehmann, J. GeoKnow: Making the web

an exploratory place for geospatial knowledge. ERCIM News 2014, 96, 12–13.
44. Stadler, C.; Lehmann, J.; Höffner, K.; Auer, S. Linkedgeodata: A core for a web of spatial open data.

Semant. Web 2012, 3, 333–354.
45. Batet, M.; Harispe, S.; Ranwez, S.; Sánchez, D.; Ranwez, V. An information theoretic approach to improve

semantic similarity assessments across multiple ontologies. Inf. Sci. 2014, 283, 197–210.
46. Cheatham, M.; Hitzler, P. String similarity metrics for ontology alignment. In Proceedings of the 12th

International Semantic Web Conference, Sydney, Australia, 21–25 October 2013.
47. Lesot, M.J.; Rifqi, M.; Benhadda, H. Similarity measures for binary and numerical data: A survey. Int. J.

Knowl. Eng. Soft Data Paradig. 2008, 1, 63–84.
48. Dibbelt, J.; Pajor, T.; Strasser, B.; Wagner, D. Intriguingly simple and fast transit routing. In Experimental

Algorithms; Springer: Berlin/Heidelberg, Germany, 2013; pp. 43–54.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Schema Matching
	Data Interlinking

	State of the Art
	Automatic Schema Matching
	Data Interlinking

	An Automatic Matcher for Transportation Datasets
	Web Service-Based Query Formulation
	Co-Occurrence Matrix Construction
	Matching Rules Generation

	Discovering Semantic Connections between Transportation Datasets
	Specifying Custom Functions and External Libraries
	Defining a Linking Rule
	Configuring a Connection Pattern
	Connection Discovery Algorithm

	Evaluation
	Automatic Schema Matching
	Link Discovery
	Data Preparation
	Discovering New Connections
	Calculating Routes Using Discovered Connections


	Conclusions

