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Abstract: Ankle bracelets (anklets) imposed by law to track convicted individuals are being used in
many countries as an alternative to overloaded prisons. There are many different systems for
monitoring individuals wearing such devices, and these electronic anklet monitoring systems
commonly detect violations of circulation areas permitted to holders. In spite of being able to
monitor individual localization, such systems do not identify grouping activities of the monitored
individuals, although this kind of event could represent a real risk of further offenses planned by
those individuals. In order to address such a problem and to help monitoring systems to be able
to have a proactive approach, this paper proposes sensor data fusion algorithms that are able to
identify such groups based on data provided by anklet positioning devices. The results from the
proposed algorithms can be applied to support risk assessment in the context of monitoring systems.
The processing is performed using geographic points collected by a monitoring center, and as result,
it produces a history of groups with their members, timestamps, locations and frequency of meetings.
The proposed algorithms are validated in various serial and parallel computing scenarios, and the
correspondent results are presented and discussed. The information produced by the proposed
algorithms yields to a better characterization of the monitored individuals and can be adapted to
support decision-making systems used by authorities that are responsible for planning decisions
regarding actions affecting public security.

Keywords: anklet monitoring and tracking; detection algorithms; geoprocessing; Law Enforcement
Telecommunications Systems (LETS); sensor data fusion

1. Introduction

The use of electronic anklets by investigated and convicted persons has been applied by the
Brazilian enforcement authorities to try to reduce mass incarceration in the country. According to
December 2013 data from the National Penitentiary Department (DEPEN - Departamento Penitenciário
Nacional ) of the Ministry of Justice, Brazil has one of the largest prison populations in the world,
with 581,507 inmates [1]. The number of people incarcerated increased 52% in the 2005–2013 period.
At the same time, there is a growing deficit of prison capacity (Figure 1), resulting in overloaded
prisons. In Figure 1, the presented information was extracted from the Penitentiary Information
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Integrated System (INFOPEN - Sistema Integrado de Informação Penitenciária) from DEPEN, last
updated in July 2014.

Figure 1. Evolution of the Brazilian incarcerated population; source: authors adapted from [1].

Sentence serving effectiveness inside current overloaded prisons has been stressed by
indoctrinators, who claim that such prisons, together with their management methods, are a failure as
a means of rehabilitating offenders. Moreover, these indoctrinators argue that this institution has not
been proven for behavior rehabilitation, but serves on the contrary as a “true school for criminals”.

In principle, prison sentence serving in Brazil must follow well-defined parameters regarding the
respect to and the dignity of the prisoner, a requirement of the entire prison community, thus respecting
the limitations arising from the sentence, as well as social, economic and cultural rights. Therefore,
the possibility that the convict regains her or his dignity through social interaction is one of the goals
that guides all sentence serving schemes and, consequently, law enforcement. It seems that a remedy
contributing to rehabilitation is to re-socialize a convict, asking the State to rigorously perform the
monitoring of this process.

In this sense, the use of convict surveillance by telematics means has proven to be a viable
alternative for monitoring sentence servings, thus leading to the development of innovations in the
control of individuals who violate criminal laws. One such alternative is the monitoring of convicts
who are required to wear electronic anklets that integrate GPS sensors, a form of surveillance that
proved effective both in the United States and Europe [2]. Thus, criminal justice systems use GPS
devices to monitor offenders, individuals that are out of prison, but forced by law to wear anklets
that report their locations to monitoring agencies [3]. This electronic monitoring of convicts may
be considered an effective means of social reintegration, which can be gradual since the individual
monitoring can be adapted to different sentence serving regimes, as for instance the closed, semi-open
and open regimes in the Brazilian legal system.

The use of electronic monitoring brings a breakthrough to the criminal enforcement system.
First, from the social point of view, it provides better reintegration for the rehabilitating convict into
a society that otherwise is not prepared for dialog and much less prone to assist convicted individuals
in the social reintegration process. Furthermore, electronic monitoring answers the issue of the intimate
life privacy of the monitored persons and their families. Taking into account that currently “35% of the
prison population in Brazil is made up of pre-trial detainees and 30% of inmates were sentenced for
committing crimes without violence or serious threat” [4], electronic monitoring is presented as a key
to evolving the penitentiary system.

Another advantage is that electronic monitoring saves public money expenses regarding the prison
system, especially considering the issue of the operational effort and cost of surveillance. A succeeding
convict monitoring system can reduce, to a great extent, the number of gradual steps to freedom that
are currently employed in prison regime progression, including temporary leaves. Similar savings can
be obtained from other applications for convict monitoring without direct supervision.
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The architectures used in monitoring systems with electronic anklets follow, in general, the following
workflow: geodesic coordinates collected by the anklet devices are sent through a GSM/General Packet
Radio Service (GPRS) data transmission network via mobile network operators, thus pushing the data
to the monitoring center. This latter processes geographic data from the anklets and issues reports and
alerts for the relevant authorities to take action in accordance with the policies of each state. The most
common monitoring information output is the indication of a tracked offender entering forbidden
geographical areas.

Following, we briefly describe the main elements that are part of the structure used for an anklet
monitoring system, since these elements are necessary for understanding the system operation and its
respective data stream:

• GPS:

Global Navigation Satellite Systems (GNSS) comprise constellations of satellites that by
transmitting signals to a receiver, make it possible to determine its coordinates. These signals,
which are transmitted at specific frequencies, possess peculiar characteristics that allow their
identification by receivers, characterizing what is called GNSS observables [5]. The GNSS adopted
for this paper presentation is the North American Global Positioning System (GPS). Through this
system, electronic devices constantly receive signals from satellites and determine their distance
from these satellites by calculating the time elapsed for receiving the signal and their speed. Given
the distances between the devices and the satellites, the device calculates its relative position on
the globe and generates a pair of numbers that identifies its location (coordinates), observing
a specific georeferencing system.

• GSM/GPRS:

The Global System for Mobile (GSM) standard is a digital communications system that allows data
to be moved both synchronously and asynchronously and also preserves the GSM Short Message
Service (SMS) existing in previous systems [6]. General Packet Radio Service (GPRS) is considered
an intermediary between GSM and 3G cellular networks, offering data transmission via a GSM
network in the range of 9.6 Kbits–115 Kbits. Furthermore, GPRS technology supports telephone
calls and data transmission at the same time, thus allowing for example a GPRS mobile phone
user to make calls and receive e-mail messages, simultaneously. GPRS reserves radio resources
only when there are data to send and reduces reliance on traditional circuit-switched network
elements, then enabling IP protocol data transmission over GSM [6].

• The monitored device:

The device comprises a box with an electronic circuit equipped with a GPS module for geolocation.
It also has slots for one or more mobile network connection SIM cards for pushing data via
GSM/GPRS. In order to maintain a continuous operation, the device has a built-in battery
that must be recharged periodically by the user via a charger supplied with the equipment.
A survey carried out among electronic anklet suppliers shows that most devices have the following
characteristics: quad-band GSM/GPRS 850/900/1800/1900 MHz, GPS signal reception from
at least 20 satellites, the ability to operate with one or more mobile operators (multiple SIM
card slots), sufficient memory to accumulate at least the last 24 h of trajectory in case of off-line
communications, at least 24 h of battery life, a sensor and warning indicator for low battery events,
a sensor and warning about the physical violation of the device, a radio jamming detection sensor
and data communication encryption.

