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Abstract: The representation of land use change (LUC) is often achieved by using data-driven
methods that include machine learning (ML) techniques. The main objectives of this research study
are to implement three ML techniques, Decision Trees (DT), Neural Networks (NN), and Support
Vector Machines (SVM) for LUC modeling, in order to compare these three ML techniques and to find
the appropriate data representation. The ML techniques are applied on the case study of LUC in three
municipalities of the City of Belgrade, the Republic of Serbia, using historical geospatial data sets and
considering nine land use classes. The ML models were built and assessed using two different time
intervals. The information gain ranking technique and the recursive attribute elimination procedure
were implemented to find the most informative attributes that were related to LUC in the study area.
The results indicate that all three ML techniques can be used effectively for short-term forecasting of
LUC, but the SVM achieved the highest agreement of predicted changes.

Keywords: land use change; spatial modelling; machine learning; neural networks; Decision Trees;
Support Vector Machines

1. Introduction

Studying, understanding, and modeling the land use change (LUC) process is important and
represents one of the key research topic for many disciplines, particularly geography, urban planning,
geo-information science, ecology, and land use science [1–3]. Understanding the spatial patterns
of the LUC process can enable planners and policy-makers to manage community development
and growth in a sustainable way. LUC is influenced by many driving factors, ranging from socio-
economic conditions, demography, landscape topography, physical infrastructure, and planning
constraints and policies. Consequently, modeling the LUC process is a challenging undertaking
that has been implemented using various techniques, from logistic and multiple regression [4–6],
Markov models [7,8], cellular automata [9–11], agent-based approaches [12,13], and more recently,
machine learning (ML) techniques [14,15]. Modeling the LUC process is dependent on availability
of various and large data sets including demographic, geospatial, and historical data, and can be
expressed as being data-driven.

The main focus of data-driven modeling methods is to find patterns and trends or to induce
representative models of underlying processes using past data [16,17]. These modeling methods
assume stationarity in the relationship between the predictors and land change variables [18].
Consequently, it is possible to discover the relationship between process inputs and outputs without
the need for detailed understanding of the physical transformation process or transition functions.
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The discovered relationships between the inputs and outputs are then used to define a model with only
a limited number of assumptions [19]. These properties make data-driven models easily transferrable
to various end-user contexts when compared with related agent-based or cellular automata models
that normally require expert knowledge to define the transition rules.

In the last decade, increases in data acquisition technologies and higher computation capacities
have resulted in numerous research studies exploring data-driven approaches. ML is a data-driven
approach that is successfully implemented in different geoscience disciplines, such as: hydrology [19,20];
geology [21–23]; ecology [24–26]; and, remote sensing [27–29]. Moreover, comparative studies have
been in rise that particularly examine two or more of the available ML techniques within specific
application and data availability contexts [30–36].

LUC is a complex process, and hence, ML provides suitable tools to represent the change process.
The early ML techniques applied to LUC modeling used artificial neural networks, coupled with
cellular automata [37,38] and geographic information system (GIS) [39,40]. In addition, Decision
Trees [41] and Support Vector Machines were used to guide transition rules for cellular automata
models [42,43]. Modeling LUC using ML techniques, such as Decision Trees, Support Vector Machines,
Neural Network, and Random Forest have been expanding in recent years [15,44–46]. The LUC
models described in these studies used only one ML technique and considered only two or three land
use classes. Tayyebi and Pijanowski [14] used three ML techniques: Neural Network, Classification
and Regression Trees, and Multivariate Adaptive Regression Splines for modeling land use changes
when considering four land use class: (1) agriculture, (2) urban, (3) forest, and (4) other classes.
They concluded that Neural Networks (NN) provided a better accuracy when comparing with the
other two techniques. However, they used the same time interval in order to train and test the model.
Further, many of those mentioned studies focused on the correlations between spatial indicators and
land use classes at the same time point, but they do not extend toward estimating LUC to forecast
or how it is often titled in statistical terms to predict the near future. ML frameworks that used to
build such models are readily transferable to different urban environments, and, except for data
preparation that could be automated, would require the limited involvement of a knowledge expert.
Therefore, this research study addresses two main objectives regarding forecasting short-term land
use class changes using ML techniques; selecting appropriate data representation and comparison of
selected outputs of nine urban land use class models derived by three ML techniques, Decision Trees
(DT), Neural Networks (NN) and Support Vector Machines (SVM).

