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Abstract: Smartphones have become indispensable in our daily lives. Their various embedded
sensors have inspired innovations in mobile applications—especially for indoor navigation. However,
the accuracy, reliability and generalizability of navigation all continue to struggle in environments
lacking a Global Navigation Satellite System (GNSS). Pedestrian Dead Reckoning (PDR) is a
popular method for indoor pedestrian navigation. Unfortunately, due to its fundamental principles,
even a small navigation error will amplify itself, step by step, generally leading to the need for
supplementary resources to maintain navigation accuracy. Virtually all mobile devices and most
robots contain a basic camera sensor, which has led to the popularity of image-based localization,
and vice versa. However, all of the image-based localization requires continuous images for
uninterrupted positioning. Furthermore, the solutions provided by either image-based localization or
a PDR are usually in a relative coordinate system. Therefore, this research proposes a system,
which uses space resection-aided PDR with geo-referenced images of a previously mapped
environment to enable seamless navigation and solve the shortcomings of PDR and image-based
localization, and evaluates the performance of space resection with different assumptions using a
smartphone. The indoor mobile mapping system (IMMS) is used for the effective production of
geo-referenced images. The preliminary results indicate that the proposed algorithm is suitable for
universal pedestrian indoor navigation, achieving the accuracy required for commercial applications.
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1. Introduction

A variety of indoor navigation technologies based on different principles and hardware have been
developed over the last two decades [1]. Some of these methods depend on intensive or advanced
infrastructure to achieve high accuracy, and may require a specific device to transmit or receive
the corresponding signal. Similarly, accurate inertial based methods usually position a sensor on
a specific part of the user’s body in an attempt to overcome the inaccuracy of previous sensors [2].
Such requirements are costly and inconvenient, but the proliferation of smartphones has encouraged a
technological revolution in indoor navigation. The various sensors in smartphones, such as Global
Navigation Satellite System (GNSS chip), Wi-Fi, Bluetooth, accelerometer, gyroscope, magnetometer,
camera, and even a barometer or an ambient light sensor can conceivably be harnessed to assist in
navigation. In addition to their various sensors, their ubiquity is another reason why smartphones seem
ideal as personal mobile navigators. Many who use smartphones for outdoor navigation applications
use systems based on GNSS. However, people actually spend 90% of their time in indoors, which is a
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GNSS-denied environment [3]. Fortunately, the characteristics of various sensors embedded in the
smartphone enable advanced navigation technologies and can achieve solid estimates utilizing their
complementarity for pedestrian indoor navigation. Retscher and Hecht show the feasibility of using
different smartphones for tracking in location-based service (LBS) and other navigation applications
in their research [4]. Liu et al. propose a smartphone-based indoor positioning engine, which relies
solely on built-in hardware and computational resources [5]. Their research shows the potential and
possibility of using smartphones for navigation. Although because smartphones are not dedicated
positioning devices, the accuracy of such micro electro mechanical system (MEMS) sensors still leave
much to be desired. However, better performance and smaller size can be expected in the near future.

Pedestrian dead reckoning (PDR) is one of the most commonly used technologies for
pedestrian indoor navigation. PDR estimates a two-dimensional location of pedestrians based
on the accelerometer, gyro and magnetometer. For smartphone-based pedestrian navigation,
the accelerometer is generally used for step count, and gyro and magnetometer are used for heading
estimation, combined with a step length model to decide movement. The advantage of using the
accelerometer to count steps is that it avoids errors accumulated in positions due to the double
integration of acceleration. Further explanation, vibrations and misalignment (between the sensor
body frame and pedestrian frame) from holding the smartphone tend to produce noise and gravity
projections at each axis, which lead to inaccurate position estimation by integration, especially with
respect to a cheaper inertial sensor.

However, even though PDR has various advantages, it still suffers from algorithm errors.
Firstly, step-count errors caused by an inadequately tuned algorithm are generally caused by the
user and usage behavior. For example, when the threshold peak detection along with time interval is
used, it will generally fail to detect the steps at the beginning and end of a walk because the properties
of steps at those stages are typically different [6]. These missed steps produce an accumulated position
error depending on their number and step length, leading to the second error source: step length. Step
length is often derived from empirical formulas based on acceleration, characteristics of individuals,
and related corresponding coefficients. Unfortunately, most step length estimates fail to accurately
meet individual users’ characteristics and walking habits. Weinberg reports that step length can vary
by as much as 40% with different individuals at a given walking speed, and by up to 50% with different
walking speeds and individuals [7]. Ho et al. propose an adaptive step-length estimator based upon
a Fast Fourier Transform smoother and a set of step-detection rules, which accurately estimate step
length [8]. Tsai et al. compares three accurate empirical step length models and evaluates their PDR
performance [9]. According to their research, an accurate estimation of step length generally requires
pre-calibration or some analyses in post-processing to determine the optimal parameters for each
individual, which cannot be easily implemented by the public. Meanwhile, a system that depends on
tuning parameters usually has poor generalizability, which leads to the case where the demonstration
system performs better than the production system due to the uncertainty of parameters [10].
In addition to tuning parameters, there are some advanced methods for detecting steps and accurately
estimating step lengths in real-time, such as a gyroscope attached to the knee [11] and an accelerometer
attached to the waist [12]. Naturally, this entails the mounting of accurate sensors (more cost) on
specific parts of the body, which will hardly appeal to general users who only have smartphones.

In addition to the above errors related to distance, a third error source is heading (azimuth).
Magnetometers and gyros are generally used to provide data for heading and rotation, respectively.
The derived heading from a magnetometer is based upon the measurement of the Earth’s magnetic
field, and there is no error accumulated with time. However, the measured magnetic fields are
usually affected by hard- and soft-iron effects [13]. These effects are usually calibrated because the
relation between the magnetometer and other magnetic components is fixed in a device. However,
some environments retain lots of magnetic materials and devices with strong magnetic fields. They
will cause the magnetometer to lose efficacy and accuracy during sensing, and even change the
property of the internal magnetic field, which will invalidate the factory-set default compensation
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parameters. Ali et al. propose an advanced method called Particle Swarm Optimization (PSO)-based
calibration to accurately estimate the values of the bias and scale factor for low-cost magnetometers [14].
In addition, some real-time calibration methods, such as figure-8 rotation, also emerged. However,
they are not easy to adapt to the public with little technical knowledge. Therefore, the heading based on
the magnetometer can still lose accuracy in a magnetic-hostile environment and produces false values.
On the other hand, a gyro is a relatively environment-independent sensor. Measurements from a gyro
are not affected by the environment. But the characteristics of a gyro require an initial heading, and its
errors will accumulate with time. Consequently, a magnetometer and a gyro are complementary, and
used together can provide better heading estimations than either one used separately. However, even if
an integrated heading is used, the performance still depends on the tuned parameters of the integration
algorithm, which is affected by the environmental magnetic field as well as the specifications of the
gyro used. As mentioned, in order to maintain the navigation accuracy, a PDR integrated with another
external positioning system is needed.