• The monitoring central system:

The most common information output from an anklet monitoring system is an indication of
a tracked offender entering restricted areas. Thus, its central system must deploy storage and
computing resources able to capture data from the monitoring network, organize this data,
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perform calculations in maps, register forbidden areas for individuals and support the functions
of authentication, authorization and auditing.

Moreover, this paper considers the possibility that the monitoring center can also provide
additional services related to data on the formation of groups of monitored individuals, based on
proximity detection regarding the coordinates provided by the anklets. In addition to showing the
groups and their location, it is also possible to consolidate information on the time elapsed during
which each group remains together, the number of individuals, as well as the frequency and time of the
meetings. Such information has the potential of contributing to risk analysis that includes preventive
actions by law enforcement agencies.

Law Enforcement Telecommunications Systems (LETS) should take into account the actual risk
posed by specific groups, taking into consideration factors, such as the danger level posed by their
elements and the types of offenses committed by each of them, among others factors [7]. Therefore,
it is important to design algorithms that provide data in order to corroborate risk assessments and
decision-making in this context. The objective is to thereby issue alerts informing of probable riot
formation, preparation for criminal activities, among other suspicious activities.

The core contribution of this paper is to design a set of articulated algorithms, providing
a systemic model able to process data from the monitoring network in order to: (1) verify
proximities (detection of pairs); (2) group devices that are in proximity with each other into clusters
(detection of groups); and (3) record groupings’ duration and the average number of grouped
elements (detection of risks). Additional contributions are described regarding the implementation and
performance aspects of these algorithms. It is interesting to point that such algorithms are applicable
in other situations, e.g., monitoring animal groupings in forests.

The remainder of this article is organized as follows: Section 2 discusses related papers. Section 3
describes the problem of grouping detection and introduces the systemic model of the proposed
solution. Section 4 provides an analysis of the systemic model and the results from the algorithms in
a simulated environment. Section 5 concludes this paper and presents possible further research.

2. Related Works

This paper subject pertains to the general domain of multi-sensor data fusion ([8,9]), but is more
specifically related to the works presented below.

Papers addressing geographic point processing and cluster identification are generally based on
the search for the concentration of points by analyzing their distribution. However, they do not take
into account the specific need of identifying individuals gathered at points that are within a minimum
distance, which characterizes a meeting. Without such consideration, a possibly detected concentration
of points can refer to points separated by distances to the order of kilometers and not just a few meters,
which is inconsistent with the concept of a meeting or gathering of monitored people.

Liu et al. [10] addresses algorithms that identify clusters of objects classified into categories,
considering purely geographical aspects or other associated attributes. It mainly discusses the
“Density-Based Spatial Clustering” (DBSC) algorithm that identifies clusters by using both spatial
proximity and attribute similarity. DBSC involves building proximity relationships between points
obtained through Delaunay triangulation [11]. In order to obtain the triangles formed by the points in
the proximity required by the algorithm, the distance between the points must be previously calculated,
but without considering a time frame restriction that we consider in the present paper. The cited paper
assumes that the geographic points are static and do not consider any displacement and transformation
of clusters over time, changing characteristics that are also considered in our view of groups.

Carlino [12] argues about the influence of the physical proximity of research and development
(R&D) laboratories on the impact of knowledge in their area of concentration. For that effect,
it compares the location of laboratories in the U.S. territory with patent registrations in the same
area, showing their connection. Then, it approaches a way to measure the extent of the spatial
concentration of activities of laboratories and defines the cluster formed by neighboring laboratories
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considering a circle around each location point with an initial radius of a quarter mile. It then lists the
number of points within the circle. As a result, many circles overlap, thereby forming the cluster to be
analyzed and compared with the registration of patents. It also considers static points in relation to
the addresses of laboratories. In the problem presented, there is no need to analyze a change in the
cluster over time. Additionally, the cluster area is obtained by delimiting circles in the geographic
space applied to all points, which in the article is fixed approximately at 1000 without a perspective
of growth.

The DBSCAN algorithm proposed by Louhichi et al. [13] seeks to identify clusters with different
kinds of geographical objects (points, polygons, lines, etc.). Each adjacent group in a given radius
must contain at least a minimum number of points, i.e., its density surpasses a given threshold, which
makes clear that point to point processing is performed by using the relationship of distance between
points similarly to the present paper. The cited paper proposes estimating the distance value in order
to distinguish the idea of the concentration of points from the idea of scattered points outside the
concentration (noise). However, in our present paper, this value is not necessary since we use the GPS
precision (accuracy).

The above papers are not in the field of LETS and do not meet the requirements of the problem
addressed in the present article, namely: (1) they do not consider the evolution of the group over
time by identifying the duration of the concentration of points and the size (number of points) of the
group; (2) they do not have a time frame processing threshold and cluster identification; and (3) some
algorithms do not impose a minimum distance limit between points in the clusters.

Morreale [14] proposes a design for Wireless Network Information and Identification System
sensor (WINS Id) where a large volume of geographically distributed sensor temporal data is collected,
stored and presented in real time. This article does not compare the results of real-time processing
with previous results showing some evolution for analysis. A basic difference between the monitoring
architecture for electronic anklets and the sensor network architecture is the fact that in the first
case, there is no daisy-chaining or concentration of data traffic nodes within the network, since in
anklet monitoring, the data are sent directly to the monitoring center responsible for processing
the data as a whole. This design meets the simplicity of anklet devices designed to connect via
GSM/GPRS networks.

Another related field for this paper is the study of data mining techniques on the collected and
stored data to knowledge discovery, such as Zhu [15]. In this case, variations on the number of
identified groups, number of group elements, frequency, etc., can be processed by the DTW technique
for raising monitored abnormal behaving individuals as a whole. It proposes a single system to record
offender events with a focus on mobile devices where the current location of the device is used to
identify the geographic area where the event occurred. The geographic coordinates are gathered from
devices, such as smart phones or tablets, while in the present article, we refer to electronic anklets with
less processing power. The cited paper proposes as future work applying data mining techniques on
the records in order to establish preventive measures against crimes. In this sense, we consider that
integrating a system as proposed by Jakkhupan and Klaypaksee [16] with monitoring by anklets could
in certain circumstances accelerate misbehavior detection by identifying suspects present in the crime
area at the time that a crime occurred.

Using data mining techniques, Sathyadevan [17] proposes an approach to predict crimes by
geographical areas. The processing flow comprises data collection, classification, pattern identification,
prediction and visualization. Among the sources of the data, the paper cites “web sites, news sites,
blogs, social media, RSS feeds etc.”, and the unstructured data are stored in MongoDB. The structured
records and groups identified by our technique discussed in the present article could be added to enrich
the predictive analysis of the occurrence of crimes. The cited paper demonstrates the development of a
mobile application for criminal case records, removing the need for citizens to go to a police agency to
fill out bureaucratic forms. Thus, in addition to increasing the number of recorded incidents (many
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are not registered because of the bureaucracy), it also reduces possible errors in filling, providing for
instance the correct indication of the place of occurrence.