Given that the proposed models use past data to “learn” the unknown relations between
predictor variables and nine land use classes, it is a necessary requirement to define how the entities
from the real world are described by choosing the most informative attributes (predictors) for the
problem at hand. In our case study, the focus in on spatial attributes only, but other information
categories, such as socio-economic position, could be easily added to the model building framework.
The attribute selection process provides benefits, such as improving model accuracy, reducing noisy
inputs and model complexity, and finally reducing the time required for training [47–50]. Informative
attributes were selected using the Information Gain ranking technique and the procedure of recursive
attribute elimination.

The performance of three commonly used ML classification algorithms (DT, NN, and SVM)
were assessed using the Sensitivity (True Positive rate—TPrate), Fall-out (False Positive rate—FPrate),
Area Under Receiver Operating Characteristic Curve (AUC) [51] measure, and the method of
comparison of three maps [52]. The rationale for selecting a particular classification algorithm was
based on high classification accuracy in many domains (NN, SVM) and easy model interpretability (DT).
The forecasting land use models were tested on multiple land use class transitions that characterized
different urban growth behaviours within the City of Belgrade, Republic of Serbia. A total of nine land
use classes were investigated using data from three selected municipalities in the City of Belgrade
for the time interval 2001–2011. The models were built and tested using two different time intervals
2003–2007 and 2007–2011, respectively.
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In the sections that follow, we formally define the classification problem for LUC forecasting,
outline the work-flow developed for designing the models (attribute selection and learning protocol),
report on the model comparison results, and provide conclusions from the research work.

2. Methods

2.1. Formulating the Problem as a Classification Task

In order to build a predictive short-term LUC model using ML techniques, it is necessary to have
series of historical data for the study area in consideration and the assumption that an unknown land
use transition function retains similar properties over a short time interval for which the model is
generated. Generally, the duration of the short time interval depends on the properties of the study
area. For our chosen study area, it takes three to four years. LUC models that are based on ML require
the transformation of physical, socio-economic, neighboring, and other related data for each spatial cell
unit of the study area into an appropriate data representation. The study area is usually represented as
a grid of cells that are georeferenced as raster data layers in a geographic information system (GIS).
Each raster cell has a regular shape, usually square, with its accompanying attributes and land use
class. Several GIS data layers of the study area at different time points are necessary to build ML
models for LUC analysis. The ML technique for modeling LUC can be regarded as a classification
problem [53], which is more formally defined as follows:

Let C = {c1, c2, . . . , ck} be the set of k predefined land use classes. Each grid cell at time point t
can be represented as a row vector xt = <xt

1, . . . , xt
i, . . . , xt

n> with xt
i representing the value of the

i-th spatial attribute that is assigned to the cell. Further, let yt from C be a land use class of xt at time
point t. A function fp: xt → yt+1 applied over each xt from a grid representing the study area, is called
a prediction if for each xt the relationship fp (xt) = yt+1 is true whenever a cell xt changes its land use to
the class yt+1. Values from C are mapped into natural numbers, each representing a particular land use
class. The model constraint is that each cell can belong to only one class at any time point t.

Assuming that the transition function fp exists and maps the grid at the time point t to land use
classes at time point t + 1, the ML technique attempts to learn the function fp’ that approximates the
unknown fp using only the training set in which all of the attribute values at time t and land use classes
at time t + 1 are known beforehand. In order to evaluate the predictive power of the approximation,
it is necessary to test the model that is built in the previous step with inputs xt+1 and to compare
fp’(xt+1) with known yt+2. Hence, model building and validation assumes the availability of data on
spatial attributes and land use classes from three different time points [18].

2.2. Forecasting Short-Term Land Use Change Based on ML Techniques

The applied methodology for model building and verification consisted of five steps: (1) creating
the initial geospatial data set; (2) creating training and test data sets; (3) attribute ranking; (4) model
building for each ML technique; and, (5) model validation.

Step 1: Creating an initial input data set assumes the definition of a data representation for each
grid cell xt at each time point t as discussed, in Section 2.1. The initial data set It, t+1 is created for each
time interval (t, t + 1) containing xt represented with attributes and yt+1 as a land use class at time
point t+1 for each cell in the study area.

Step 2: In order to learn the predictive function fp′, a training set of the form {(xt, yt+1)i}, i = 1,2,
. . . ,n, (n is the number of samples in the training set), was constructed from the initial set (It, t+1),
where xi

t represents a grid cell at time point t and yi
t+1 represents its land use class at time point t + 1.