There are many kinds of positioning technologies that can be integrated with PDR,
such as received signal strength indicator (RSSI)-based Wi-Fi positioning [15], Bluetooth iBeacon [16],
indoor map aiding (includes indoor landmark and digital model) [17,18], etc. Some researchers further
propose a composite integration such as Magnetic/Wi-Fi/PDR system [19], Wi-Fi/map/PDR [20]
and magnetic/landmark/PDR [21]. Those researchers indicate the consensus of the development of
an integrated system for indoor navigation. In 2016, one of the most famous mobile games called
Pokemon GO promoted the augmented reality (AR) application on a smartphone. Many experts have
reported the impacts of this phenomenon on Location-Based Services (LBS). AR connects the real
world and virtual information by camera. Therefore, if the user is accustomed to using the smartphone
camera for LBS, an indoor image-based localization can be considered as the ideal positioning system
that integrates with PDR.

An indoor image-based localization system is usually based on the technologies of computer
and robotic vision such as simultaneous localization and mapping (SLAM) and visual odometry [22].
Many stereo images taken by multiple cameras can be used to estimate the relative position and
attitude. Similarly, successive images taken by the single camera can be used to estimate relative
movement and rotation. Nunez et al. propose a novel visual odometry system using stereo cameras
and compare four kinds of odometry methods [23]. Zhang et al. propose a novel RGB-D SLAM system
based upon visual odometry and an extended information filter [24]. The overlap of images plays an
important role in those systems. On the other hand, some of the image-based methods match the query
image to a reference image in the database and then give the location of the reference image as the
user’s location. These advanced methods further estimate the relative position and attitude between
the reference image and user’s image. Deretey et al. propose a method that uses images from a single
monocular camera matched against a feature database to obtain the camera position in a previously
mapped indoor environment [25]. Although there are differences between these image-based methods,
all of them use feature recognition and image matching. Meanwhile, they need to successively take
images, which is beyond the means of general users navigating with their smartphones for continuous
positioning. Therefore, the integration of other positioning systems should be considered to improve
the inconvenience and increase the speed of image-based methods. Grießbach et al. propose a low-cost,
stereo vision-aided inertial navigation system in which inertial measurements are used to constrain
the range of image matching while tracking feature points [26]. However, this integrated system and
most of the image-based localizations are navigating in a relative coordinate system. Therefore, some
researchers use the geo-referenced images to provide absolute coordinates for navigation. Liang et al.
propose an image-based localization based upon a geo-referenced image database [27]. Li et al. propose
a vision navigation approach based upon a geo-referenced image database to facilitate continuous and
robust vehicle navigation, integrated with the Global Positioning System (GPS) and Inertial Navigation
System (INS) integration system [28]. Similarly, space resection based on geo-referenced images can
provide the position in an absolute coordinate system, requiring only a single query image. However,
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it still requires feature recognition and image matching; therefore, the space resection integrated to
PDR is applied in this research. In conclusion, traditional image-based localization requires multiple
cameras or successive images and position in a relative coordinate system. Space resection-aided
PDR only requires one camera and extremely few images (implemented when PDR becomes worse,
and only single images are required for position estimation). Meanwhile, the estimated position is in
an absolute coordinate system.

Space resection is a Photogrammetric method used to determine the six exterior orientation
parameters (EOPs) of the exposure center of a single photograph [29]. The EOPs include the 3D
positions (X, Y, Z) and attitude angles (omega, phi and kappa). These are solved using collinearity
equations and a photographic image with a known principal distance from the camera used, as well as
at least three control points whose 3D ground coordinates are known and also appear in the image.
The collinearity equations are based upon the condition that the camera, the control point (object
point) and its corresponding image point all lie on a straight line. Since the collinearity equations are
nonlinear and have been linearized using Taylor’s theorem, initial values of the exterior parameter
are needed for the iterative calculation. Poor initial values cause the divergence of space resection.
Space resection using collinearity equations is a purely numerical method, which permits the usage of
the least squares method with redundant amounts of control points for the most probable estimation.
Li et al. propose a hybrid image-based localization for seamless navigation based upon GNSS,
a compass, calibrated camera and space resection with geo-referenced images [30]. They believe such
technologies have the potential for indoor and outdoor navigation using a smartphone. However,
their initial values for space resection are provided by GNSS and orientation sensor (compass for
heading and accelerometer for roll and pitch) in both outdoor and indoor environments: They use
smartphones for outdoor navigation because GNSS provides good initial values everywhere. They
use a video recorder on a moving vehicle for indoor navigation because the first initial values of
space resection are provided by GNSS, but the subsequent initial values are provided by the previous
solution of space resection, which means the requirement of frequent image taking. Furthermore,
all the used devices in his research are calibrated for better position accuracy. As mentioned,
successively taking images and calibration are inconvenient for the general user. Therefore,
our research proposes a space resection-aided PDR. PDR provides the initial values for space resection
during the indoor navigation. Meanwhile, space resection maintains the PDR accuracy. On the
other hand, the accuracy of space resection is mainly dependent on the calibrated camera. Therefore,
this research also analyzed the effect of calibrated parameters with different geometry of control points
in a professional camera calibration laboratory, then proposed an adaptive weighted least squares
method to minimize the error caused by the un-calibrated smartphone camera.

This research proposes novel usage of space resection to aid PDR with geo-referenced images in a
previously mapped environment. The smartphone is the only used device. The proposed algorithm
enables the PDR to provide continuous navigation between each image to reduce the need to constantly
take and process pictures and also provides the initial values for the iterative calculation for indoor
space resection. On the other hand, space resection reduces the accumulated error of PDR. Meanwhile,
the position error of space resection caused by the use of an un-calibrated smartphone camera is
improved after applying the proposed adaptive weight method. Finally, the proposed algorithm
navigates in an absolute coordinate system, and avoids individual calibration, tuning parameters,
environmental infrastructure, and wearable sensors for a popular application. Figure 1 shows the
complete flowchart of this research. The first stage is preparatory work of mapping environments.
The analysis of space resection is the second stage, which is used for better understanding of the
characteristics of space resection using a smartphone camera. This analysis helps us to better
estimate the smartphone-based space resection using the adaptive weighted least squares method,
which reduces the error caused by the usage of un-calibrated interior orientation parameters (IOPs).
The third stage is practical pedestrian indoor navigation implementing the proposed adaptive weighted
space resection-aided PDR in a real scene. The geo-referenced images of a real scene with TWD97
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(Taiwan Datum 1997) are obtained using the indoor mobile mapping system (IMMS) instead of a total
station, which provides the ground coordinates of the control point by measuring geo-referenced
images. The IMMS has better efficiency, with mapping accuracy, which ranges from the sub-meter
to meter level. Therefore, this research also evaluates the performance of space resection using the
geo-referenced images of IMMS. Moreover, a traditional survey with the total station is used for all the
check points, which are used to analyze the accuracy of the proposed algorithm.
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2. Methods