The intersection of data from electronic anklets, as given by the proposal in the present paper, with
records of occurrences suggested by Oduor [18] could provide better support for the investigations of
those cases. It proposes a monitoring architecture for electronic anklets with a topology that considers
interim autonomous agents between devices and a center. Agents are dynamic software components
that provide collaborative operation services. Using these agents, the system can make decentralized
decisions, streamlining the alerting process. Park [19] cites as an example the various levels of warnings
about the proximity of a sex offender and monitored children. However, the work provides no details
about the infrastructure and the location of these agents and how to connect to the devices and the
control panel.

On the other hand, Urbano and Dettki [20] address the issues of creating and maintaining a
database in PostgreSQL with the PostGIS extension, which stores geographic data transmitted by
sensors located in Italy. It describes the steps for creating the database and the necessary tables for
geographic data demonstration and storage. The present paper complements such analysis with
more details on the database and implementation requirements in order to validate the algorithms
presented hereafter.

Given the need to process the geographic points within a specific time window, even with a large
amount of geographic coordinates in the collected sample, it becomes relevant to adopt algorithms that
can be parallelized, especially as regards the identification of pairs of points in proximity. Therefore,
it is interesting to cite Ding and Densham [21], who present some options addressing the possible
division of a geographical space for processing parallelization.

3. Description of the Problem and Systemic Model

Satellite-based device tracking systems consist of several integrated technologies to track
rehabilitating convicts in open and semi-open serving regimes and under house arrest. Associated
with the joint actions by the civil and military police, these systems allow efficient law enforcement
through a monitoring center, which transmits the alarms to the police stations nearest to the locality
where an irregular event is detected by monitoring devices.

Several companies offer electronic monitoring solutions through anklets in Brazil and the world.
As a basic functionality; they use GPS geolocation equipment and send location data through mobile
phone networks, identifying zone violations in the form of inclusion (areas the monitored convict
cannot leave) or exclusion (areas the monitored convict cannot enter). The monitoring center is
responsible for processing the location points and sending alerts to the appropriate authorities in the
case of such violations.

3.1. The Problem

From the point of view of law enforcement monitoring, the concentration of monitored devices in
a geographical area does not necessarily indicate a grouping of individuals in a meeting. For example,
considering a concentration of monitored points in a geographical space area where the shortest
distance found between observed points is 1 km, one cannot immediately deduce that the monitored
subjects are actually in a meeting, although the observed concentration is even visually observed in
a map. In fact, for two or more monitored individuals to be considered together in a group, the distance
between the points representing these individuals must be less than a certain proximity threshold.
Precision on the concept of proximity is given hereafter in Section 3.1.1.

The algorithms proposed in this paper are required to perform the processing of geographic
points to identify groupings of monitored subjects considering such a threshold distance, in addition
to updating a database with additional data, such as the duration of group formation and its number
of elements.
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Furthermore, the algorithms’ steps should be performed in a period of time that does not exceed
an established processing window due to law enforcement requirements regarding the freshness of
monitored information. This window is parameterized and arbitrarily set at one minute without
any prejudice to the obtained results. Moreover, it is interesting to comment that this value is also
a performance threshold for our algorithms, because if this time window is exceeded, there is a risk of
accumulating the processing of successive actualization windows, possibly overloading the processing
and storage sub-system or leading to information loss.

Another important issue is that, for a system to monitor rehabilitating criminals, which implies
public security concerns, the calculation of the real risk posed by a group involves much more factors,
including the level of danger of grouped individuals and the types of offenses previously committed by
each of them, among other factors. Therefore, our processing algorithms shall provide data to support
risk analysis, not being ultimately responsible for the analysis itself. This is an important consideration
before addressing the concept of proximity adopted throughout the remainder of this paper.

3.1.1. Definition of Proximity

For two or more monitored individuals to be considered together in a group, there must be
a minimum distance established between the points representing them. The algorithms proposed in
this paper are functionally specified to consider this distance for processing geographical points in
order to identify groupings of monitored convicts.

The minimum distance that characterizes a meeting, which is used as a threshold in the processing,
must take into account the margin of error (ε) inherent to GPS equipment (Figure 2).

Figure 2. Minimum distance between two points to characterize proximity. Source: the authors.

According to the National Satellite Test Bed/Wide Area Augmentation System (NSTB/WAAS)
T&E Team [22], the accuracy of GPS devices is slightly smaller than 10 m. Thus, considering this
margin of error, Equation (1) is applied to set the meeting distance threshold (lr). In other words,
in practice, for calculation purposes, any two points separated by a distance under 20 m will be
considered monitored subjects in proximity.

lr = 2 · |εmin| (1)

3.1.2. Duration of a Possibly Detected Group

Detection of groups is performed considering not only the grouping of points in space at a given
moment, but also the evolution of this group over time. Thus, indicators, such as group duration
and average number of elements, are pieces of information that can be generated by comparing and
identified groups in each sample points sent by the devices. Our proposed algorithms shall then
provide for the processing of this information.

By maintaining a base of active and inactive groups updated at every sample processing, other
information can be easily extracted such as the frequency and time that each group meets. This
information supplements the analysis showing any real risk of imminent criminal action or a continued
criminal relationship.
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Figure 3a,b illustrates the measurement of group duration, respectively in situations where people
are standing or moving. During the interval for computing points proximity, t0 is a specific time when
there is not enough proximity between points to consider them as being grouped. At time t1, with the
points coming close to each other, they are considered to be part of a group that at minimum has two
member points. During the following processing times (t2 and t3), the same points still remain within
the proximity range. At time t4, the two points separate from each other. The system will compute t1
as the start date and time of the group meeting and t3 the end of this meeting. Such data comprise the
duration of the group existence. This same reasoning shall be applied both to stationary (Figure 3a)
and mobile (Figure 3b) points in proximity.

Figure 3. (a) Anklet monitoring system with stopped group detection; (b) Anklet monitoring system
with moving group detection. Source: the authors.

When two monitored individuals intersect in some location, for instance an avenue, their physical
proximity may be detected by these calculations, but it does not necessarily mean a grouping of
monitored individuals. In order to avoid such situations defined as “false positive”, groups whose
duration is less than a predetermined value should be discarded. Initially, this variable is set to
a minimum of 5 min. In other words, considering minute to minute samples, when the same group is
identified in the processing of five consecutive samples, those points in proximity will be considered
as an effectively detected group.

3.1.3. Number of Elements in a Detected Group

The number of elements that are part of a grouping influences the evaluation of risk. For example,
groups of five elements can pose a greater risk than groups of two elements, as this situation may
represent a more severe and organized offense through the division of activities between group
members. Hence, providing the number of individuals in a group at the end of the processing is
important to support decision-making.

We should also consider that during the existence of a group, its number of individuals may
increase or reduce, variations that can be detected by computing their proximity. These variations
do not disqualify the group. Thus, we consider the average value of the number of individuals in
the group during its existence, an indicator that allows us to consider proportionality in possible
comparisons among groups.