Models that were obtained in the training phase were tested using an independent test set in the form
of {(xt+1, yt+2)i}, i = 1,2, . . . ,m (m is the number of samples in the test set). The test set was derived
from the corresponding It+1, t+2 initial set. Note the necessity of using data from three different time
points when building (t, t + 1) and testing (t + 1, t + 2) the proposed forecasting models.
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Due to the large volume of data and the low percentage of cells that change their land use class over
time, the most commonly used random sampling is not appropriate. Therefore, we applied a balanced
sampling strategy [54], providing more informative data sets for the supervised learning algorithm and
building models that are less affected by unchanged cells or majority classes. The balanced training
and test sets were created from the initial data sets in the following manner: (a) all of the cells that
change their class were selected together with the same number of cells without LUC, (b) unchanged
cells were chosen to be uniformly distributed across the whole area, and (c) the proportion of all the
land-use classes remained the same as in the initial sets. Balanced training and test sets were labeled
as St, t+1 (training) and St+1, t+2 (test).

Step 3: The goal of attribute ranking is to choose a subset of input attributes by eliminating those
with small or no predictive influence on the model output. These less important attributes lower the
performance of the ML process [48]. The Info Gain (IG) ranking method that was used in this research
is based on the concept of entropy that is defined in information theory [55]. It provides the concept of
how much information gained towards a correct classification is obtained if the value of the selected
attribute is known. The IG ranking method independently evaluates all of the attributes using the
training set and provides their ranking for the classification problem at hand. We applied a recursive
attribute elimination method [56] and IG ranking to analyse the impact of the n most informative
attributes on model performance.

Step 4: After selecting the appropriate spatial attributes and creating a balanced training and test
sets from the initial data, the next step was to build classification models using DT, NN, and SVM.

Step 5: In order to assess and compare various modeling outcomes that were obtained from the
different ML techniques, the weighted averages of TPrate, FPrate and AUC measure [57], and for an
in-depth analysis of comparison of the three maps method [52], were applied. The overall model
performance can be represented by weighted averages of TPrate, FPrate, and AUC (Weighted AUC),
in which weights could be selected appropriately (if weights are equal, all of the classes are
equally important in model validation). The comparison of the three maps method is based on
a three-dimensional table that is constructed by comparing land use classes in three maps: reference
(real) map at time t+1, reference map at time t + 2, and simulation map at time t + 2. Pontius et al. [52]
explained this concept in detail; generally, the three-dimensional table quantifies simultaneously
the observed (real) and simulated transitions among different classes. The method examines two
components of agreement and three components of disagreement. The agreement is measured through
persistence simulated correctly and change simulated correctly, while the disagreement is observed as
a change simulated as persistence, change simulated as change to wrong category, and persistence
simulated as change. These quantities provide a clear insight into the forecasting capability of the
model, by giving separate measures for the cells that changed their land use over the testing interval
and for the ones that remained unchanged.

2.3. Machine Learning Techniques—Theoretical Background

The three ML techniques DT, NN, and SVM were used for supervised learning in order to build
the LUC models and are briefly described as follows:

DT refers to hierarchical models that are used for classification and decision making [58]. A tree
consists of decision nodes in which an instance is tested against the values of the associated attribute.
The instance follows one of the possible paths from the root to a leaf node, where it is classified
according to the majority of training examples that were associated with this leaf node. There are many
different learning approaches that are used to build the tree from the training data, such as CART [59],
ID3 [60], and C4.5 [61]. The C4.5 decision-tree classifier was adopted for use in this study since it uses a
common strategy for tree induction from the training data [61], where the more informative attributes
are located in the upper parts of the tree. The advantage of a DT model is in its transferability to a set
of if-then rules that connect input attributes and class decisions, which are easily understandable for
domain experts.
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NN originate from the late 1950’s when Rosenblatt [62] presented the perceptron as the simplest
form of the NN, which calculates the weighted sum of its inputs and generate 1 if the sum is greater the
predefined threshold, otherwise 0. Since then, various types of neural networks were designed, such as
Kohonen network [63], Radial Basis network [64], and Multi-layer Perceptron. In our multi-class
problem setting (nine land use classes), the Multi-layer Perceptron (MLP) neural network, as defined by
Rumelhart et al. [65] was adopted for use. The MLP is one of the most widely used neural networks [39],
in which data paths from input to output units are strictly feed-forward [66]. The network model is
represented with a set of real weights that are associated to the interconnections between perceptrons,
and a learning procedure is applied, where, in each iteration, weights are updated according to a
back-propagation algorithm in order to minimize the error between the outputs of the network and
the desired values.