The core methods used in this research can be divided into three major parts: indoor mapping,
space resection, and PDR, each described in one of the following sections. The first section explains
the mapping methods used and where they are applied and includes a traditional survey for
check points and mobile mapping for fast generation of geo-referenced images. The use of IMMS
technology is particularly complex and is related to GNSS/INS integration and direct geo-referencing.
Direct geo-referencing is a technique that can be used for photogrammetry [29]. Geo-referencing means
the coordinate system of a map or image can be related to a ground coordinate system. Therefore,
the ground coordinate of an interesting point in an image can be directly measured, and the spatial
information can be further extracted. Therefore, the first section only provides a brief description of
the mapping procedure, accuracy, and the specification of the applied system. The second section
illustrates the concept and the analysis procedure of space resection. The analysis includes different
scenarios to evaluate the effect of IOPs and different geometry of control points. Then, the optimal
weighted least squares method of space resection for an un-calibrated smartphone camera can be
determined. The third section illustrates the algorithm of the used PDR. The used algorithm is
not complex because the purpose of this research is to evaluate the performance of an integrated
positioning system for a smartphone user without any parameter tuning and calibration of PDR.

2.1. Indoor Mapping

The contributions of indoor mapping in this research include the generation of the geo-referenced
images with absolute coordinates for space resection and analysis of the accuracy of the proposed
algorithm. Two methods of indoor mapping, survey mapping and mobile mapping, are used in this
research. The professional camera calibration laboratory must be fitted with the accurate coordinate
of control points so the analysis of space resection can focus on the various effects of the IOPs and
geometry of the control points. To accomplish this, a traditional survey of the total station is performed
at centimeter-level accuracy in order to minimize control point error. In addition, all the used check
points are surveyed by the total station in this research.

Since a traditional survey for geo-referenced images can be very time-consuming, depending on
the total number of control points, IMMS has been developed to collect the environmental images
quickly and then the arbitrary number of control points, which can be easily measured. This procedure
is performed using a kind of photogrammetric technology called direct geo-referencing. Direct
geo-referencing requires accurate camera position and attitude. To accomplish this, the self-developed
software was used to precisely estimate the trajectory of IMMS based upon the Extend Kalman Filter
(EKF), constraint algorithms of Non-Holonomic Constraint (NHC) and Zero Velocity Update (ZUPT),
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and Rauch-Tung-Striebel (RTS) smoother. Because there are three different KFs used in this research,
the EKF used for IMMS is called MEKF for distinction in this research. Meanwhile, even the matrix
operations of the prediction and update stage are the same; the related matrixes are still different,
such as their state vector matrixes. In the mapping procedure, a large GNSS-denied environment is
a harsh space for an INS/GNSS integration system, even using MEKF, smoothing, NHC and ZUPT.
Therefore, according to the specification of the used INS, velocity of vehicle and past experience, some
control points are surveyed by the total station every 200 m. Those control points are measured in
an image for space resection, then the position and attitude of IMMS can be estimated to update the
MEKF solution at that epoch. The IMMS was initialized outdoors, and moved two small circles to
make the MEKF stable before entering the experimental indoor field. In the indoor environment,
the trajectory of IMMS can be accurately estimated for geo-referencing. Information regarding
the software can be found in our previous research [31]. With respect to the system components,
the IMMS developed by National Cheng Kung University (NCKU) is an INS/GNSS integration system,
which consists of GNSS, navigation-grade Inertial Measurement Unit (IMU), a 360-degree spherical
camera system, a power supply and an industrial computer, as shown in Figure 2a. Similar systems
can be found in [32–34]. The second self-developed software is used to produce the geo-referenced
images with TWD97 coordinates, as shown in Figure 2b. The accuracy of the produced geo-referenced
images is 1.03 m (Root Mean Square Error, RMSE) in the test field based on 39 check points.
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2.2. Space Resection

Space resection is based on collinearity equations. An important principle is that the object point,
corresponding image point, and camera are collinear. The collinearity equations with additional
parameters are shown in Equations (1) and (2):

xa = xp − ∆x − c
[

m11(XA − XL) + m12(YA − YL) + m13(Z A − ZL)

m31(XA−XL) + m32(YA − YL) + m33(Z A − ZL)

]
(1)

ya = yp − ∆y − c
[

m21(XA − XL) + m22(YA − YL) + m23(Z A − ZL)

m31(XA − XL) + m32(YA − YL) + m33(Z A − ZL)

]
(2)

where (X A, YA, ZA) is the ground coordinate of object point A; the matrix m is a 3D rotation matrix
that includes elements composed of three attitude angles: omega, phi and kappa; (X L, YL, ZL) is the
ground coordinate of the camera. The three attitude angles and the location of the camera are the
elements of EOPs; (x a, ya) is the measured image coordinate of object point A; (xp, yp) and c are the
principle point offsets and principal distance of the camera, respectively, which compose the IOPs.
Furthermore, the generalized IOPs include the additional parameters: ∆x and ∆y, which represent the
system error of the camera, such as the lens distortion.

Space resection estimates the EOPs of a smartphone camera as the user’s location. Each object
point with a known ground coordinate serves as a control point, enabling the construction of two
equations based on collinearity equations. Therefore, at least three control points are needed to solve
the unknown EOPs (six parameters). Meanwhile, more control points are needed as the redundant
measurement for better estimation by least squares. However, the relation between observations and
unknowns is nonlinear, so it is necessary for the equations to be linearized using the Taylor theorem.
The collinearity equations can then be used to derive partial derivatives with respect to the unknown
EOPs, where the exact form can be found [29]. Therefore, the initial values of unknown EOPs are
needed for iterative calculations due to the use of linearized equations. The initial values of EOPs in
terms of attitude and position are given by the orientation sensor and the PDR algorithm, respectively,
in our indoor research. A special case is the first location at the beginning of navigation, which cannot
be provided by PDR because of its characteristic relative positioning. Therefore, the initial outdoor
location provided by GNSS is needed. The initial values of position are in the ground coordinate
system for space resection. However, the attitude from the orientation sensor is in a phone frame, as
shown on the left of Figure 3. When the user takes the image, the attitude given by the orientation
sensor is relative to the local level frame (North, East, down). In addition, the initial values of rotation
angles corresponding to three axes of the camera frame are required for space resection, as shown on
the right of Figure 3. Therefore, the following equations are needed to determine the three rotation
angles based on the orientation sensor:

Rs = Rz(γ + 90)×Rx(β)×Ry(α) (3)

Rp =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 = Rz′(κ)×Ry′(ϕ)×Rx′(ω) (4)