However, a variation in the number members of a group can impact the comparison of this
group with previously detected groups. This brings the question of how to accurately establish that a
previously detected group that had, say, 10 individuals is for the most part the same as one that now
has 12 elements: how many members the two groups have in common that yield the conclusion that
one group is indeed a reduced or an expanded incarnation of the other. In order to consider this sort
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of recurrence of a group, we include in the routine that performs comparisons of groups a variable
called “commonality”, which corresponds to the number of individuals common to both groups
(current and former) divided by the total amount of former group elements, expressed as a percentage.
If the commonality among two groups is equal to or greater than a commonality threshold, which is
initially set to 50%, we consider that they are the same group, and in this case, an attribute containing
the average amount of these group members is properly updated. Otherwise, the group under analysis
is considered a new group to be remembered.

3.1.4. Time Limits for Running the Algorithms

Anklet devices are configured to periodically send their geographical coordinates or points,
typically every 1 min approximately, although this time is usually configurable. Thus, the algorithms
to identify groups and gather associated data must run in less time than this whole period boundary,
i.e., before the next set of coordinates arrives for new calculation. Moreover, this limit is a performance
threshold, because, if this limit is exceeded, there is a risk of accumulating tasks, or computing threads
with the processing of the previous set, or overloading the equipment responsible for processing, or
loosing information. Therefore, the whole algorithm must run in a time window that does not exceed
the set of coordinates’ arrival period, which is set to 1 min in this paper.

The algorithm is required to tackle a computational complexity problem related to the number of
pairs of points to be treated, since we need to calculate the distance for each of these pairs, as shown in
Figure 4. The distance from one point to the other in a pair of points allows evaluating if the two points
are in proximity, a condition required to subsequently verify the points that are associated in groups.
As the number of points belonging to a collected group increases, so does the number of comparisons
necessary to identify these grouped points.

Figure 4. Increase in computation due to the increased amount of points. Source: the authors.

The number of comparisons for the verification of proximity is given by the simple combination
formula (Equation (2)) where n is the number of items in a collection and p is the number of elements
in each combination, so the result Cn,p refers to the combination of n things taken k at a time without
repetition. In our calculations, p is set to two since we refer to pairs of points in a sample of coordinates
that must be treated each time.

Cn,p =
n!

p!(n− p)!
=

n.(n− 1).(n− 2)!
2.(n− 2)

=
n.(n− 1)

2
(2)

For example, in a sample of 10,000 points, there would be approximately 50 million distance
calculations. This number of computations and the required processing time window are critical
factors for a successful implementation. Furthermore, it is important to control these factors since the
amount of monitored individuals can grow with the evolution of an anklet-based monitoring system
utilization, given the prison population growth rate, as shown in Figure 1.

The problem is solved partly by dividing the total coordinate space into subareas, which allows
breaking down the processing instances, as described in Section 3.1.5. The proposed solution can
be completed with the cooperation of parallel computing nodes. Indeed, to prevent the amount
of monitored individuals from compromising the processing within a defined time window, the
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alternative proposal is an algorithm that processes subareas of the coordinate space in parallel. In this
case, as the number of points to process grows, one can add more parallel nodes to the system for the
completion of the processing within a required time window.

3.1.5. Division of the Coordinate Space into Subareas to Allow Processing Parallelization

The problem of executing a number of proximity-related computations within a required
processing time window demands a solution where more computational power can be added to
the system when the number of monitored individuals increases or when there is a reduction in the
processing time window. Thus, the division of the coordinate area into smaller areas is proposed here
so that the processing can be divided into several processing units.

Referring to Figure 5, we consider an initial area computed from the farthest points in a periodical
sample reported by the monitored devices. This constitutes the abstraction of a square geographical
area containing all of the sample points. Then, a recursive division of this area takes place guided by a
divide-and-conquer strategy as follows, also supported by the work from Ding and Densham [21].

Figure 5. Subdivision of the total area into subareas. Source: the authors.

First, the abstracted area is divided into four smaller areas of equal size (quadrants), and the
number of points in each quadrant is counted. If it is observed that a quadrant contains more points
than a quadrant population threshold, this quadrant will be further divided so that the recursive
quadrant divisions result in a number of quadrants, each one containing a number of points that do
not represent a performance processing problem regarding proximity calculations within the limited
time window. The quadrant population threshold, i.e., the maximum amount of points a quadrant
can have, is arbitrarily fixed in this paper, but as this threshold is bound to the available processing
capacity, it should be considered as a variable whose behavior is a matter of future study. Furthermore,
a quadrant cannot be subdivided if the length of its size is less than the proximity distance threshold.

This recursive subdivision of the original space is similar to that proposed by Xia et al. [23] using
a quadtree structure. However, this study does not consider the hierarchical link between subareas.
The central interest is that each of these areas can be processed independently from the other areas,
which enables processing parallelization. In another alternative view, the distance calculations occur
only inside the quadrants where the points are, thus reducing processing effort. However, although
we no longer compare points that are from distant quadrants and thus reduce the number of distance
calculations, there will be situations where two points are in proximity in adjacent quadrants, and
there is a possible identification failure for that pair. Referring to Ding and Densham [21], we have
an alternative to solve this problem, by expanding the area of a newly-created quadrant (Figure 5)
by adding to it a margin equivalent to the minimum distance for identifying points in proximity
(Figure 6).



ISPRS Int. J. Geo-Inf. 2017, 6, 31 11 of 27

Figure 6. Area expansion to contemplate the proximity of points in adjacent areas. Source: the authors.

Considering this added margin, each area overlaps the adjacent ones, allowing proximity
calculations for points that are close to points in adjacent quadrant borders. Since the calculations for
a quadrant are independent of those for another quadrant, it is possible to obtain duplicate responses
for the same pair of points in proximity (A-B and B-A). Such duplication does not pose a problem as
duplicates are eliminated by the groups detection algorithm explained in Section 3.2.4 and shown as
Step 3 of the systemic model (Figure 7).

Figure 7. Processing steps. Source: the authors.

3.2. Systemic Model and Associated Algorithms

Figure 7 shows the systemic model proposed in this paper, which divides the processing into
three steps: (1) detection of pairs: receive a collection of points sent by the devices through the network,
and calculate the points in proximity; (2) detection of groups: group the points in proximity in clusters;
and (3) detection of risk indicators: add data on group duration and the number of participants.

The first step receives as input a collection of points collected at a given instant (collected points),
whose structure is described in Table 1. The collected points are treated in the second step by the
detection of pairs algorithm, which generates a list of points in proximity (Table 1). Subsequently, the
detection of groups algorithm examines in Step 2 the list of pairs and generates a list of identified
groups whose risk attributes are then calculated in Step 3, resulting in the final output structured as
specified in Table 2.
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Table 1. Collected points: Algorithm 1 (detection of pairs) input.

Attribute Type Description

Device Integer Device identifier number
Date/time Date/time Date, hour and minute when the point was collected

Point Geographic coordinate Geographic point consisting of latitude and longitude

Table 2. Groups and risks: Algorithm 3 (detection of risks) output.

Attribute Type Description

Group Integer Uniquely identifies the group
Start Date/time Date/time Date/time when the group convenes
End date/time Date/time Date/time the group dispersed
Processing turn Integer Number of processing turns in which the group was detected

Devices quantity Integer Cumulated sum of the number of group elements used for
calculating the average number of group members

List of devices List of device identifier numbers List of devices that have been members of the group

3.2.1. Algorithm 1: Detection of Pairs

Referring to Figure 8, detailing Step 1 of Figure 7, the coordinate points are compared to each
other, and the pairs whose distance is less than or equal to lr (Equation (1)) are identified as pairs of
points in proximity and added to a list that will be part of the output of the algorithm. In this case, it
it worth remembering the distance considered for this approach is 20 m due to precision errors that
occur in GPS systems as detailed in [22]. Its input is a list of points collected with the structure detailed
in Table 1, and its steps are detailed in Table 3.