The SVM [67,68] is a linear binary classifier. Every n-class problem can be transformed into
a sequence of n (one-versus-all) or n(n−1)/2 (one-versus-one) binary classification tasks by using
different voting schemes that ultimately lead to a final decision [69]. SVM tries to construct the
separation hyperplane between the training points of two classes such that the margin of separation
is maximal. However, for non-linear cases, it first maps the points into a high dimensional space in
which the linear separation is feasible. There exist many mapping or kernel functions from the original
input space to the high dimensional feature space. In our study, the Radial Basis Function, also known
as the Gaussian kernel [70], was used as it handles both linear and non-linear problem domains.

The Weka 3.6 software (Machine Learning Group at the University of Waikato, Hamilton,
New Zealand) [71,72] was used to build all of the models based on DT, NN, and SVM techniques.
Weka [72] is an open source software that implements various types of ML algorithms. In this research,
J48 was used as a Java implementation of the C4.5 algorithm for learning DT, Sequential
Minimal-Optimization algorithm for SVM learning, and a two-layer feed forward net with error
back-propagation for NN. In addition, Weka contains data pre-processing modules, including tools for
attributes selection, such as IG, used in this research.

3. Study Area and Data Sets

The City of Belgrade, in the Republic of Serbia, was developed under different cultural, historical,
social, and economic influences that have shaped its urban morphology. The chosen study area
includes three neighboring municipalities that are characterized by different urban dynamics: Zemun,
Novi Beograd, and Surčin (Figure 1). The main study region covered an area of about 19 km × 25 km
and was buffered by 100 m on each side to minimize any potential edge effects.
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The spatial data were obtained from orthophoto images for the years 2001, 2003, 2007, and 2011,
with spatial resolutions 0.30 × 0.30 m, 0.30 × 0.30 m, 0.25 × 0.25 m, 0.20 × 0.20 m, respectively,
and from actual land use maps in vector format (*.shp files, polygons of land use class) that were
provided from the Urban Planning Institute of Belgrade for the years 2001 and 2010. The maps of
land use classes for the years 2003 and 2007 were created by digitizing corresponding orthophoto
images. The maps of actual land use maps for the years 2001 and 2011, are created after correcting
observed irregularities (such as overlapping polygons and undefined areas), and the detected changes
occurred between years 2010 and 2011, based on a comparison of vector maps and corresponding
orthophoto images.

The maps of land use for the years 2001 and 2010, represent 11 and 12 classes of land use,
respectively. In order to define unique and consistent classification, the official 13 classes of land
uses that were outlined in the 2021 Master Plan of Belgrade [73] were generalized into nine classes,
when considering classification on actual land use maps from 2001 to 2010: Agricultural, Wetlands,
Transportation networks, Infrastructure, Residential, Commercial, Industry, Special use, and Green
areas. The data layer for each time point was georeferenced and integrated into a raster GIS database
at a 10 m spatial resolution.

Supplementary maps representing spatial attributes were created to contain information on
accessibility, population density, and spatial neighborhoods using available data that was mostly
obtained from the Urban Planning Institute of Belgrade and via consultations with urban planners
(Table 1). After the analysis of LUC trends for the considered time interval (2001–2011), the following
accessibility maps were created to reflect distances from the: city center, municipality centers,
rivers (Danube and Sava), green areas greater than 100 m × 100 m, railways, highways, main roads,
and streets of category I and II. The accessibility maps refer to raster maps of Euclidean distance to the
closest cell of interest, i.e., to the closest cell of rivers, green area, etc. The study area is relatively flat
and so attributes that are related to elevation were not considered. Population counts were obtained for
2011 from the Serbian Census Office and the official estimated population for the years 2003 and 2007
were obtained from the Statistical Office of the Republic of Serbia. Population density was calculated
for each grid cell using a dasymetric mapping method [74]. In order to emphasize the differences of
urban types between three used municipalities (Zemun, New Belgrade and Surčin), an additional
categorical attribute was defined containing information on cell location (the municipality of a cell),
labeled as x1, Municipality code (Table 1).