Rp = RT
s (5)

whereRs is the three-dimensional rotation matrix of the smartphone in the local level frame;Rx,Ry

andRz are the rotation matrixes corresponding to the x, y and z axes, respectively, of the smartphone;
α, β and γ are the roll, pitch and heading, respectively, given by the orientation sensor; when the user
taking the image (y axis is pointed to the user’s left), the heading needs an additional 90 degrees since
the heading of the sensor is relative to the y axis;Rp is the three-dimensional rotation matrix of the
camera frame; rij is the element of the rotation matrix; Rx′ , Ry′ and Rz′ are the respective rotation
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matrixes corresponding to the x’, y’ and z’ axes in the camera frame; ω, ϕ and κ are the rotation angles
corresponding to the x’, y’ and z’ axes, respectively. Therefore, omega, phi and kappa can be estimated
based on the inverse trigonometric function, rij and corresponding definitions in the direction cosine
matrix (DCM). Details can be found in [29]. Finally, the required initial values are completely obtained
for space resection.ISPRS Int. J. Geo-Inf. 2017, 6, 43  8 of 23 
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the image points and principle point. In order to understand how to determine the weight of each 
image point corresponding to the distance, a regression of the quartic polynomial curve fitting is used. 
Then, the optimal weight of each image point can be decided for a smartphone camera (consumer-
grade), and the accuracy of space resection is improved without camera calibration.  

Figure 3. The spatial relationship: (a) the phone frame; (b) the camera frame.

Moreover, the intersection geometry is important for space resection. Figure 4 shows the difference
between good and bad intersection geometry, where the red and blue points are assumed to be two
control points. The circle represents the distance between the intersection point and control point,
and the thickness of the circle represents the range of the distance error. In other words, the difference
between two circles with the same color represents the distance error. The intersection area of two
control points shows the possible location of an intersection point. The larger the area, the more
uncertain the intersection point. In Figure 4, the distance between two control points of the example
on the left is larger than in the example on the right, representing better intersection angle and
geometry. Therefore, the intersection area of the left example is smaller than for the one on the right.
The uncertainty of the intersection point location is also smaller and almost the same in each direction.
By contrast, the intersection area of the right figure is larger, indicating a larger intersection uncertainty.
As a result, the dilution of precision (DOP) values of the left case are smaller than for the right case.
According to this reason, the analysis of intersection geometry based on position accuracy and DOP is
discussed in the results section.
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An analysis of space resection has been implemented using images from two kinds of smartphone
cameras. The professional camera calibration laboratory has a wall with artificial landmarks, as shown
in Figure 5; the control points have been surveyed by the total station at centimeter-level accuracy.
The results of the present research indicate control point location leads to different contributions for
space resection, leading to the proposition that an adaptive weighted least square method leads to
a more accurate estimation of space resection based on the distance between the image points and
principle point. In order to understand how to determine the weight of each image point corresponding
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to the distance, a regression of the quartic polynomial curve fitting is used. Then, the optimal weight
of each image point can be decided for a smartphone camera (consumer-grade), and the accuracy of
space resection is improved without camera calibration.ISPRS Int. J. Geo-Inf. 2017, 6, 43  9 of 23 
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Figure 5. The professional camera calibration laboratory.

2.3. Pedestrian Dead Reckoning

In addition to space resection, the other component of the proposed algorithm is PDR.
The architecture of using space resection as the external aiding resource for PDR is shown in Figure 6.
There are two Kalman Filters (KFs), one for heading and one for position estimations. The heading KF
(HKF) and position KF (PKF) are used for distinction in this research.
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The pedometer used is set for threshold peak detection along with the time interval to identify
steps. In addition to a pedometer, the data generated for the HKF are based on two kinds of headings,
which are calculated by the magnetometer and gyro, respectively. The heading provided by the
gyro requires an initial heading from the magnetometer. The characteristics of the gyro heading are
smooth and independent of the environment, resulting in errors that accumulate quickly over time.
The magnetic heading, on the other hand, is affected by the environment, which causes the unsmooth
heading measurement but without accumulated error. Taking these differences into account, the HKF
estimates the integrated heading and gyro bias, combining the advantages of both to obtain a smooth
heading and reduce error drift. The predictive stage of the HKF is shown in the following:

xHKF
k =

[
δψk
δbψ, k

]
= ΦHKF

k−1 xHKF
k−1 =

[
1 ∆t
0 1

][
δψk−1
δbψ, k−1

]
+ wHKF

k , wHKF
k ∼ N(0, QHKF

k ), QHKF
k = [0.01 0.01] (6)

PHKF
k = ΦHKF

k−1 PHKF
k−1 ΦHKF

k−1
T + QHKF

k (7)

where xHKF
k is the state vector of HKF at k epoch; δψ is the heading error; δb is the error of gyro bias;

wHKF
k is the gyro system noise (assumed to be a Gaussian distribution); QHKF

k is the covariance matrix
of gyro system noise. ΦHKF

k−1 is the transition matrix of HKF, which represents the relation between the
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states at k and k − 1 epochs; PHKF
k−1 is the covariance matrix of the state vector of HKF. In the next step,

the updated stage of HKF is:

KHKF
k = PHKF

k (HHKF)
T
(HHKFPHKF

k (HHKF)
T
+ RHKF

k )
−1

, HHKF = [1 0], RHKF
k = [0.25 0.25] (8)

x̂HKF
k = xHKF

k + KHKF
k (zHKF

k − HHKFxHKF
k ), zHKF

k = Am − Ag (9)

P̂HKF
k = (I − KHKF

k HHKF)PHKF
k (I − KHKF

k HHKF)
T
+ KHKF

k RHKF
k (HHKF)

T
(10)

where KHKF
k is the Kalman gain of HKF; HHKF is the design matrix of HKF for measurement; RHKF

k is
the covariance matrix of measurement at k epoch; x̂HKF

k is the updated state vector of HKF at k epoch;
zHKF

k is the observation model of HKF, which is the difference between the magnetic heading Am and
gyro heading Ag at k epoch. Using this system, PDR estimates the position based on the integrated
heading from HKF. Furthermore, the used step length is from an empirical formula that has better
performance. The following is the equation:

Lk = (0.7 + a(H − 1.75) + b
(Fk − 1.79)H

1.75
)c (11)

In this equation, Lk is the step length of k step; a, b and c are the tuning parameters; H is the height
of the user; and Fk is the walking frequency, which is estimated at k step. However, external aids such
as space resection are used in order to reduce the error accumulation of PDR, as well as to avoid model
tuning. Therefore, the parameters (a, b and c) in Equation (11) are default values, which are the same as
the reference [35]. Chen et al. determined those parameters from measurements taken from 33 walking
scenarios using 11 people. We also compared the different empirical formulas in past research [9],
and this formula has better performance. For PKF, the state vector and transition matrix are shown in
the following equations:

xPKF
k =

[
Ek Nk Lk bE, k bN,k bL,k

]
, HPKF = [1 0 0 0 0 0; 0 1 0 0 0 0] (12)