This step is the most costly in computational terms, as it implies the comparison between all of
the points in the sample to identify points in proximity (Figure 4).

Figure 8. Algorithm 1: detection of pairs. Source: the authors.
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Table 3. Detailed steps of Algorithm 1 (detection of pairs).

# Description

1 Since it is necessary to compare the points to each other, the process starts a loop considering all
collected points.

2 It takes each point obtained in the previous item relative to Loop A.
3 It sweeps again all collected points (Loop B) to be compared with Loop A points.
4 It takes each point obtained in the previous item relative to Loop B.
5 This filter prevents the calculation of the distance from A to B to be repeated for B to A. If A is greater

than B, it ignores this pair and goes back to Step 4.
6 It uses a geoprocessing function and obtains the distance from A to B in meters.
7 If the distance is greater than lr meters, then Points A and B are not in proximity, and the flow proceeds

to the next point to be used in Loop B.
8 If Points A and B are at lr meters or less away from each other, then they are considered to be in

proximity and are recorded/stored for the grouping step.
9 If there are more points relative to Loop B to be compared, then it diverts the flow to capture the next

Point B.
10 If there are more points relative to Loop A to be compared, then it diverts the flow to capture next

Point A. If there are no more points, the comparison processing is completed, and as a result, it outputs
records with pairs of devices in proximity.

3.2.2. Algorithm 1.1: Recursive Division of the Original Space into Subareas

Given the concepts presented on the definition of proximity and the idea of dividing the space into
smaller quadrants as a function of the number of points to be treated, we have devised the algorithm
shown in Figure 9, which is responsible for receiving the collected points, then defining the adequate
quadrants and listing the points that are inside these quadrants (Figure 5).

Figure 9. Algorithm 1.1: distribution of points into subareas. Source: the authors.

The first two functions define an initial area covering all collected points and links all points
to this initial area. This is necessary so that Function 3 can work recursively. Function 3 always
receives an area with its points and then makes a decision whether it is necessary to subdivide this
area into smaller quadrants. The decision criterion stipulates that if the number of points inside the
area exceeds the quadrant population threshold, this area must be subdivided into smaller areas that
will be recursively submitted to Function 3. The details of this algorithm are specified in Table 4.

Table 4. Detailed steps of Algorithm 1.1: division into subareas.

# Description

1 It obtains the most distant points of the map and generates a square geographical area that covers all
points to be processed.

2 It links the points to be processed to the area created in the previous item. This step is required as a
preparation for the first call to the recursive function described in the next item. The input parameter
for this function is the area with its collection of points.

3 The recursive function divides the received area into quadrants (four new areas) and modifies the links
of the points from the received area to the new quadrants according to the coordinates of these points.

The recursive function shown in Figure 9 has its algorithm shown in Figure 10, while Table 5
describes the steps of this recursive function.
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Figure 10. Flow of the recursive space division function in Algorithm 1.1. Source: the authors.

Table 5. Steps of the recursive space division function in Algorithm 1.1.

# Description

3.1 The area received as input is divided into four quadrants. Recursively, this division is performed for
the initial processing of the total area or when one of the quadrants has a number of points that exceeds
the quadrant population threshold. Each created quadrant has its area expanded to contemplate
proximity among points that are close to each other, but pertain to different adjacent quadrants.

3.2 It reads all of the points that are linked to the area provided as input, preparing then to move each of
the new quadrants according to their coordinates.

3.3 With the points supplied in the previous item, a finite loop is run to assign the appropriate treatment.
3.4 According to the coordinate of the point, it is copied from the input area to the corresponding quadrants.

Due to the area expansion of each quadrant performed in 3.1, a point may appear in more than
one quadrant.

3.5 During the loop, if the number of points linked to a quadrant reaches a maximum value, this quadrant
is used as input for a recursive call to further divide this quadrant.

3.6 If there are still points to be treated, the loop is repeated for the next point.

Each subarea set of points can be assigned to be processed on different computational nodes,
which allows the work to be parallelized. While on the one hand, we ensure that each subarea has a
number of points smaller than an established threshold, on the other hand, we may have subareas with
a small number of points. This may represent a potential waste of computing and memory resources
since the processing varies according to the number of points in the subareas. However, a scheduling
process was adopted in this work that distributes sequentially the subareas in the available threads,
minimizing possible differences in the total processing time in the nodes.

Algorithm 1.1 generates a list of points with their respective subareas to be processed in parallel
by Algorithm 1.2. Such a structure is detailed in Table 6.

Table 6. Groups and risks: Algorithm 3 (detection of risks) output.

Attribute Type Description

Device Integer Device identifier number
Date/time Date/time Date, hour and minute of point collection

Point Geographic coordinate Geographic point consisting of latitude and longitude
Subarea Integer Identifier of the subarea containing the point

3.2.3. Algorithm 1.2: Detection of Pairs within Subareas

The algorithm for the detection of pairs within subareas is the same described in Figure 8, only
differing on the list of points to be processed. The output of this algorithm is a list containing pairs of
points in proximity whose structure is detailed in Table 7.
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Table 7. Algorithm 1.2 output structure (detection of proximity pairs).

Attribute Type Description

Pair Integer Pair identifier number
Date/time Date/time Date, hour and minute of point collection
Device A Integer Device identifier number
Point A Geographic coordinate

Device B Integer Device identifier number
Point B Geographic coordinate Geographic latitude and longitude of the point

3.2.4. Algorithm 2: Detection of Groups

This algorithm, Number 2 of Figure 7, takes the pairs of points considered in proximity
by Algorithm 1.2 and then finds those that are grouped by looking for neighbors of a neighbor,
i.e., in situations where Point A is close to B and Point B is close to C; hence, A, B and C form a group
of monitored individuals. This detection of groups algorithm is presented in Figure 11, while its details
are specified in Table 8 and its output in Table 9 with a list of groups, each one having an identifier,
a timestamp for the moment the points were collected and a list of devices composing the group.

Figure 11. Algorithm 2: detection of groups. Source: the authors.

Table 8. Detailed steps of Algorithm 1 (detection of pairs).

# Description

1 It obtains each pair, A and B points, of the set obtained in the previous step.
2 It checks for any group from previous iterations that already has Points A and B and eliminates any

possible repetition.
3 If a group with the 2 points is identified, then nothing needs to be done, and the loop must continue to

the next pair.
4 It checks for any group that has at least Point A.
5 If the group is located, then it does not have Point B.
6 It adds Point B to the group located in the previous item.
7 It checks for any group that has at least Point B.
8 If the group is located, then it does not have Point A.
9 It adds Point A to the group located in the previous item.

10 If no group is located containing either A or B, then a new group must be created with the A and B
pair. This group can then be completed as new points are discovered in later iterations.

11 If there is still a pair to be processed, then it processes the next pair; else the algorithm ends.
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Table 9. Algorithm 2 output structure (detection of groups).