The initial data set for each time interval, I2003,2007 and I2007,20011, contains attributes about the
municipality code (Table 1, x1), Euclidian distances to specific entities (Table 1, x2–x10), population
(Table 1, x11), the cell’s land use class (Table 1, x12), information about land use classes in the cell’s
neighborhood (Table 1, x13 and x14), and information about the cell’s previous land use class (history)
(Table 1, x15). The influence of neighboring cells (x13 and x14) is represented with the two most frequent
classes within the nxn cells Moore neighborhood, which makes a link to cellular automata LUC models
that utilise this type of information. The size of the neighborhood can be adjusted to fit various
resolutions for different modeling areas. The conducted analysis suggested that 7 × 7 cells is the
most suitable representation for local spatial neighborhoods, providing the best model performance
results [54]. The information about the cell’s previous land use class clarified whether the past land
use class influences future land use apart from the present class (cell’s memory info). As seen from
the obtained research results, this type of information is important for the proposed models that are
related to the study area. The previous land use class for the time interval 2003–2007 is land use
class at the year 2001 and land use class at year 2003 represents previous land use class for the time
interval 2007–2011.

Data preparation was performed using multiple software tools. The SAGA GIS environment [75]
and ArcGIS [76] were used to create the database and spatial attributes, analyse data, and present the
final results. Java programming routines were developed to generate all of the required data sets from
input GIS layers, including the most frequent classes in a cell’s neighborhood.
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Table 1. List of attributes used for modeling land-use change in the study area.

Attribute Label Attribute Description

x1 Municipality code (mun_code)
x2 Distance to city centre (dcitycentre)
x3 Distance to municipality centre (dmuncentre)
x4 Distance to rivers (driver)
x5 Distance to green areas greater than 100 × 100 m (dgreen)
x6 Distance to railway lines (drail)
x7 Distance to highway (dhighway)
x8 Distance to main road (droad)
x9 Distance to the street of category I (dstreetI)
x10 Distance to the street of category II (dstreetII)
x11 Number of inhabitants (no_inhabitants)
x12 Land use class (LU_class)
x13 Most frequent land use class in Moore neighbourhood 7 × 7 (mf_LU_class)
x14 Second most frequent land use class in Moore neighbourhood 7 × 7 (smf_LU_class)
x15 Previous land use class (prev_LU_class)

4. Results and Discussion

The proposed models for short-term land use forecasting were built and assessed according to
the five steps method, as described in Section 2.3. Since there was only a 4% change in the study
area for the 10-year time interval 2001–2011 (Figure 2), two balanced data sets, S3–7 for training and
S7–11 for testing, were sampled from the corresponding initial sets and the cells were represented
according to the Section 2.3, step 1, using time points 2001 (only previous land use class), 2003, 2007
and 2011 (Table 2).
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Table 2. Description of data sets used in the experiments.

Data Set Attributes from Class Label from Number of Cells

S3–7 2001, 2003 2007 51,358
S7–11 2003, 2007 2011 117,798

In order to assess the importance of each considered attribute, the IG ranking method was
applied on the training set S3–7. The obtained attribute rankings are shown in Table 3. The highest
ranked attribute represented the previous land use class (year 2001), while the present land use class
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was the second ranked attribute with an almost identical IG score. The next ranked was the most
frequent land use class in the neighborhood reflecting the importance of the influence of nearby cells.
Other informative attributes were related to the proximity of the city center and the distance to the
highways. The lowest ranked were related to the attributes that did not change at all, or only by a very
small amount, during the observed time interval, such as distances to the river and railway, or the
number of inhabitants per cell. The obtained attribute ranking is meaningful for the urban planning
purposes, except for the attribute mun_code. The municipality code attribute (only three distinct
values) is ranked much lower when compared with an urban expert’s point of view, in respect that the
study area municipalities are very different in the sense of urban growth. The reason for the lower
ranking of that attribute could be that IG is biased towards choosing attributes with a large number
of values.

Table 3. Top ranked attributes based on the Info Gain (IG) method.