QPKF
k = [1 1 0.1 1 1 0.1] (13)

zPKF
k = [Esr

k − Epdr
k , Nsr

k − Npdr
k ], RPKF

k = [0.01 0.01] (14)

ΦPKF
k−1 = [1 0 ϑ 1 0 0; 0 1 η 0 1 0; 0 0 1 0 0 1; 0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1] (15)

where xPKF
k is the state vector of PKF; HPKF is the design matrix of PKF for measurement; zPKF

k is the
observation model of PKF, which is the difference between the positions of space resection and PDR at
k epoch; Esr

k and Epdr
k are the eastern coordinates of space resection and PDR, respectively; Nsr

k and

Npdr
k are the northern coordinates of space resection and PDR, respectively; RPKF

k is the covariance
matrix of measurement at k epoch; ΦPKF

k−1 is the transition matrix of PKF; L is the step length; ϑ and η

are the second-order Taylor series expansion for sine and cosine functions; bE, k is the offset for east;
bN, k is the offset for north; bL, k is the bias of step length; and k is the k step. The matrix operations
of the prediction and update stages of PKF are the same as HKF. The PKF is used to estimate the
integrated position from space resection and PDR. The innovation equation is based on the difference
between the positions of PDR and space resection. In other words, the position estimated by space
resection is used to update PKF. As shown in these equations, the proposed space resection aids PDR
estimates of the user’s location and heading based on the inertial sensors and smartphone camera.
Although there are PDR errors caused by pedometer, step length and heading estimation, in order to
emphasize the effect of integration, the PDR algorithm is not complex and does not require calibration
and tuning parameters for individual users and the environment. Once the image is taken, the solution
of space resection serves as the constraint for PDR by resetting accumulated error, meanwhile the
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PDR provides the initial values for later space resection. Finally, the smartphone user can navigate
indoors easily.

3. Results and Discussion

The following sections provide the analysis results of space resection and the proposed integrated
algorithm. The smartphones used are HTC M8 (HTC Inc., New Taipei City, Taiwan) and iPhone 5S
(Apple Inc., Cupertino, CA, USA). The official specifications of those smartphone cameras are shown
in Table 1. The analysis of space resection was implemented in a professional camera calibration
laboratory. The proposed space resection-aided PDR is implemented in the underground parking lot,
which is mapped by IMMS.

Table 1. The official specifications of the smartphone cameras.

Specification iPhone 5S HTC M8

Recording principle distance (mm) 4 4
Calibrated principle distance (mm) 4.19 3.79

Pixel size (mm) 0.0015 0.0020
Image size (pixel) 3264 × 2248 2688 × 1520

3.1. Analysis of Space Resection Using Smartphone

A smartphone camera located 4 m in front of the center of a wall took horizontal images
for the following experiments. The height of the smartphone camera wass set by a tripod at
about 1.5 m. After the pictures were taken, space resection used the control points with different
intersection angles and number of control points to evaluate their influence, based on position error
and DOPs. The north/south, east/west and height directions correspond to the depth, x and y of the
image in this field. Therefore, the east and height have similar characteristics, both being parallel to the
image plane. However, they also have some differences because the horizontal range (east direction)
and vertical (height) intersection angles are different due to the orientation of the image. In addition,
the north direction corresponds to the depth, which has different characteristics than the others.
The results indicate the accuracy and influence of un-calibrated smartphone cameras for space resection,
then inspire the way to improve.

3.1.1. Intersection Angle

The control points used to evaluate the effect of intersection angles that range from 5 to 52 degrees
of horizontal, are shown as red points in Figure 7. Tables 2 and 3 show the position errors at different
intersection angles using the iPhone and HTC, respectively. The horizontal intersection angles are
shown in the second column, and the vertical intersection angles are shown in the parentheses
beside the horizontal intersection angle. Tables 2 and 3 also show the position errors for three cases
that use different IOP values. The first case uses the space resection with the un-calibrated IOPs,
which means that the principle distance is provided by an image file and the others are assumed to be
zero. The second case uses the calibrated principle distance and principle point offsets, while the third
case further uses additional parameters such as lens distortion correction. These cases were designed
for several reasons and assumptions. For the assumption of the first case, it is difficult for general users
to obtained the calibrated IOPs by calibration, and the manufacturers do not announce the detailed
specification of their smartphone camera. For the assumption of the second case, the users can obtain
the accurate principle distance recorded in an image file (even it is inaccurate now but is expected
to be more accurate in the future). Finally, the third case is designed for professional applications
with complete calibrated IOPs. Therefore, these cases are arranged to compare the performance in
different situations.
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Table 2. The position error of intersection angle analysis for the iPhone 5S.

iPhone 5S Intersection Angle (Deg) E-Error (cm) N-Error (cm) H-Error (cm) RMSE (cm)

Case 1
5 (6) 3.753 −26.893 1.663 27.205

23 (11) −5.171 −26.742 −3.405 27.449
52 (20) −5.829 −30.356 −6.695 31.627

Case 2
5 (6) 4.675 −10.336 4.520 12.211

23 (11) −1.708 −10.553 0.621 10.708
52 (20) −2.017 −14.356 −2.406 14.696

Case 3
5 (6) 4.481 −10.207 4.680 12.090

23 (11) −1.599 −8.790 −0.760 8.967
52 (20) 0.002 −9.066 −1.333 9.164

Table 3. The position error of intersection angle analysis for the HTC M8.

HTC M8 Intersection Angle (Deg) E-Error (cm) N-Error (cm) H-Error (cm) RMSE (cm)

Case 1
5 (6) 3.895 23.606 −2.870 24.097

23 (11) −6.049 21.062 2.699 22.079
52 (20) −5.596 16.304 0.392 17.242

Case 2
5 (6) 2.929 2.652 −4.817 6.230

23 (11) −5.785 0.267 0.043 5.792
52 (20) −5.304 −4.248 −2.307 7.177

Case 3
5 (6) 3.837 2.667 −2.802 5.449

23 (11) −4.275 2.711 −0.521 5.088
52 (20) −4.142 2.600 −0.476 4.914

Since the results of space resection in different directions are highly correlated with each other,
a comparison of RMSE of all the directions is more comprehensive. A comparison between the RMSE
of the first and second cases shows a significant improvement after the calibrated principle distance
is used. In addition, a comparison between the RMSE of the second and third cases shows a slight
improvement due to the use of fully calibrated IOPs that have lens distortion correction. It is clear
that the error caused by inaccurate principle distance is larger than the error caused by lens distortion
correction. Moreover, the RMSEs of the first case show an opposite effect regarding the principle
distances of the two smartphones. This is due to the difference between the recording principle
distance and calibrated principle distance of these two phones: one is positive and the other negative
(the calibrated principle distances of the iPhone and HTC are 4.19 and 3.79 mm, respectively, but
the recording values are both 4 mm). The RMSEs of the second case are significantly better than
for the first case, and have the same characteristics for both smartphones because the more accurate
principle distances are used simultaneously. However, the RMSEs of a horizontal intersection angle
of 23 degrees are the best, because the smaller intersection angle has poorer intersection geometry,
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and the larger intersection angle uses control points with larger lens distortion. Control points with
larger intersection angles are far from the principle point, which originally has larger lens distortion.
Therefore, the RMSEs of the third case at large intersection angles are much better than for the other
cases because of the lens distortion correction. In conclusion, principle distance, lens distortion and
intersection angle seriously affect the performance of space resection, and the importance from high
to low is principle distance, lens distortion and intersection angle. However, the accuracy of space
resection without any calibrated IOPs is still acceptable for pedestrian indoor navigation in which the
requirement accuracy is only at the meter level.