Attribute Type Description

Group Integer Group identifier number
Date/time Date/time Date, hour and minute of point collection
Device list Integer list List of devices that make up the group

3.2.5. Algorithm 3: Computation of Risk Indicators

Detection of risks, which corresponds to Algorithm 3 in Figure 7, computes for a group of
monitored individuals additional data regarding the duration of the group and the average number
of elements, indicators that are updated as new samples are collected from monitored devices. From
the standpoint of anklet monitoring, these data about groups may contribute to the risk analysis to be
conducted subsequently to performing the specified algorithms. The proposed solution in this paper
just computes the risk indicators linked to identified groups and stores these data for a risk analysis
activity to be performed outside the monitoring system.

During its execution (Figure 12 and Table 10), Algorithm 3 collects the following data: (i) group
duration: this indicator comes from the perception that groups that last longer may be indicative
of greater risk and even that groups with a very short duration may be discarded; (ii) the average
number of elements in each group: groups with a higher number of elements can indicate larger scale
violations involving, for example organized crime or conspiracy.

In order to indicate the duration or permanence of a group, the algorithm must update this
previously identified group with data regarding duration (start/end date/time). When the end
date/time attribute is not populated, it indicates that the group is still active, i.e., it has been
continuously sustained until the last data fusion execution. Registered dates/hours for the group do
not represent the exact instant of this group start or end, as they are influenced by wait and service
times during sensor data collection and the execution of the algorithms themselves.

As discussed before, the output of Algorithm 3 is specified in Table 2. The resulting structure is
then available for risk analysis and for future processing turns.

Figure 12. Algorithm 3: computation of risk indicators. Source: the authors.
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Table 10. Algorithm 3 specification (group risk indicators).

# Description

1 It obtains each group detected in the current processing turn.
2 In the set of previous active groups, it identifies the groups that possess at least 50% of its members in

common with a group detected in this processing turn. The 50% percentage parameter is an arbitrary
choice to be further investigated in future studies.

3 If no compatible group is found, then the flow is directed for the creation of a new group in Item 5.
4 It updates the number of processing turns for the group and adds up the number of elements counted

in each processing turn. These two attributes provide the necessary data for averaging the number of
members of the group during its existence.

5 It creates a new group considering the processing count attribute as 1, the start date/time attribute as
the timestamp of the current processing and the elements count attribute as the respective number of
group members.

6 If there are more groups to be processed, then it directs the flow to capture the next group; else it then
closes the existing groups, as per Step 7.

7 Existing groups that were not identified in the current processing turn should be ended. This is done
by updating the group’s end date/time with the value corresponding to the immediately previous
processing turn, i.e., the last time the group was detected. As a result of the processing, a set of
groups is generated, as well as their duration and number of members for utilization in the next
processing turn.

4. Validation Scenarios and Results

In order to validate the algorithms presented in this paper, a simulated database was used with
approximately 10,000 devices. The simulation of groups was performed by creating variations of a set
of paths obtained from real GPS equipment. The simulated new routes were composed using the
horizontal and vertical displacement of the original device coordinate points in the geographic space,
also increasing the number of coordinate points in the sample. Moreover, new routes were created
by reversing the latitudes and longitudes and attributing them to new simulated points. As a result,
three sets with 10,000 points each were generated. These samples correspond to three consecutive
collections of points from simulated anklets in a simulated schedule, respectively corresponding to
the date 25 May 2015 at time tags: (i) 12:00, (ii) 12:01 and (iii) 12:02. In Table 11, there is a sampling of
records randomly extracted from the simulated database.

Table 11. Sampling extracted from simulated database.

Timestamp Device ID Latitude Longitude

25 May 2015 12:00:00–03 12133 −29.903980255127 −51.169883728027
25 May 2015 12:00:00–03 1096 −30.062665939331 −51.192127227783
25 May 2015 12:00:00–03 41978 −29.778089523315 −51.108917236328
25 May 2015 12:00:00–03 817 −30.028823852539 −51.225776672363
25 May 2015 12:00:00–03 40413 −30.093103408813 −51.177989959717

... ... ... ...
25 May 2015 12:01:00–03 12123 −30.087636947632 −51.231784820557
25 May 2015 12:01:00–03 10871 −30.049358333333 −51.162086666667
25 May 2015 12:01:00–03 1969 −30.114995956421 −51.362251281738
25 May 2015 12:01:00–03 91523 −29.70588684082 −53.802436828613
25 May 2015 12:01:00–03 91042 −30.050704956055 −51.21089553833

... ... ... ...
25 May 2015 12:02:00–03 5575 −30.016288757324 −51.11653137207
25 May 2015 12:02:00–03 11716 −30.062965393066 −51.142623901367
25 May 2015 12:02:00–03 12165 −30.201919555664 −51.134094238281
25 May 2015 12:02:00–03 5954 −29.986715316772 −51.1682472229
25 May 2015 12:02:00–03 1047 −30.086135864258 −51.234657287598

... ... ... ...
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As an example of a coverage area, the 10,000 points regarding Timestamp 25 May 2015 12:00:00-03
sampling are spread in a geographic area as illustrated in Figure 13.

Figure 13. Sampling points at 25 May 2015 12:00:00-03. Source: the authors.

The computing configuration used to validate the proposed algorithms execution is presented in
Table 12.

Table 12. Equipment used in tests.

Resource Specification

Processor Core i5-2467M 1.6 GHz (dual core with hyper-threading)
Memory 8 Gigabytes

Hard drive 516 Gigabytes 5400 RPM hard disk
Operating system Ubuntu 14.04.4

DBMS PostgreSQL 9.4

The proposed algorithms are implemented and evaluated in five scenarios. The first one is
a serial implementation in a relational database query language (scenario). This classical scenario
for application development is taken as a baseline for comparing the results in this paper since it
does not deploy any particular performance contribution, though it presents the complete correct
functionality proposed in this paper. The other scenarios gradually present the contributions of
parallelism (Scenario 2) and programming language (Scenarios 3 and 4) for the proposed algorithms,
maintaining the same functionality. The possible distributed processing scenario is analyzed in the
discussion of the results.

Specifically, for correction purposes, in all evaluated scenarios, the number of records resulting
from the execution of each algorithm applied to the simulated data is given in Table 13.
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Table 13. Results of the algorithms’ processing.

Algorithms
Collection of Points

12:00 12:01 12:02

Number of Subareas 22 37 91
Detection of Pairs 9103 9580 14,686

Detection of Groups 1673 1762 1854

Detection of Risks Indicators 406 active groups in all collections

In the presentation of each scenario’s results hereafter, measurement values are the average of
10 repeated executions.

4.1. Scenario 1: Serial Processing in PL/pgSQL

In this scenario, the described Algorithms 1–3 are fully executed in serial processing, and the
performance of each one is measured. Each of the three algorithms is measured separately, and then,
their summed response time is presented. This method is chosen to enable reasonable comparisons
with results from subsequent scenarios, when parts of those algorithms are replaced by modules in
parallel processing or in C language or in distributed processing.