Attribute Rank Information Gain Attribute

1 0.8159 prev_LU_class
2 0.8073 LU_class
3 0.7361 mf_LU_class
4 0.5593 dcitycentre
5 0.4860 dhighway
6 0.4789 dgreen
7 0.4517 dstreetI
8 0.3699 smf_LU_class
9 0.3591 droad
10 0.3538 dstreetII
11 0.3406 dmuncentre
12 0.2545 drail
13 0.2014 mun_code
14 0.0832 driver
15 0.0831 no_inhabitants

In order to examine the effects of selecting the top n informative attributes by IG to the
classification performance, a recursive attribute elimination method was applied. The lowest-ranked
attribute was removed from the training and test data set in each iteration until all of the attributes
have been removed. The obtained performance curves for all three ML techniques are presented in
Figure 3.
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Generally, the overall model performance suggest that all three ML techniques are capable to
effectively model short term land use changes with slight differences. Even with a small number of
used attributes, ML based model can derive outcomes, with high values of weighted AUC (Figure 3).
By comparing the obtained performance curves, it can be concluded that SVM and NN have a greater
power of generalization when compared to DT. Values of weighted AUC indicate that the accuracy
of the tested ML techniques declined abruptly when using less than five first-ranked attributes.
Furthermore, it can be noted that the elimination of certain attributes improved the classification
capability as a result of reduced model complexity, while retaining enough information about the
phenomenon and the same number of teaching examples. This indicates that the initial selection of
attributes that are given in Table 1 was justified for the study area and included real, informative
predictors for LUC. Values of weighted average TPrate indicate that the DT method is approximately
5% less efficient in classification of predicted land use class when compared with the two other used
techniques. Furthermore, weighted average TPrate values declined sharply for all three ML techniques
when using four and less first-ranked attributes by IG, while weighted average FPrate values increased.
The recursive attribute elimination should be stopped when the performance measures TPrate/FPrate

start to drop/increase significantly.
An in-depth analysis of the results is realized by using the three maps comparison method,

with a separate investigation of simulation outcomes of persistent and changed cells (Figure 4).
This method allows for more insight into the model’s performance and their mutual differences are
more evident in comparison to weighted averages AUC, TPrate, and FPrate. The number of changed
cells that are simulated correctly and that are simulated as persistent (Figure 4a,b) also indicate that
the accuracy of the tested ML techniques declines abruptly when using less than five first-ranked
attributes. The agreement between simulated changed and in reality changed cells (Figure 4a) suggests
that SVM had a better ability to learn changes in a land use class when compared to NN and DT.
DT favored the persistence of the land use class (Figure 4c,e). When comparing the disagreements for
the changed cells (Figure 4b,d), it can be concluded that most of them were related to cells that were
changed in reality, whereas the model simulated them as persistent. All of the ML techniques were
capable of learning the concept of unchanging cells.

Taking into account all of the measures, the best performing models were built using the first
nine ranked attributes for DT and SVM, and the first 11 ranked attributes for NN. A detailed per-class
insight into the behavior of the best performing models is given in Table 4.

DT is less capable of predicting the Commercial land use class in comparison to the other two
techniques. Concerning the Infrastructure class, none of the Infrastructure objects have been built from
2001 to 2011. Therefore, DT and SVM, as opposed to NN, successfully “learned” that this class did
not change. The small amount of changes in the Wetland class during the observed time interval was
caused by the start of construction of the bridge over the Sava. All of the ML techniques registered
those changes during the learning process. When initially reducing from 13 to nine classes, the existing
Not built land use class was transformed into the Green area or Agriculture classes that were based on
the actual conditions detected on the orthophoto maps. Additionally, the Green area class contains
areas that are used for several different purposes (cemeteries, parks, recreation, etc.). Therefore, the ML
techniques had difficulties in learning related transition rules.

Figure 5 shows the actual and forecasted LUCs from 2007 to 2011 for the entire study area. Maps
were generated by the best performing models trained on the balanced set S3–7 after the removal of the
less informative attributes.
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Table 4. Effectiveness of the attribute selection when applied to building models based on three maps
comparison methods.

Land Use Class

Agricultural Wetlands Trans.net. Infrastructure Residential Commercial Industr. Special Use Green Area

N 1 in reality 36,823 48 165 0 3698 59 4237 275 13,594
M 2 in reality 33,530 2905 2409 264 9461 823 2688 2775 4468

Measure ML

AUC
DT 0.88 0.99 0.82 1.00 0.78 0.55 0.71 0.79 0.74
NN 0.93 1.00 0.91 1.00 0.85 0.68 0.84 0.79 0.65

SVM 0.91 0.99 0.88 1.00 0.80 0.69 0.84 0.90 0.79

TPrate

DT 0.94 0.99 0.65 1.00 0.62 0.10 0.41 0.58 0.57
NN 0.92 0.97 0.64 0.99 0.72 0.34 0.52 0.58 0.45

SVM 0.91 0.99 0.67 1.00 0.70 0.29 0.57 0.58 0.33

FPrate

DT 0.20 0.00 0.01 0.00 0.09 0.01 0.05 0.00 0.10
NN 0.14 0.00 0.02 0.00 0.13 0.03 0.05 0.00 0.03

SVM 0.14 0.00 0.01 0.00 0.15 0.03 0.06 0.00 0.03

N simulated correctly
DT 16,990 10 32 0 569 3 157 43 1512
NN 21,965 12 45 0 1508 13 348 79 4521