In addition to position error, the DOPs are mainly dependent on the intersection angle in this
analysis, as shown in Figure 8. The PDOP values are about 6, 27 and 127 for the iPhone and 8,
35 and 180 for the HTC phone, which correspond to 52, 23 and 5 degrees of intersection angle,
respectively. The ADOP values are about 2, 7 and 34 for the iPhone and 2, 9 and 47 for the HTC phone,
which correspond to 52, 23 and 5 degrees of intersection angles, respectively. The larger the intersection
angles, the more significantly the DOP values decrease. However, the intersection angle is not the only
factor that affects position accuracy. Even if all the calibrated IOPs are used, the better DOPs do not
automatically cause better position accuracy, as shown in Tables 2 and 3. However, DOPs indicate the
better geometry for iterative calculation and collinearity conditions, which causes lower uncertainty
for convergence.
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3.1.2. Quantity of Control Points

In addition to the intersection angle, the quantity of control points is also an important factor
because there may not always be sufficient features in the navigated environment. In order to evaluate
the effect of the number of control points for space resection, different numbers of control point are
used in this analysis. Tests were done with 4, 8, 18 and 32 control points, all evenly distributed on
the image, as shown in Figure 9. These are expected to exclude the influence of intersection angle
and geometry. All conditions, such as the direction, imaging distance and setting of Case 1 to Case 3
are the same as in previous tests. Therefore, the north, east and height vectors correspond to the
directions of depth, x and y of the image. The different cases have different usages of calibrated IOPs.
Tables 4 and 5 show the position errors corresponding to the different numbers of control points in the
three cases. Comparison of RMSE of the first and second cases clearly shows a significant improvement
due to the usage of calibrated principle distance. Moreover, the comparison of RMSE between the
second and third cases are also slightly improved because of the correction of lens distortion. However,
there is no significant improvement when more control points are used. The comparisons between all
the cases show that merely adding control points does not reduce the error caused by the inaccurate
IOPs. Therefore, the DOPs are further analyzed.

Figure 10 shows the values of PDOP and ADOP for the two smartphones. When more control
points are used, better DOP values are obtained. However, the position accuracy shows no significant
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improvement when the DOPs become smaller because the intersection geometry is good enough
with only four control points (the DOPs are already small enough, and more control points only
slightly improve DOPs). This shows that the few control points used in this analysis are enough
for good geometry of intersection, which successfully estimates the solution with lower uncertainty.
Therefore, more control points are only meaningful when the added points can significantly improve
the intersection angle and geometry for practical application. However, more control points also
represent more redundant observation for least squares, which improves the reliability of estimation.
Therefore, DOPs represent not only better geometry but also better reliability, which makes the iterative
calculation successfully converge with lower uncertainty and the best possible estimation.ISPRS Int. J. Geo-Inf. 2017, 6, 43  14 of 23 
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Table 4. The position error of quantity analysis for the iPhone 5S.

iPhone 5S Number of Control Points E-Error (cm) N-Error (cm) H-Error (cm) RMSE (cm)

Case 1

4 −5.829 −30.356 −6.695 31.627
8 −5.797 −30.053 −6.333 31.255
18 −5.887 −29.450 −5.981 30.622
32 −6.033 −28.994 −5.554 30.131

Case 2

4 −2.017 −14.356 −2.406 14.695
8 −2.030 −14.036 −2.034 14.327
18 −2.120 −13.398 −1.688 13.669
32 −2.288 −12.926 −1.256 13.187

Case 3

4 0.002 −9.066 −1.333 9.164
8 0.205 −9.017 −1.592 9.159
18 −0.372 −8.901 −1.471 9.029
32 −0.588 −8.841 −1.550 8.995
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Table 5. The position error of quantity analysis for HTC M8.

HTC M8 Number of Control Points E-Error (cm) N-Error (cm) H-Error (cm) RMSE (cm)

Case 1

4 −5.596 16.304 0.392 17.242
8 −6.759 16.660 1.345 18.029
18 −6.221 17.340 1.337 18.470
32 −6.676 17.819 1.593 19.095

Case 2

4 −5.304 −4.248 −2.307 7.177
8 −6.373 −3.897 −1.482 7.615
18 −5.867 −3.260 −1.458 6.869
32 −6.286 −2.798 −1.232 6.990

Case 3

4 −4.142 2.600 −0.476 4.914
8 −4.305 2.612 −0.416 5.053
18 −4.088 2.658 −0.290 4.885
32 −4.218 2.628 −0.487 4.994
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3.1.3. Adaptive Weighted Least Squares

According to the above analyses, accurate IOPs significantly improve the position accuracy of
space resection. The assumption of Case 2 is a possible situation for a smartphone camera in the future,
for which the principle distance recording in the image file will be more accurate, but the other IOPs
such as lens distortion are still difficult to obtain. Therefore, we propose an adaptive weighted least
square approach for space resection using a smartphone to reduce the error caused by lens distortion,
then apply this in further positioning applications. According to Section 3.1.1, the remaining error of
case 2 is mainly from lens distortion after applying the calibrated principle distance. The positon error
of case 2 becomes larger when the used control points are far from the principle point. This means
those control points have better intersection angles but with larger lens distortion. Finding the best
balance between these two factors will provide the optimal estimation and reduce the error caused by
lens distortion and lead to lower uncertainty. Figure 11 shows two scenarios for selected control points.
The selected control points are based on the premise of even distribution and have various distances
from the principle point. The following analysis evaluates the optimal weight of control points based
on their distance from the principle point without the use of any calibrated IOPs. Furthermore,
each smartphone takes three images at different times to evaluate the repeatability of the
proposed method.