4.1.1. Algorithm 1: Detection of Pairs

The implementation is of a simple algorithm that compares all of the coordinate points by
obtaining a list of pairs of points in proximity generated via a SQL statement that performs a self-join
on the table of points. In this SQL command, a filter in the where clause selects only the points whose
calculated distance is less than the proximity threshold. This threshold was defined at 20 m as stated
in Section 3.1.1. Furthermore, in this where clause, a filter is added that considers only the points
where the ID of a point A is smaller than the ID of a point B. This filter prevents calculating two
times the distances between the same pair, i.e., distance from A to B and from B to A, thus reducing
processing effort. As output, a table of pairs is generated. For instance, the output table, corresponding
to our sample tagged 25 May 2015 12:00, has an approximate number of 9103 records (pairs of points
in proximity).

This algorithm was tested with distance varying 10, 20 and 40 m as the threshold. Though there
was variation on the amount of pairs detected because of the distance variable, the response time
remained approximate. Besides, 20 m is acceptable within the error precision [22].

4.1.2. Algorithm 2: Detection of Groups

In order to identify groups of points in proximity, the developed the PL/pgSQL code specified in
Figure 11 generates a table of groups with 1673 identified groups.

4.1.3. Algorithm 3: Computation of Risk Indicators

This algorithm is a PL/pgSQL module according to Figure 12. However, the implementation
language allows a code improvement by applying an update on the set of records that meet the
filter instead of checking each group obtained in the recent processing against each of the previously
detected groups.

4.1.4. Response Time Results

Notably, the algorithm that detects pairs of points in proximity presents a much higher processing
time than Algorithms 2 and 3, reaching an average time of 280 s (Figure 14). When considering
the required overall performance threshold (fixed to a 1-min processing window), the sum of times
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from the three processing algorithms exceeds this value, which forewarns of their impracticality.
However, the measured values are interesting as a baseline for the subsequent validation scenarios.

Figure 14. Response time by the algorithms. Source: the authors.

Scenario 1’s results illustrate the response time issue when identifying coordinate points in
proximity without the use of parallel processing, which justifies the next scenario.

4.2. Scenario 2: PL/pgSQL Processing with Multiple Parallel Instances

In Scenario 1, the Algorithm 1 for the detection of pairs, which takes much more time than
the other two algorithms, is the observable candidate for improvement, thus being reformulated
in Scenario 2 by adding an inner algorithm to distribute points into subareas (Algorithm 1.1),
which allows the identification of pairs (Algorithm 1.2) to be executed in multiple parallel instances.
As Algorithms 2 and 3 are not modified from Scenario 1, they are not presented in Scenario 2.

The division of the whole coordinate space into smaller quadrants implies the corresponding
division of the number of coordinate points to be compared in each quadrant processing. Now, there is
a trade-off regarding the number of points that is used as a decision criterion for recursive sub-divisions
of quadrants. It is necessary to set the maximum amount of points per quadrant subarea, considering
that the smaller this number, the greater the number of subareas.

Given that we have established a database of 10,000 coordinate points for all validation scenarios,
we define four cases for the maximum number of points per subareas (respectively 250, 500, 1000 and 2000)
and obtain response time figures for these cases.

4.2.1. Algorithm 1.1: Distribution of Points per Subareas

This algorithm, implemented in PL/pgSQL according to the flows in Figures 9 and 10, based on
10 repeated executions, presents the average response time results shown in Figure 15, for each of the
maximum values of points per subarea.

Figure 15. Response time by maximum points by area. Source: the authors.
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Data concerning the sub-divisions of the coordinate area are presented in Table 14. As expected,
the larger the maximum number of points per area, the less is the average area size to be processed.
The size of the largest area is always the same since it corresponds to the first subdivision of the total
area corresponding to 146.56 km2.

The lesser the maximum amount of points per subarea, the smaller the average size of the subareas.
The size of the smallest area resulting from the most recursive division into quadrants also decreases
with the number of points per area. In the smallest of the cases, the resulting subarea is approximately
150 square meters wide.

Table 14. Maximum points per area and area size.

Max Points per Area

2000 1000 500 250

Number of Subareas 22 37 91 151
Average Area Size (m2) 6,662,905.40 3,961,789.13 1,610,986.67 970,874.14
Smallest Area Size (m2) 9023.61 2275.65 578.85 149.74
Largest Area Size (m2) 36,643,506.10 36,643,506.10 36,643,506.10 36,643,506.10

4.2.2. Algorithm 1.2: Detection of Pairs with Multiple Parallel Instances

The pair detection algorithm from Scenario 1 is adapted to run in parallel. Since PostgreSQL
does not support developing routines in PL/pgSQL, we use a shell script running under an Ubuntu
operating system that concurrently submits different instances of the same routine so that each instance
considers a group of distinct areas.

4.2.3. Response Time Results

Figure 16 shown the compared response time results for the parallel processing taking into
account the four values for the maximum points per coordinate subarea (250, 500, 1000 and 2000) and
the number of processing threads used (2, 4, 8 and 16).

The amount of subareas will typically be greater than the number of computing nodes (or cores)
available to handle them. Despite knowing that it is not the best technique due to variation in
the amount of points per subarea (zero to the max points per area), we assume in this paper that
the distribution of subareas among the computing nodes will be applied in stages, similarly to a
round-robin algorithm. This can result in an overload of specific nodes while others become idle.
A better distribution processing technique between nodes is a subject for further work.

Figure 16. Response times by thread using PL/pgSQL Language. Source: the authors.
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Figure 16 shows that as the maximum number of points per area is reduced, so is reduced the
corresponding processing time due to the lower number of comparisons between points necessary
for processing and calculating the distance. For the sample used in this work and considering the
results in Scenario 1, the response time reduction is significant and tends to flatten with the reduction
of points per subarea.

The equipment used has processors with two cores and hyper-threading technology that simulates
four logical cores. It was expected that the best response time would be with four threads. However,
for areas with a higher number of points (1000 and 2000), the cases with eight and 16 threads showed
better results. For areas defined with less points, the difference regarding the number of threads is
smaller. It should be taken into account that, as the processing performs some disk read and write
operations, the consequent I/O wait time seems to explain the better response time when processing
with more threads.

4.3. Scenario 3: Algorithm 1.2 in C Language without Parallel Processing

In this scenario, for comparison, a routine was developed using the C language for implementing
the algorithm for the detection of pairs (Figure 9) without parallel processing. All points are compared
with the others identifying those who are in proximity by calculating the respective distance. In this
case, there is no division of points into subareas, and the entire process is performed serially. The
routine reads the 10,000 points from a file in a file system and writes the result as a text file in the same
file system.

The processing response time (Figure 17) for Algorithm 1.2 in C language was approximately
20-times faster than the same routine in PL/pgSQL (14.66 s in Scenario 3, while it was 280 s in
Scenario 1). Of course, this superiority is expected in terms of performance, thus indicating which
language is most appropriate for this class of application.

Figure 17. Response time by language.

4.4. Scenario 4: Algorithm 1.2 in C Language with Multiple Parallel Instances

With the routine in C language developed in the previous scenario being executed now in multiple
instances separated by coordinate subarea and running such instances with 2, 4, 8 and 16 threads,
the response time results are shown in Figure 18.
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Figure 18. Pair detection algorithm response time in C language.