SVM 23,697 25 72 0 1873 19 578 102 5087

M simulated correctly
DT 32,504 2481 2380 264 9400 802 2679 2769 4277
NN 30,797 2481 2262 264 9445 770 2660 2772 2489

SVM 30,564 2478 2355 264 9429 758 2609 2746 3306

NS 3 change to wrong class
DT 1508 0 25 0 34 10 65 16 1136
NN 2912 0 32 0 54 14 2 3 5491

SVM 2680 0 39 0 24 13 258 34 5272

NS persistent
DT 18,325 38 108 0 3095 46 4015 216 10,946
NN 11,946 36 88 0 2136 32 3887 193 3582

SVM 10,446 23 54 0 1801 27 3401 139 3235

MS 4 change
DT 1026 0 29 0 61 21 9 6 191
NN 2733 0 147 0 16 53 28 3 1979

SVM 2966 3 54 0 32 65 79 29 1162

1 N-number of changed cells; 2 M-number of persistent cells; 3 NS-number of changed cells simulated as;
4 MS-number of persistent cells simulated as.

Based on the interpretation of the generated maps by urban experts, it was concluded that all three
models successfully forecasted the LUCs from 2007 to 2011 in three Belgrade municipalities. The SVM
and NN models showed slightly better performance than DT. However, DT has a distinct advantage
to be used in cases when experts require insight into the model internals since if-then rules can easily
be generated. In addition, DT is faster to train than SVM and NN. However, the calibration process
of a DT model is less complex when compared with the two other ML techniques, which require the
optimization of the pairs of relevant algorithm parameters. Nevertheless, the SVM and NN have
a better capability to provide a good generalization of land use changes. Furthermore, the SVM
technique is less prone to overfitting when compared to NN.

5. Conclusions

This research examined LUC models that were based on ML techniques in an urban environment
with nine land use classes. The obtained results demonstarted that ML models are capable to learn
the transition rules in a supervised manner by utilizing the spatial data and land use classes at time
point t – 1 and land use classes at time point t. Assuming the existence of an unknown transition
function that retains similar properties over the short period of time, two to four years, the model is
capable of forecasting land use classes at time point t + 1 from the spatial data that is describing the
area at time point t. The ML-based models are capable to forecast the LUC and could be a valuable
decision support tool for municipal services that require information related to land-use when experts
are not available. Furthermore, experts can benefit from such ML models in a way to better understand
relations that are hidden in the data and to complement other expert knowledge approaches.

A comparison was made between three common ML techniques (DT, NN, SVM) when building
LUC models from the historic spatial and land use data. The SVM method was the best to forecast
the land use changes, while the DT method was capable to learn the concept of no change better than
other two. Finally, the DT method can be perceived as easiest to interpret over techniques such as NN
and SVM.

One of the objectives of the research was to find the appropriate data representation for learning.
Initial representation included common spatial urban indicators (present land use class, distances to
city center, highways, roads, etc.) that were augmented with neighboring information about land use
classes and history information about previous land uses at each cell in the grid. A detailed analysis
using the IG ranking method was done to find the most informative attributes that are related to LUC
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in the study area. It was found that the reduced number of attributes produced less complex models
with a better predictive performance.
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Conflicts of Interest: The authors declare no conflict of interest.