Tables 6 and 7 show the position RMSEs for two scenarios using two smartphones. The three
images were taken by each smartphone at different times. The first row shows the power of distance,
which is the weight of each control point that depends on its distance from the principle point.
If the power is positive, it means a larger weight of the image point with longer distance between itself
and the principle point; if the power is negative, it means a smaller weight of the image point with a



ISPRS Int. J. Geo-Inf. 2017, 6, 43 16 of 24

longer distance between itself and the principle point. Figure 12 shows quartic polynomial fitting of
the optimal weight corresponding to different powers of distance and the normalized position error
from tables, which illustrates the characteristic more clearly. The blue dotted lines show the results
for the HTC, and the red dotted lines are the results for the iPhone. The solid lines represent the
fitting results corresponding to the iPhone, HTC, and both using red, blue and green, respectively. The
results indicate that the power of distance should be−3 or−4 for optimal estimation of space resection
when the consumer-grade smartphone cameras are used with un-calibrated IOPs. This characteristic
corresponds with the findings of previous analyses: the intersection angle has a lower effect for close
range photogrammetry using a smartphone camera, but more distant control points cause greater
lens distortion, which affects the position accuracy. Therefore, the adaptive weighted least squares
method improves the position error by about five to ten centimeters by reducing the effect of lens
distortion. However, two cases (Images 1 and 3 of HTC) do not match in this conclusion because the
original position errors with equal weight are quite small. This means these two cases have already
archived the limited accuracy of RMSE to about fifteen centimeters since the error caused by inaccurate
principle distance and other observational error still remains.
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Table 6. The position error of analysis of adaptive weight for the iPhone 5S.

Power of
Distance −4 −3 −2 −1 0 1 2 3 4

Scenario 1 (Unit: cm)
Image 1 25.992 26.724 28.007 28.797 29.089 29.169 29.174 29.172 29.185
Image 2 14.430 14.634 15.204 15.809 16.086 16.234 16.356 16.456 16.533
Image 3 18.441 18.447 18.846 19.385 19.722 19.962 20.174 20.353 20.494

Scenario 2 (Unit: cm)
Image 1 25.090 25.377 27.116 30.943 34.318 35.719 36.115 36.283 36.441
Image 2 15.470 14.829 15.634 18.327 20.555 21.360 21.552 21.591 21.599
Image 3 17.865 17.744 18.420 20.799 22.617 22.965 22.872 22.805 22.786

Table 7. The position error of analysis of adaptive weight for the HTC M8.

Power of
Distance −4 −3 −2 −1 0 1 2 3 4

Scenario 1 (Unit: cm)
Image 1 16.399 15.361 14.693 15.802 15.716 15.298 14.865 14.515 14.257
Image 2 20.764 24.797 36.070 42.861 38.094 21.660 29.551 54.540 75.504
Image 3 21.116 19.783 18.621 17.657 17.109 16.955 17.001 17.079 17.119

Scenario 2 (Unit: cm)
Image 1 15.802 15.493 16.431 22.731 28.694 30.283 30.644 30.900 31.110
Image 2 23.559 23.400 24.950 27.845 29.369 28.931 27.922 27.212 26.822
Image 3 23.059 21.485 21.468 23.861 25.623 25.555 24.861 24.338 24.037
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Final conclusion: two kinds of analyses both show the importance (listed in order from highest to
lowest) of calibrated IOPs based upon the viewpoint of position accuracy. Meanwhile, intersection
angle and number of control points affect the DOPs and play important roles in collinearity equations,
least squares, and iterative calculation, which all enhance the reliability of estimations. The good
geometry of control points is important than more control points used, and the effect of IOPs is
more significant than intersection geometry. Unfortunately, calibrating each smartphone camera for
complete IOPs is not practical for a universal application. However, the image file records the principle
distance, and the recording is expected to be more accurate in the future. Therefore, there will remain
the error mainly caused by lens distortion. The adaptive weighted least squares method is proposed
based upon the discovered characteristics of a smartphone camera that balance the intersection
angle and lens distortion. The optimal weighting has been decided after performing experiments.
The weight of control points that are farther away from the principle point should be smaller because
of increased lens distortion in consumer-grade smartphone cameras. After correctly modifying the
weighting, the position error of space resection is reduced by about ten centimeters.

3.2. Proposed Space Resection-Aided PDR

Adaptive weighted space resection is now used for integration with PDR, thus reducing the effect
of inaccurate IOPs. Figure 13 shows the experimental route taken by four participants using two
smartphones (iPhone 5S or an HTC M8). They took the phone and walked along the experimental
route. The total walking distance was around 566 m. The route started outdoors and then went into
an underground parking lot, finally returning to the original position. The participants were named
A, B, C and D, three males and one female, with heights of 1.70, 1.87, 1.67 and 1.57 m, respectively.
The light blue box zooms in the partial area of the underground parking lot. The black square indicates
the starting and ending points; the experimental route was a closed path. The light green triangles are
the check points, located at the corners. It is difficult for the user to hold the smartphone and equip the
accurate sensors with corresponding power supply and computer simultaneously, so it is quite difficult
to create an accurate reference trajectory. With this in mind, we chose points in the corners as the check
points, which can be easily measured on the estimated trajectory. The check points were surveyed
by the total station at centimeter-level accuracy. The yellow points are the locations that implement
adaptive weighted space resection with an un-calibrated smartphone camera. In the other words,
only six images were used during the navigation. The un-calibrated IOPs used the principle distance
from the image file and assumed the principle point offsets and lens distortion were zero. In addition,
the yellow points were also surveyed by the total station for accuracy analysis of space resection.
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Tables 8 and 9 show the accuracy of space resection in this field (yellow points in Figure 13) with
geo-referenced images provided by IMMS. The errors shown in the tables represent the RMSE of six
check points for the east/west and north/south directions. The horizontal error is the RMS value of
east and north RMSE. Because height and attitude are not considered in the proposed system, they are
not discussed. The accuracy of space resection in this field is about one meter, which is significantly
worse than the accuracy in the camera calibration laboratory. This is because the used ground
coordinates were measured by geo-referenced images. In the other words, the geo-referenced images
provided by IMMS are less accurate than a traditional survey (laboratory conditions). Furthermore,
the candidates for control points are rare in underground parking lots, so cannot provide the best
intersection geometry, causing poor reliability and estimation errors. However, the accuracy of one
meter is acceptable and effective for PDR, since the accuracy of the PDR stand-alone algorithm is
significantly worse, especially without any model calibration, parameter tuning, or accurate sensors.
Any missed two steps of the PDR can produce an error of over one meter.

Table 8. The result of space resection for the iPhone in a real scene.

User E-Error (m) N-Error (m) Horizontal-Error (m)

A 0.674 0.865 0.775
B 0.811 0.851 0.831
C 0.846 0.926 0.887
D 0.748 0.866 0.809

Table 9. The result of space resection for the HTC in a real scene.