The results obtained for the parallel execution of the routine in C language, in every case under
2 s, are generally well below those obtained in PL/pgSQL. A noticeable observation is that, unlike the
results obtained in processing with PL/pgSQL, the differences are significant regarding the number of
running threads, with the best performance being achieved when running with four threads. The lower
response time obtained with four threads is justified because of the architecture of the processor
of the equipment used in the test, which has four logical cores with hyper-threading technology
(two physical cores).

4.5. Discussion

The proposed algorithms were applied on the three sets of points for checking their results and
response time in the different scenarios. In the first scenario, we address the application of algorithms
directly on the PostgreSQL database using PL/pgSQL and the PostGIS extension.

In the second scenario, the processing was divided into two steps seeking to reduce the overall
run time of the algorithms. In this scenario, the proposed solution is the distribution of coordinate
points into subareas of the original area allowing processing parallelization for these subareas.

In the third scenario, without parallel processing, the slower task was implemented in C language,
but it was found that even in a higher performing language, response time could still be enhanced.

Consequently, in the fourth scenario, the pair identification algorithm implemented in C language
was run in multiple parallel instances, giving way to better response time results.

When comparing the lowest possible processing times for each scenario (including the set
of algorithms for the identification of pairs of points in proximity, grouping of these pairs and
identification of risk indicators), we obtain the graph shown in Figure 19. Scenarios 1 and 3,
corresponding to processing without parallelism in PG/pgSQL and in C, respectively, have a final result
with higher response times. Scenarios 2 and 4 showed better response times, which became possible
due to the utilization of parallel processing for the identification of proximity among coordinate pairs.

In all scenarios, the processing of Algorithms 2 and 3 (detection of groups and computation
of risk indicators) is performed with PL/pgSQL language modules due to the good response time
obtained with this programming language, which allows the minimum total time to stay at 7.75 s
(Scenario 4). Future implementation with all algorithms in C language would further reduce the
shortest execution time of the whole process.

This paper does not address the integration of routines in C language being activated by calls from
PL/pgSQL functions, a feature supported by PostgreSQL 9. It is estimated, however, that the execution
times of the routines in this situation are very close to those measured in our presented scenarios.



ISPRS Int. J. Geo-Inf. 2017, 6, 31 24 of 27

Figure 19. Lowest processing time by scenario.

4.6. On the Feasibility of Using Distributed Processing

As parallel processing with multiple threads performed better compared to single thread, both in
PL/pgSQL and in C language, it is therefore natural to think of an experiment in a distributed
processing environment in a big data-oriented architecture. In this context, one of the most
frequently-used platform is Hadoop. However, some features of this type of processing should
be considered:

(a) Big data assumes a massive amount of data to be processed. It seems that this is not the
case described in this paper. Although high performant processing is implied by application
requirements, the amount of data processed at a time (for instance, the 10,000 points proposed
here) is not an impressive data volume. As a result, without any special configuration, loading
these data into a multiple node environment as expected in a big data environment, this volume
of data tends to be loaded on a single node, thus eliminating the possibility of distributed
processing. As discussed by Davenport [24], the term big data is basically defined in terms of
volume, variety and velocity, characteristics that guide the implementation of big data platforms.
The first characteristic (volume) is already compromised in our use case.

(b) To be treated in a distributed processing environment, the whole process takes a few seconds
(in some cases, even minutes) to be ready for processing. This necessary initial time can make it
unfeasible to meet the initial requirement described in our problem, which assumes a 1-min time
window to perform data samples’ processing, in our case with the 10,000 simulated coordinate
points for our validation.

It seems that the applicability of the presented algorithms for distributed processing with the big
data Hadoop platform, though it can be useful if anklet monitoring is expanded to larger populations,
is still an issue to be investigated, since although the offered processing capacity is relatively higher,
the amount of data to be processed is low, but requires important preparation effort, which makes big
data for now unsuitable as an alternative solution to the problem.

5. Conclusions

The process of monitoring convicts by means of electronic anklets can be improved by producing
additional data to support risk analysis for decision making. In this paper, the challenge of identifying
a gathering of groups of monitored convicts, the time of permanence of these groups and the number
of their members was proposed with the addition of a limited processing time restriction. The use of
serial algorithms was shown to be a problem due to their exceeding processing response time. It was
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observed that the longest processing time concerned the calculation of pairs of device coordinates
regarding their proximity.

The proposed solution to increase performance is the division of the total geographical area
containing all coordinate points into smaller areas (quadrants) so that each area can be processed
independently, thus allowing parallel processing when identifying points of proximity. Dividing the
total area into smaller areas involved dealing with the situation where the points in proximity were in
adjacent subareas, which was solved by expanding each area by the GPS precision factor (10 m) in all
directions and the elimination of duplicates in the grouping of points in proximity.

The adoption of routines using PL/pgSQL for implementing the algorithms alone would not
meet the required time window. However, when using a low-level language, such as C, to implement
the same algorithms, the overall response time experiences a substantial reduction.

This response time reduction, however, does not justify giving up parallelism in the proposed
processing, since even the routine time in C language without using parallelism (which corresponds
to approximately 1/4 of the defined window limit) could compromise the performance requirement.
For instance, a linear increase in the number of points to be processed increases exponentially the
number of comparisons to be performed to calculate the distance, which directly impacts response
time. In this case, even adopting the C language to implement the routines relating to the proposed
algorithms, it is appropriate to use a parallel processing solution.

Computing with Graphics Processing Units (GPU) is appropriate in cases of short and parallel
routines, as is the case of the detection of nearby points by calculating and comparing distances.
Although restricted to specific hardware, but abundantly available on the market, this alternative
should be considered in the case of the need for even greater reduction in the response time for the
algorithms addressed in this paper. While GPU-accelerated computing should be considered in future
works due to the intense and parallel processing characteristics or the pair detection algorithm, other
big data platforms, such as Hadoop, can be further studied and tested, in order to address a simplified
manner to reach the process performance requirements.

Unlike other algorithms, the solution proposed in this paper includes the monitoring of formed
groups over time, periodically updating the data of each group, thus supporting the analysis
based on group duration (the time interval in which the group remains assembled) and on the
average number of elements of the group during its existence. Moreover, when considering inactive
groups (those that have been identified in the past and are now ended), the frequency and time at
which certain groups usually meet can also be informed.

We emphasize that this paper is dedicated to issues related to proximity calculations and their
performance, although we recognize that there are several other issues equally important to be
treated, such as the date-related fusion aspects addressed by Khalegui [9] who classified the related
questions as imperfection, correlation, inconsistency and disparateness issues. Thus, the data used
in our simulations could be modified and completed to represent situations prone to these problems.
Then, for our algorithms to be tolerant to these data quality problems, they must include filters with
respect to data characteristics, as for instance invalid dates, eventually missing points, repeated or
delayed point collections, etc.

Other issues related to the mobility of groups will be addressed in future work due to the
complexity of their identification and treatment. Such problems occur, for example, when there is a
tracked device in a meeting and this device fails to submit the coordinates, thus causing the wearer to
be considered outside the group in the corresponding periodic processing. Indeed, groups identified
and tracked, being stationary or on the move, are handled the same way in the proposed algorithms,
although each of these situations may pose different risks.

The integration of the data produced in this work with other complementary databases, such as
those registering crimes occurring at the same time and location of the meetings detected, and the
registry of individual dangerousness are important to increase and improve the information made
available to the investigation teams. Such integration should be addressed as future work.
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