References

1. Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Review and Assessment of Land-Use Change
Models: Dynamics of Space, Time, and Human Choice; General Technical Report NE 297; U.S. Department of
Agriculture, Forest Service, Northeastern Research Station: Newton Square, PA, USA, 2002. [CrossRef]

2. Verburg, P.; Schot, P.; Dijst, M.; Veldkamp, A. Land use change modelling: Current practice and research priorities.
GeoJournal 2004, 61, 309–324. [CrossRef]

3. Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental
change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [CrossRef] [PubMed]

4. Schneider, L.C.; Pontius, R.G. Modeling land-use change in the Ipswich watershed, Massachusetts, USA.
Agric. Ecosyst. Environ. 2001, 85, 83–94. [CrossRef]

5. Verburg, P.H.; De Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure
for modelling the pattern of land use change based upon actual land use. Ecol. Model. 1999, 116, 45–61.
[CrossRef]

6. Hu, Z.; Lo, C.P. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst.
2007, 31, 667–688. [CrossRef]

7. Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region,
Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [CrossRef]

8. Lopez, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe:
A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [CrossRef]

9. White, R.; Engelen, G.; Uljee, I. The use of constrained cellular automata for high-resolution modelling of
urban land-use dynamics. Environ. Plan. B Plan. Des. 1997, 24, 323–343. [CrossRef]

10. Van Vliet, J.; White, R.; Dragicevic, S. Modeling urban growth using a variable grid cellular automaton.
Comput. Environ. Urban Syst. 2009, 33, 35–43. [CrossRef]

11. Yao, Y.; Li, J.; Zhang, X.; Duan, P.; Li, S.; Xu, Q. Investigation on the Expansion of Urban Construction Land
Use Based on the CART-CA Model. ISPRS Int. J. Geo-Inf. 2017, 6, 149. [CrossRef]

12. Brown, D.G.; Page, S.; Riolo, R.; Zellner, M.; Rand, W. Path dependence and the validation of agent-based
spatial models of land use. Int. J. Geogr. Inf. Sci. 2005, 19, 153–174. [CrossRef]

13. Groeneveld, J.; Müller, B.; Buchmann, C.M.; Dressler, G.; Guo, C.; Hase, N.; Hoffmann, F.; John, F.; Klassert, C.;
Lauf, T.; et al. Theoretical foundations of human decision-making in agent-based land use models—A review.
Environ. Model. Softw. 2017, 87, 39–48. [CrossRef]

14. Tayyebi, A.; Pijanowski, B.C. Modeling multiple land use changes using ANN, CART and MARS: Comparing
tradeoffs in goodness of fit and explanatory power of data mining tools. Int. J. Appl. Earth. Obs. 2014, 28,
102–116. [CrossRef]

15. Kamusoko, C.; Gamba, J. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model.
ISPRS Int. J. Geoinf. 2015, 4, 447–470. [CrossRef]

16. Kjærulff, U.B.; Madsen, A.L. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis;
Springer: New York, NY, USA, 2008; ISBN 978-0-38-774100-0.

http://dx.doi.org/10.2737/NE-GTR-297
http://dx.doi.org/10.1007/s10708-004-4946-y
http://dx.doi.org/10.1073/pnas.0704119104
http://www.ncbi.nlm.nih.gov/pubmed/18093934
http://dx.doi.org/10.1016/S0167-8809(01)00189-X
http://dx.doi.org/10.1016/S0304-3800(98)00156-2
http://dx.doi.org/10.1016/j.compenvurbsys.2006.11.001
http://dx.doi.org/10.1007/BF00124382
http://dx.doi.org/10.1016/S0169-2046(01)00160-8
http://dx.doi.org/10.1068/b240323
http://dx.doi.org/10.1016/j.compenvurbsys.2008.06.006
http://dx.doi.org/10.3390/ijgi6050149
http://dx.doi.org/10.1080/13658810410001713399
http://dx.doi.org/10.1016/j.envsoft.2016.10.008
http://dx.doi.org/10.1016/j.jag.2013.11.008
http://dx.doi.org/10.3390/ijgi4020447


ISPRS Int. J. Geo-Inf. 2017, 6, 387 13 of 15

17. Tafazzoli Moghaddam, E. Data-driven Process Monitoring and Diagnosis with Support Vector Data Description.
Unpulished Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2011.

18. Brown, D.G.; Band, L.E.; Green, K.O.; Irwin, E.G.; Jain, A.; Lambin, E.F.; Pontius, R.G., Jr.; Seto, K.C.;
Turner, B.L.I.; Verburg, P.H. Advancing Land Change Modeling: Opportunities and Research Requirements;
National Academies Press: Washington, DC, USA, 2014; ISBN 0309288363.

19. Solomatine, D.P.; Ostfeld, A. Data-driven modelling: Some past experiences and new approaches.
J. Hydroinform. 2008, 10, 3–22. [CrossRef]

20. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted
regression tree, classification and regression tree, and random forest machine learning models in Iran.
Environ. Monit. Assess. 2016, 188, 1–27. [CrossRef] [PubMed]
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