User E-Error (m) N-Error (m) Horizontal-Error (m)

A 1.032 0.837 0.940
B 0.956 0.913 0.935
C 1.338 0.938 1.156
D 1.267 1.007 1.145

Figures 14 and 15 show the estimated trajectories of four participants using iPhone 5S and HTC
M8, respectively. The coordinate system is TWD97, which can be easily transformed to the World
Geodetic System 1984 (WGS84). However, all the solutions of the trajectory are minus the coordinate of
starting location coordinates for a clear illustration. The proposed space resection-aided PDR is named
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S-PDR in the following figures and tables. The dark green triangle (the same as the light green triangles
and yellow points in Figure 13) represents the true location surveyed by the total station, which is
used as the references for comparison. The red line represents the trajectory estimated by the PDR
algorithm with the pedometer using threshold peak detection along with time intervals, an empirically
formulated step length, and an integrated heading based upon gyro and magnetometer data. The blue
dotted line represents the trajectory estimated by the proposed space resection-aided PDR. The red
and blue squares are the end locations of PDR and space resection aided PDR, respectively. The black
square is the starting point of both trajectories. The trajectories of the two algorithms overlap at the
beginning, and then become different after the first space resection update. In order to evaluate the
improvement of the proposed algorithm and verify whether it is actually more practical, all the used
parameters of PDR are default values. Therefore, the position error caused by step length and step
count is obvious because the corresponding parameters are not tuned.ISPRS Int. J. Geo-Inf. 2017, 6, 43  19 of 23 
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Figure 14. The trajectories of four participants using an iPhone.

Table 10 shows the percentage of loop closure error for the analysis of the above trajectories.
The percentage of loop closure error represents the difference between the starting and ending position
divided by the total walking distance for a closed path. For example, a loop closure error of 1%
represents one meter of accumulated error for every one hundred meters traveled. The table shows
that the results of S-PDR have less loop closure error, with an average of 2.6% after traveling 566 m.
The percentages of loop closure error using HTC are worse than when using the iPhone. The HTC
M8’s embedded inertial sensor’s reading is not accurate enough, and the built-in algorithm constraints
the value to zero when the movement is slight. However, the improvements of both smartphones are
significant after space resection aiding.
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Table 10. The percentage of loop closure error of four participants using two smartphones.

User
iPhone 5S HTC M8

PDR (%) S-PDR (%) PDR (%) S-PDR (%)

A 4.803 4.713 7.897 2.495
B 3.665 3.987 5.338 3.438
C 2.222 1.730 5.836 2.226
D 1.292 0.878 6.035 1.531

In order to provide absolute error analysis, the light green triangles shown in Figure 13 are
used as check points, which are the exclusive points that implement the space resection update.
Tables 11 and 12 show the step count of each user, and the RMSE of six check points for all the
trajectories. Tables 11 and 12 also show the improvement of the PDR after aided by the space
resection (compare the pure PDR and S-PDR). Because of the inadequately tuned algorithm, the step
miscount is about fifteen, resulting in a substantial position error. However, the space resection-aided
PDR makes the whole trajectory coincide more closely with the real walking route, and has an
average improvement of about 50%, as well as an average RMSE of about 8.8 m at the check points.
The percentage of average RMSE and traveled distance is about 1.55%, which is quite small. It is worth
mentioning that the largest error is usually from the corner, and the four check points in the south
occurred after a relatively long period without a space resection update, as shown in Figure 13.
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Table 11. Accuracy analysis of trajectories using the iPhone.

User Height
(m)

True
Steps

Measured
Step

RMSE of
PDR (m)

RMSE of
S-PDR (m)

Improvement
(%)

A 1.70 840 832 11.545 5.784 49.900
B 1.87 728 744 13.935 9.861 29.236
C 1.67 847 825 9.491 3.995 57.907
D 1.57 946 939 18.381 5.343 70.932

Table 12. The accuracy analysis of trajectories using the HTC.

User Height
(m)

True
Steps

Measured
Step

RMSE of
PDR (m)

RMSE of
S-PDR (m)

Improvement
(%)

A 1.70 830 816 26.458 11.352 57.094
B 1.87 717 724 25.636 15.752 38.555
C 1.67 851 853 19.112 9.235 51.680
D 1.57 926 917 24.714 9.336 62.224

After comparing the true locations of the dark green triangle, the trajectories of the proposed
algorithm can be seen to coincide more closely with the real locations. Therefore, the results show the
proposed algorithm works better without any individual calibration, parameters tuning, more accurate
wearable sensors, or environmental infrastructure. The results also indicate the proposed algorithm
is more convenient, costs less and is more generalizable for general users using their smartphones
for indoor navigation. The integration of PDR solves the problem of initial values indoors for the
convergence of space resection, which avoids frequent image taking. Meanwhile, space resection
provides the error control for PDR without any complex calibration and model. However, the more
accurate PDR can be considered for a longer gap between two images taken for space resection.
Therefore, our group is starting to work on the integration of proposed space resection-aided PDR
and map-aided PDR (which is our previous work [36]). In addition, there are some positioning
technologies based on RSSI such as magnetic fingerprinting and Wi-Fi positioning. Since the Wi-Fi
access point is common indoors and the smartphone usually has a magnetometer, those technologies
can be considered in the future to integrate with space resection. However, their accuracies should
be acceptable for the convergence of space resection. There is also a large challenge in determining
the proposed algorithm for practical and real-time applications using a smartphone due to hardware
limitations. The image processing such as feature detection and matching are performed manually in
this research. Therefore, the automation process will be considered in future work. The development
of cloud servers is one solution for the near future, as they can receive the query image and perform
feature extraction and image matching. Another solution is using some designed feature, such as a bar
code, to improve the performance of image processing, which is our ongoing work.

4. Conclusions

This research proposes space resection-aided PDR in order to develop an algorithm that is low
cost, easy to use, highly generalizable, and accurate for universal indoor pedestrian navigation.
By using the proposed algorithm, the user only needs a smartphone with an embedded inertial sensor
and camera to estimate location. Users will not have to implement any advanced calibration or
parameter tuning in post-processing, nor will they need to buy any environmental infrastructure or
equipped sensors. First, the IMMS was used to fast map an environment to produce geo-referenced
images. Then, the space resection provided the position estimation with an accuracy of one meter and
used the updated measurement for PDR. PDR provided the initial values for iterative calculation of
space resection indoors once the starting location was known. PDR also reduced the need to frequently
take images for space resection, and provided continuous navigation. Furthermore, the adaptive
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weighted least squares method was proposed for better estimation of space resection based on the
analysis of space resection using a smartphone camera. If the recording principle distance becomes
more accurate, and the adaptive weighted least square method is applied, the performance of space
resection without any camera calibration can approximate the performance when complete calibrated
IOPs are used. In addition, space resection based on the geo-referenced images provides the position
with absolute coordinates for seamless navigation. In order to validate the performance of the proposed
algorithm, different trials were carried out in this research. After traveling 566 m, the preliminary
results presented in this study indicate the proposed algorithm provides an average percentage loop
closure error of about 2.6%, and an average check point error of about 8.8 m. There is work to be
done and improvements to be made, such as image processing of space resection, and advanced PDR.
The automation image process, cloud servers, map information and RSS-based positioning technology
will be considered in the future.
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